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Localization of stationary waves occurs in a large variety of vibrat-
ing systems, whether mechanical, acoustical, optical, or quantum.
It is induced by the presence of an inhomogeneous medium, a com-
plex geometry, or a quenched disorder. One of its most striking
and famous manifestations is Anderson localization, responsible
for instance for the metal-insulator transition in disordered alloys.
Yet, despite an enormous body of related literature, a clear and uni-
fied picture of localization is still to be found, as well as the exact
relationship between its many manifestations. In this paper, we de-
monstrate that both Anderson and weak localizations originate
from the same universal mechanism, acting on any type of vibra-
tion, in any dimension, and for any domain shape. This mechanism
partitions the system into weakly coupled subregions. The bound-
aries of these subregions correspond to the valleys of a hidden
landscape that emerges from the interplay between the wave op-
erator and the system geometry. The height of the landscape along
its valleys determines the strength of the coupling between the
subregions. The landscape and its impact on localization can be
determined rigorously by solving one special boundary problem.
This theory allows one to predict the localization properties, the
confining regions, and to estimate the energy of the vibrational
eigenmodes through the properties of one geometrical object. In
particular, Anderson localization can be understood as a special
case of weak localization in a very rough landscape.
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puzzling feature exhibited by complex, irregular, or inhomo-

geneous systems is their ability to maintain standing waves or
vibrations in a very restricted subregion of their domain even in
the absence of confining force or potential. The most striking
manifestation of this phenomenon is the famous Anderson loca-
lization which has fascinated scientists and spurred an extraordi-
narily abundant wealth of literature in the past 50 years (1-6).
Since Anderson’s seminal work in 1958 it is known that a suffi-
ciently large structural disorder can lead to strongly localized
quantum states, which are standing waves of the Schrodinger
equation. This phenomenon has now been experimentally de-
monstrated in optic or electromagnetic systems (7-9).

Another well-known example of vibration confinement is the
weak localization occurring in domains of irregular geometry and
characterized by a slow decay of the vibration amplitude away
from its main existence subregion (10-13), as opposed to the
exponential decay of Anderson localization.

Considerable progress has been made to understand the onset
of weak and Anderson localization, as well as the possible link
between these two types of localization (14). Even though a few
approaches statistically relate the energy levels to the potential in
disordered solids (15, 16), there has been no general theory able
to directly determine for any domain and any type of inhomo-
geneity the precise relationship between the geometry of the do-
main, the nature of the disorder, and the localization of vibra-
tions, to predict in which subregions one can expect localized
standing waves to appear, and in which frequency range.

www.pnas.org/cgi/doi/10.1073/pnas.1120432109

Consider for instance a simple case of Anderson localization
illustrated in Fig. 1. The original domain (called ) is a unit
square. It is divided into 400 = 20 x 20 smaller squares. On each
of these smaller squares, the potential V(%) is constant, its value
being determined at random uniformly between 0 and V., (here
V max = 8,000, see Fig. 1, Left). We compute the quantum states,
i.e., the eigenmodes y and the energy levels E of the Hamiltonian
H =—-A+V (the arbitrary energy units are taken such that
7?/2m = 1). These quantum states obey the stationary Schrodin-
ger equation with Dirichlet boundary conditions [Anderson’s ori-
ginal paper used a tight-binding model which can be seen as the
discrete projection of a continuous Hamiltonian, both converging
toward the white noise potential in the limit of small lattice para-
meter (2)], as follows:

(-A+V)y=Ey inQ, Yoo = 0. 1]
The five quantum states of lowest energy are plotted together in
Fig. 1, Right. It appears that one cannot directly deduce the de-
tailed shape of the localized quantum states, i.e., the boundary of
the subregion that contains most of the mode energy, from the
shape of the potential itself. Normally, one would have to solve
the eigenvalue problem to retrieve this information.

In the present paper, we introduce a fundamentally unique
theory that determines the localization subregions from the
knowledge of the disordered potential itself. Unifying weak and
Anderson localization within the same mathematical framework,
the proposed theory reveals inside any vibrating system a hidden
landscape that divides the original domain into several weakly
coupled vibrating subregions. It unravels the relationship be-
tween the geometry of these localization subregions and the
mode energy, and finally predicts the critical energy above which
one can expect fully delocalized, i.e., conducting states to appear.

Results
The Landscape of Localization. The essential step in our approach
consists in solving not the eigenvalue problem, but the Dirichlet
problem with uniform right-hand side and Dirichlet boundary
conditions, as follows:
(-A+V)u=1 withul,, =0. [2]
The Hamiltonian H = —A + V' is a second-order elliptic opera-
tor with variable coefficients, which is positive if V7 (x) is positive

everywhere. In this case the solution u is a positive function,
and its map can be considered as a landscape (see Fig. 2, Left)

Author contributions: M.F. and S.M. designed research; M.F. and S.M. performed research;
and M.F. and S.M. wrote the paper.

The authors declare no conflict of interest.
This article is a PNAS Direct Submission.

"To whom correspondence should be addressed. E-mail: marcel.filoche@polytechnique
.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1120432109/-/DCSupplemental.

PNAS Early Edition | 1of 6

wv

=4
25
3=
g
<5
=



http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120432109/-/DCSupplemental
mailto:marcel.filoche@polytechnique.edu
mailto:marcel.filoche@polytechnique.edu

Z |

characterized by a complex relief with many valleys and peaks. In
particular, one can draw in this landscape the network of inter-
connected valleys of varying depths. Using the streamlines of this
landscape as guidelines, the corresponding valleys are delineated
in Fig. 2, Middle. The thickest lines represent the deepest valleys,
whereas the moderately thick lines correspond to the shallower
ones. This intricate network reveals a complex partition of the
domain into numerous subregions that was impossible to guess
by just looking at the random potential at hand.

If one now superimposes the valley network on top of the
three-dimensional (3D) representation of the eigenmodes (Fig. 2,
Right), one can observe how accurately these lines predict the lo-
calization subregions of the different modes. The reason for this
accurate prediction is that every eigenmode y satisfies the follow-
ing identity (SI Appendix gives the mathematical proof):

(W) < Eu(x),

Here E is the mode energy, y is the mode amplitude normalized
so that supg || = 1, and u(x) is the landscape defined above in
Eq. 2, i.e., a function independent of the eigenmode y. One can
add here that for complex Hamiltonians (containing for instance
magnetic interaction), one can obtain a more general definition
of the function u(x) that always leads to a nonnegative real-valued
function. This expression will be given later in the paper.
Through inequality [3], the function u compels the eigenmodes
to be small along its lines of local minima, i.e., along the valleys of
the landscape displayed in Fig. 2, Middle. These valleys are de-

for all ¥ in Q. [3]

o N MO

Fig. 2.

Fig. 1. (Left) Three-dimensional view of the random
potential V(x) entering the Schrédinger equation.
The square domain is divided in 20 x 20 smaller
squares. In each small square, the potential V is as-
signed an independent random value uniformly dis-
tributed between 0 and V., (here 8,000). (Right)
Three-dimensional view of the fundamental and
the first four excited states. From the view of the po-
tential only, it seems impossible to predict the loca-
lization regions and the spatial distribution of these
states.

fined as the lines of steepest descent, starting from the saddle
points of the landscape and going to its minima. These lines also
can be seen as antiwatersheds, in other words the watershed lines
of the reversed landscape. The network formed by these valleys, a
priori invisible when looking at the domain but clearly identifi-
able on the graph of u, operates as a driving force that determines
the confinement properties.

The Effective Valley Network. Whereas the network of valleys is de-
termined by u and is independent of the eigenmodes, the strength
of the confinement of an eigenmode dictated by inequality [3]
diminishes as the energy E increases. Given the normalization
chosen for the eigenmodes, this inequality represents an effective
constraint only at those points {x} where Eu(x) is smaller than 1.
In other words, an eigenmode of energy E can only actually see,
or be constrained by, the portion of the initial valley network
where u(x) < 1/E. This subset of the entire network, parameter-
ized by E, is referred to as the effective valley network /' (E).

From its definition, it is immediate to see that if £’ > E the
effective valley network /' (E’) is a subset of the effective valley
network /' (E). In other words, the family of effective networks
[V (E)]o<p<1o cOnstitutes a decreasing sequence of sets as E in-
creases. For E = 0, the effective valley network .#/(0) is simply
the entire original valley network, whereas, when E goes to infi-
nity, the network /' (E) progressively disappears entirely.

To observe how the effective valley network drives the confine-
ment of the eigenmodes, we plot the amplitude of a number of
modes (or quantum states) at lower and higher energies (Fig. 3).

(Left) Three-dimensional view of the landscape of u, obtained by solving [-A + V(x)]u = 1. (Middle) Two-dimensional color representation of the map

of u, together with the streamlines and valleys. The very thin lines correspond to the streamlines, the thicker lines correspond to the deepest valleys, and the
moderately thick lines to the more shallow ones. This landscape draws an intricate network of interconnected valleys. One can conjecture that in the limit of a
Brownian potential, this network becomes scale invariant and exhibit fractal properties. (Right) Network of the valleys deduced from the middle figure super-
imposed with the first five eigenmodes of the domain. One can observe how the network accurately defines the subregions that enclose the modes.
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For each mode of energy E, the corresponding effective valley
network /' (E) is plotted on top of the mode amplitude. It is strik-
ing to see how all modes are clearly shaped by this network. The
fundamental and the first excited states (modes 1 to 8) are com-
pletely localized in one of the subregions bounded by the valley
lines. At higher energies (mode 45, 48, 70), the effective valley
network begins to shrink, opening breaches in the shallowest val-
ley lines. Consequently, subregions that were initially disjoint pro-
gressively merge to form larger subregions. One can observe that
the corresponding modes are still localized, but now exactly in the
much larger subregions defined by the remaining effective net-
work. Still, some small subregions remain in which one can find
localized modes weakly coupled to the rest of the domain (modes
47 and 71). At even higher energies (modes 97-99), a transition
occurs: The effective valley network is mostly disconnected allow-
ing subregions to percolate throughout the entire domain: Fully
delocalized states can now appear.

For sake of simplicity, simulations have been carried out in two
dimension (2D). In 3D or larger dimensions, the valleys would
not be lines but surfaces where u is locally minimal, and the entire
valley network would take the shape of a foam which separates
the domain into a large number of subregions. When the energy

Mode 1 Mode 2 Mode 3
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increases, the effective valley network //(E) would shrink by
opening gaps in the walls separating adjacent subregions.

One can examine in detail the strength of the localization
by plotting the mode amplitude on a logarithmic scale (Fig. 4).
By doing so, one can notice that the level curves are on average
equally spaced, which corresponds to an exponential decay away
from the existence subregion. More precisely, we observe again
our landscape at work: The amplitude of the mode is approxi-
mately of the same order of magnitude inside each subregion.
The decay of the eigenmode essentially occurs each time a
boundary between two adjacent subregions is crossed (this
boundary corresponds to a valley line of the landscape). This ef-
fect is particularly clear for the two modes in Fig. 4 in which their
principal existence subregion appears dark red, all nearest neigh-
boring subregions appear light red, further subregions essentially
orange, etc. Therefore, each subregion is weakly coupled to its
neighbors, the mode decaying by a somewhat constant factor each
time it crosses a valley line away from the center subregion of
existence. When zoomed in on any of these subregions, the mode
localization is of the weak type. However, because of the intricacy
of the valley network, the succession of regularly spaced valley
lines in the effective network yields an exponential decay of

Mode 4

Mode 100

Fig. 3. Spatial distribution of several quantum
states in the random potential of Fig. 2. On top of
each state is drawn the effective valley network
corresponding to the state energy. One can clearly
observe that all modes are localized exactly in one
of the subregions delimited by the effective valley
network.
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Fig. 4. Logarithmic plot (in log10) of the amplitude for two excited states in
the potential shown in Fig. 2. One can observe here in detail how strong lo-
calization emerges from weak localization. Both modes are located in one of
the subregions delimited by the valley ways. Moreover, their decay is shaped
by neighboring subregions. First, the mode amplitude is more or less uniform
within any subregion. Second, when going away from the main subregion,
crossing a valley line corresponds to a decrease by one or two orders of mag-
nitude. Successive decreases lead to an exponential decay for distances sub-
stantially larger than the typical size of a subregion.

the mode away from its center subregion, over distances much
larger than the typical size of a subregion. As a consequence,
the mode appears to be exponentially confined: Strong localiza-
tion emerges from successive and cumulative weak localizations.

Applying our theory in one dimension (1D) gives a very
straightforward interpretation of how Anderson localization op-
erates. The valleys are reduced in this case to single points, which
are by definition the local minima of the function u(x). The lo-
calization subregions are the intervals separating two successive
points and the strength of the localization is determined by the
values of u(x) at these separation points. From this geometrical
interpretation of localization, it is immediately intuitive that it is
much easier to form localization subregions in 1D, only bounded
by two points, than in 2D or 3D where it requires a closed line or a
closed surface.

The Formation of Localized Modes. From the previous section, it
clearly appears that the effective valley network deduced from
inequality [3] thoroughly controls the localization properties.
However, this inequality efficiently constraints the mode ampli-
tude along the valleys of the landscape only. How is it possible
that a constraint exerted along a boundary line suppresses the
vibration outside the localization subregion?

Consider a subregion Q,; of the original domain Q carved out
by the valley lines of the landscape of u. It can be thought of, for
instance, as any of the subregions in Fig. 2, Right. By construction,
the function u is relatively small (locally minimal) along the
boundary of Q,. Thus, for lower values of the energy E, the in-
equality [3] provides a severe constraint on the mode amplitude
along the boundary Q. As a result, any eigenmode w of the en-
tire domain can locally be viewed as a solution to the problem

Hy =Ey inQ, [4]

y=0 onodQ NoQ and y=¢ ondQ \oQ, [5]
where &(X) is a quantity smaller than Eu(x) on the boundary of
Q;. Observe that the boundary value problem [4, 5] is, in fact,
akin to the eigenvalue problem in the subregion ; alone:
The differential equation inside the subregion is identical, but
on the boundary w is small in Eq. 5 rather than just being zero,
as an eigenvalue problem on Q; would normally warrant.

Any eigenmode y satisfying the above boundary problem also
satisfies the following inequality, which plays an essential role in
understanding the origin of localization (SI Appendix gives the
mathematical proof):

E
lwllLg) < (1 +m)||€||- [6]
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Here, dg (E) is the distance from E to the spectrum of the
Hamiltonian H in the subregion only. This distance is defined
as dg, (E ) ming  |E - E; g |, the minimum being taken over
all energies (E; g, ) of H in Q, only. The norm ||&|| is the L2-norm
of the solution to Hv = 0 in Q, with data e on 9Q, (in the sense of
Eq. 5). In particular, ||| becomes arbitrarily small as e vanishes.

This inequality can be understood in fairly simple terms. If ¢ is
identically zero, it implies that y can be nonzero in the subregion
Q, only if its energy exactly matches one of the energies E; o of
the spectrum of H in Q.

If ¢ is nonidentically zero, the presence of dg (E) in the de-
nominator of the right-hand side of Eq. 6 assures that whenever
E is far from any eigenvalue of H in Q,; in relative value, the norm
of y in the entire subregion Q; has to be smaller than a quantity
of the order of ||¢||. Consequently, such a mode v is expelled from
Q, and must live in its complement.

Conversely, the mode y can only be substantial in the subre-
gion Q; when its energy E almost coincides with one of local ei-
genvalues of the operator H in Q. In that case Eq. 4 yields the
conclusion that w itself almost coincides with the corresponding
eigenmode of the subregion Q;.

Thus, we obtain a rigorous scheme elucidating the formation
of weak localization. In any subregion delimited by the valleys of
u, an eigenmode of Q has only two possible choices: (i) its am-
plitude is very small throughout this subregion, or (ii) this mode
mimics (both in frequency and in shape) one of the subregion’s
own eigenmodes. Consequently, a low frequency eigenmode can
cross the boundary between two adjacent subregions only if they
possess two similar local eigenvalues. More generally, a fully de-
localized eigenmode can only emerge in this context through one
of the two possibilities. Either the mode is a collection of local
eigenmodes of the subdomains sharing a common eigenvalue,
or the effective valley network has shrunk enough to allow a pas-
sage throughout the domain. The former corresponds to Bloch
waves whereas the latter corresponds to delocalization above
Anderson transition (17-19).

Toward a General Theory of Localization. Although the mathemati-
cal theory of localization described above was illustrated through
Anderson localization, its range of validity is much wider. In
fact, it can be applied to treat low frequency localization, for any
type of vibration, any medium, any domain geometry, and any
dimension.

In very general terms, a vibrating system is governed by a wave
equation associated to a suitable elliptic differential operator L.
The latter is determined by the nature of vibration and the med-
ium. For instance, the Laplacian L = —A is used to describe the
vibration of a bidimensional soft membrane, the propagation of
acoustic waves, or the quantum states inside a box or cavity; vari-
able coefficient second-order operators L = —div[A4 (x)V] pertain
to the aforementioned phenomena in inhomogeneous media;
and the bi-Laplacian A% addresses thin plate vibrations in 2D.
In our study of Anderson localization, the operator L was the
Hamiltonian H. The standing waves  are therefore eigenmodes
of this operator with eigenvalue 2, also called frequency (A being
the generalization of the energy E).

The very general definition of the landscape u is the as follows
(SI Appendix gives the mathematical proof):

u(x) = [) |G(x,y)|dy, [71

where G(x,y) is the Green’s function solving LG(x,y) = 8z()
with zero data on the boundary. (For the sake of brevity, we as-
sume Dirichlet boundary data. Other types of boundary condi-
tions will be addressed in forthcoming publications).

It is interesting to note that, for all second-order differential
operators, the Green’s function is positive. In that case u admits
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Fig. 5. (Left) Geometry of a complex domain, with a bottleneck (in the lower part), two inner blocked points, and an inward crack (on the upper right side).
The question is, as follows: Is there localization in this structure? Which modes will be localized and where? (Middle and Right) Two-dimensional representa-
tions of the landscape u for the Laplacian (Middle) and the bi-Laplacian (Right) in the same domain. The colors correspond to the height of the landscape. The
(thin black) streamlines help to detect the valley lines, which are then highlighted as thick red curves. These valleys delimit two subregions of localization for

the Laplacian and four subregions for the bi-Laplacian.

a remarkably simple definition. It is the solution to the Dirichlet
problem

Lu=1 inQ, ulyo =0, [8]
which is exactly the equation used to obtain the landscape u in
Anderson localization. In physical terms, the function u can be
interpreted, for instance, as the steady-state deformation of a
membrane under a uniform load.

In the general case however, if G is complex-valued (e.g., a
Hamiltonian with magnetic interaction) the function in Eq. 7
does not solve Eq. 8. Eq. 7 can then be directly used to determine
the main landscape of our theory.

Let us now illustrate an application of our theory to weak
localization induced by the domain geometry. Consider, for in-
stance, the domain depicted in Fig. 5, Left. It has a nontrivial
shape, possesses two inner blocked points (in the upper left re-
gion), one crack on the right upper boundary, and a bottleneck in
its lower region. This domain can represent either a flexible mem-
brane of complex shape (the differential operator being then the
Laplacian), or a rigid thin plate (the operator being the bi-Lapla-
cian). Fig. 5 displays two maps of u computed in the same
complicated geometry for the Laplacian (Middle) and the bi-La-
placian (Right), respectively. The streamlines (lines of the gradi-
ent) have been plotted in thin black to clearly pinpoint the valleys,
which are highlighted as thick red lines. The two cases expose
dramatically different patterns. For the Laplacian, one can ob-
serve two valleys, and only one of them splits the domain into
two disjoint subregions. In the bi-Laplacian case, five valleys form
a network yielding a partition of the domain into four disjoint
subregions.

One can now observe in these two examples how the valleys of
u govern the appearance of localization. Fig. 6, Left, displays two
localized modes (number 1 and 5) of the Laplacian plotted to-
gether with the valley lines computed in Fig. 5, Middle. Not only
do these modes obey the pattern predicted by the landscape u,
but there exists no eigenmode confined to a smaller subregion.
In Fig. 6, Right, modes 1, 2, 4, and 6 of the bi-Laplacian are dis-
played in the same domain together with the valley lines from
Fig. 5, Right. We observe here a very different and much larger
variety of localization behaviors. However, once again, the loca-
tion, the shape, and the number of the localization subregions
exactly match the partition of the domain generated by the valley
network of the landscape of u computed in Fig. 5.

Discussion
Our theory unifies both weak and Anderson localization as two
manifestations of the same phenomenon of low frequency loca-

Filoche and Mayboroda

lization. Above a critical frequency (or eigenvalue), delocalized
states can exist, and this critical value is the smallest frequency
A for which a sufficient proportion of the valley lines of u have
disappeared so that the effective valley network .#'(A.) allows one
subregion to percolate throughout the system. Remarkably, com-
puting the landscape of u and the effective valley network at any
frequency does not require any a priori knowledge of the quan-
tum states or stationary vibrations of the system, but yet gives
access to accurate information on the confinement of the states
within any frequency range. One should note that the same math-
ematical theory can be applied to a discrete wave operator de-
fined on a lattice (as for instance in the tight binding model of
a finite system), only replacing integrals and scalar products by
finite sums.

Note also that the precise quantitative information on evolu-
tion of the effective network .#(A) with the growth of the eigen-
value ) is already encoded in the original mapping of u. In this
vein, it would be extremely useful to estimate precisely the under-
lying rate of growth of the eigenvalues. Roughly speaking Weyl’s
law (20) predicts that for any given A > 0 the number of the ei-
genvalues of L below A is asymptotically A4/>", where d stands for
the dimension and 2m is the order of the differential operator L.
This estimate can be employed in the present context to deter-
mine the range of frequencies with high response to the impact
of u, that is, the range of thoroughly localized eigenmodes. More-
over, although the proposed theory primarily accounts for low

Mode 1 Mode 1 Mode 2
Mode 5 Mode 4 Mode 6

Fig.6. Two localized modes of the Laplace operator (Left) and four localized
modes of the bi-Laplace operator (Right). In both cases, the valley network
(displayed in red) obtained in Fig. 5 accurately predicts the number and the
location of the localization subregions.
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frequency localization, in a domain of self-similar boundary,
smaller copies of the valley lines would appear at all scales, trig-
gering mode localization for an infinite number of eigenvalues. In
that case one would always find localized modes in the high fre-
quency limit governed by Weyl’s law.

Also, the scaling theory of localization can be reformulated in
geometrical terms. In the corrugated landscape created by a ran-
dom potential, the existence of delocalized modes will crucially
depend on the existence of matching energies for distant subre-
gions, and therefore on the asymptotic shape of the distribution
of subregion sizes. As this distribution is expected to strongly de-
pend on the dimensionality of the system, one can hope to derive
a geometrical criterion for the delocalization transition as a func-
tion of the spatial dimension.

At this point, it is important to note that this unifying scheme
for weak and Anderson localization does not include the scar lo-
calization that occurs at high frequency near the stable periodic
orbits or geodesics of the domain. There are two important dif-
ferences between the scar modes and the localization investigated
in the present paper (weak localization and Anderson localiza-
tion). First, the scar modes occur at high frequencies whereas
weak localization and Anderson localization are low frequency
phenomena. Secondly, the type of localization that we address
in this paper is local in the sense that a localized mode in a given
subregion is not strongly influenced by far remote details of the
domain geometry or remote inhomogeneities of the potential. In
sharp contrast, the scar mode localization heavily depends on the
delicate and coherent interaction between very distant regions of
the domain boundary to build stable orbits. The localization sub-
regions in this case are very narrow but span the entire domain.

Finally, one should add that, although the landscape u in An-
derson localization is obtained by simply solving one linear sys-
tem, it nevertheless depends in a complex way upon the quenched
disorder. In particular, different types of randomness would lead
to different localization properties. More generally, the question
of localization in any disordered or random system can now be
mathematically reformulated in the following simple way: How
does the valley network of the landscape of u (its connectivity,
density, and height), depend on the properties of the disorder?
For instance, localization of the conduction electrons directly
affects the transport properties of a disordered medium (21).
At zero temperature, such a medium is insulating if all occupied
quantum states are localized. With the theory proposed in this
paper, this condition can now be reformulated and studied in
terms of the percolation properties of the effective valley network
at the energy equal to the Fermi level of the system.

Conclusion
Our findings demonstrate that low frequency localization is a uni-
versal phenomenon, observed for any type of vibration governed
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by a spatial differential operator L that derives from an energy
form. The geometry of the domain and the properties of the op-
erator interplay to create a landscape u which entirely determines
the localization properties of the system. First, its network of val-
ley lines (in 2D) or surfaces (in 3D) generates an invisible parti-
tion of the initial domain, which shape the spatial distributions of
the vibrational modes and precisely identify the subregions con-
fining the vibrations. Second, the depth of these valleys deter-
mines the strength of the confinement within each subregion.
The localization of a given mode of eigenvalue A is in fact con-
trolled by an effective valley network .#(A) defined as the subset
of the entire original valley network subject to the condition
u < 1/A. Consequently, the relative number of localized modes
decreases at high frequencies. A complex vibrational system can
thus be understood as a collection of weakly coupled subregions
whose coupling increases with frequency.

The theory holds for systems of irregular geometry as well as
for disordered ones. In this framework, Anderson localization
arises as a specific form of weak localization, strengthened by
the extremely rough landscape generated by the random poten-
tial. More generally, the macroscopic properties of materials or
systems in which localization plays an essential role can now be
reformulated from the geometrical and analytical characteristics
of the effective valley network.

This theory of localization opens a number of problems. In the
case of domain with fractal boundary, can one relate the asymp-
totic distribution of eigenmodes with the scaling properties of the
valley network? Can one deduce the thermodynamical behavior
of noninteracting bosons or fermions in a disordered system from
the knowledge of the effective valley network at every energy?
What are the statistical properties of the landscape of u in a sys-
tem of N interacting particles?

Finally, one should stress that the effective valley network
(M) is promising to become a unique tool of primary importance
for designing systems with specific vibrational properties. To this
end, future studies should investigate in detail the relationship
between the geometry of a system (irregular or fractal), the char-
acteristics of the wave operator (order, nonhomogeneity, possibly
stochastic), and the properties of one key mapping, the resulting
valley network.
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