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We discover a strong localization of flexural (bi-Laplacian) waves in rigid thin plates. We show that

clamping just one point inside such a plate not only perturbs its spectral properties, but essentially divides

the plate into two independently vibrating regions. This effect progressively appears when increasing the

plate eccentricity. Such a localization is qualitatively and quantitatively different from the results known

for the Laplacian waves in domains of irregular boundary. It would allow us to control the confinement of

mechanical vibrations in rigid plates and of eddies in the slow Stokes flow.
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It is well known that geometrical irregularities affect the
vibrational properties of structures such as membranes or
rigid plates. However, the phenomenon we report in the
present Letter seems dramatically different from the weak
localization of Laplacian waves observed previously in
domains of irregular geometry [1]. It turns out that a very
minor variation of the geometry (one interior clamped
point in a rectangular plate) can almost completely anni-
hilate each of the vibrational eigenmodes in a substantial
portion of the plate. By way of comparison, a fixed point
inside a rectangular membrane would not induce such a
localization of Laplacian eigenmodes. Moreover, the lo-
calization of the stationary vibrations of a membrane ob-
served so far has been associated with fairly substantial
irregularities of the boundary (sawtooth or fractal) and
affected only some of the eigenmodes [2].

Plate vibrations are governed by a biharmonic equation.
Although a classical problem, the behavior of vibrations in
rigid plates even of simple geometry is still generally
poorly understood [3–7]. The mathematical model which
describes the propagation of flexural deformations in thin
plates with no curvature or strain is given by the following
wave equation:

� �h
@2u

@t2
¼ ��2u: (1)

Here, h is the plate thickness (assumed to be much smaller
than any other dimension of the plate), � is the material
density, � is the bending modulus of the elastic material
[8], and the operator on the right-hand side is the bi-
Laplacian (�2u ¼ ��u). The properties of the system
can thus be entirely deduced from the spectral properties
of the bi-Laplacian. We shall denote its eigenvalues and
eigenfunctions by �2

i and ui, so that

�2ui ¼ �2
i ui: (2)

The boundary conditions are induced by clamping the

edges of the plate, which amounts to requiring u ¼ 0 and
ru ¼ 0 along the external perimeter.
One should note that the biharmonic eigenvalue problem

not only describes the vibrational properties of a rigid thin
plate, but also the 2D Stokes flow of viscous fluids [3,9]
and flow in porous media [10]. Over the last century it
received considerable attention in engineering and applied
mathematics. However, the known results are still scarce
compared to the wealth of information available for the
Laplacian. In particular, it turns out that the eigenfunctions
of the biharmonic equation may behave dramatically dif-
ferently from their counterparts corresponding to the case
of the Laplacian. Here we discuss one such phenomenon.
In the present Letter we study the vibrational properties

of a 2D clamped flat rectangular plate. In the following, the
respective width and length of the plate are 1=

ffiffiffi
e

p
and

ffiffiffi
e

p
,

where e is the plate eccentricity (its aspect ratio). All the
plates have then unit area. Two types of plates are com-
pared: those for which only the perimeter is clamped, and
those with an additional point clamped inside. The point is
located in the middle of a plate along the y direction and at
1=5 of the length in the x direction (see Fig. 1). It has to be
underlined that the precise location of the point has no
qualitative impact on the occurrence of the phenomenon
that is presented in this Letter, it may only affect the
relevant values of the eccentricity. To compute the eigen-
modes, the domain has been discretized, using Hermite
rectangular finite elements with 16 degrees of freedom per
element. This method ensures the continuity of both the
solution and its derivative, and a good accuracy of the
numerics. The eigenvalues and eigenmodes of the bi-
Laplacian have been computed using MATLAB� software.
First of all, if one plots the amplitude distributions of

several eigenmodes for an elongated plate without a
clamped interior point (Fig. 2, left) and for the same plate
with a clamped point inside (Fig. 2, right), one can effec-
tively observe a drastic difference. In the former case, the
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amplitudes or intensities of all modes are distributed uni-
formly over the plate. In the latter, the modes appear to be
almost completely confined either strictly within the region
to the right of the clamped point or strictly within the

region to the left of it. Because of space limitations we
display only a few sample eigenmodes. However, this
effect takes place for virtually all eigenmodes, with a few
exceptions that also display localization, of a slightly
different kind (see Fig. 3).
Let us now turn to the specifics. In order to quantify the

localization of the eigenmodes, two scalar criteria are used.
The first one involves the existence area defined as

� ¼
�Z

plate
u2ds

�
2
�Z

plate
u4ds

��1
; (3)

for each mode u [11,12]. This quantity has the dimensions
of an area, and gives information regarding the size of the
region on which the mode ‘‘lives.’’ For instance, if function
u takes value 1 on an area of size A and 0 elsewhere, then �
is equal to A.
Figure 4 displays the distribution of the existence areas

for the first 300 eigenmodes of the bi-Laplacian for two
values of the eccentricity and two clamping conditions. On
the top, the eccentricity e is equal to 1 (which corresponds
to a square plate) and at the bottom e ¼ 20. Furthermore,
the plots on the left and on the right-hand side correspond
to the cases of plates without or with an inside clamped
point, respectively. In the square plate (top), the existence
areas are distributed around 0.35, whether an interior point
is clamped or not. On the other hand, in the elongated plate
(bottom), one can observe a clear separation of the exis-
tence areas around two different values (0.07 and 0.3) when
the inside point is clamped (bottom right). Roughly speak-
ing, the two bumps of the distribution of the existence area
in the bottom right picture correspond to localization of the
eigenmodes in the regions to the left and to the right of a
clamped point (cf. Fig. 2). Overall, the distribution of the
existence areas clearly indicates that for an elongated plate
the localization of the eigenmodes has been dramatically
affected by just one new boundary point inside the domain.
Going further, we introduce the second localization

criterion. It is tailored to the particular domain we are
considering and is designated to quantify the strength of
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FIG. 2 (color). Several modes of the bi-Laplacian (from top to
bottom, modes 1, 40, and 44) of an elongated plate of eccen-
tricity 20. The charts on the left and on the right correspond,
respectively, to a plate with no clamped interior point and a plate
with one interior clamped point. One can observe that in the
latter case the modes are almost entirely concentrated either to
the left or to the right of the clamped point.

FIG. 3 (color online). Mode number 71 of a clamped plate of
eccentricity 20 with a clamped point inside. An analogous effect
is observed in all (very rare) cases when the energy is evenly
distributed between the regions to the left and to the right of a
clamped point.

FIG. 1 (color online). Geometry of a clamped plate. The length
and the width of a plate are, respectively,

ffiffiffi
e

p
and 1=

ffiffiffi
e

p
. Two

types of plates are studied: those for which only the perimeter is
clamped, and those with an additional interior clamped point.
The coordinates of this point are [

ffiffiffi
e

p
=5, 1=ð2 ffiffiffi

e
p Þ]. For further

reference, two disjoint rectangular regions are introduced: region
1 (in gray) to the left of a clamped point, and region 2 (white) to
the right of it.
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the confinement of eigenmodes to one of the two regions:
region 1 (to the left of a clamped point) or region 2 (to the
right of it). To this end, let us define�1 as the ratio between
the energy integral over region 1 and the total energy of the
mode:

�1 ¼
�Z

region 1
ð�uÞ2ds

��Z
plate

ð�uÞ2ds
��1

: (4)

This quantity assumes values between 0 and 1 and mea-
sures the relative amount of energy of a given mode u
concentrated in region 1. The analogous quantity for region
2 is thus simply �2 ¼ 1� �1.

The ratio �1 has been computed for the first 300 modes
for plates of eccentricity 20 with and without an interior
clamped point. Figure 5 represents the values of �1 as a
function of mode number (left) and the distribution of these
values between 0 and 1 (right). One can immediately
notice how strong is the separation phenomenon. In the
first case, almost all the modes have the energy partition
close to �1 ¼ 0:2, �2 ¼ 1� �1 ¼ 0:8, proportional to the
respective surface areas of regions 1 and 2. This signifies a
rather spatially uniform distribution of energy for all
modes. In contrast, with a point clamped inside, �1 either
takes the values close to 0 or the values close to 1. Hence,
almost all the modes are concentrated entirely in one of the
two regions, region 1 or region 2 (cf. Fig. 2).

Finally, let us discuss the dependence of localization on
the plate eccentricity in more precise terms. To this end, we
define the connection coefficient

C ¼ hminf�1; �2gimodes ; (5)

the average ofminf�1; �2g ¼ minf�1; 1� �1g over a large
number of eigenmodes (the first 300 in our simulations).
This quantity estimates the average proportion of energy in
the region complimentary to the one where the modes
‘‘live.’’ One can understand it in simple terms. Let us
assume that there exists a slight damping in the system.
Assume that vibrations are triggered in the plate by a
stationary wide spectrum excitation in one of the regions,
for instance region 1. Eventually, a steady state vibration
will settle in the whole plate. The coefficient C then gives
the proportion of energy confined in the complementary
region (region 2). In a sense, Cmeasures the ‘‘connection’’
between the two regions.
When plotted against the eccentricity (Fig. 6), the coef-

ficient C exhibits a steady decrease from e ¼ 1 (the square
plate) to e ¼ 20. The value of C close to 0.2 for the square
plate corresponds to the case in which almost all eigen-
modes have a rather uniform spatial distribution of energy.
There is no energy or vibration localization induced by
clamping a point. On the other hand, for eccentricities
larger than 10, the value of C drops under 0.1 and gets
close to 0 when the eccentricity approaches 20. This cor-
responds to a situation when almost all modes are entirely
confined either to region 1 or to region 2: a stationary
vibration induced in one of the two regions would essen-

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Mode number

β 1

Eccentricity = 20
No clamped point

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

β
1

N
u

m
b

er
 o

f 
m

o
d

es Eccentricity = 20
No clamped point

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Mode number

β 1

Eccentricity = 20
Clamped point

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

β
1

N
u

m
b

er
 o

f 
m

o
d

es Eccentricity = 20
Clamped point

FIG. 5 (color online). Figures on the left-hand side depict the
coefficients �1 for the first 300 modes of a clamped plate of
eccentricity 20. Figures on the right-hand side display the
distribution of these coefficients. The charts on the top and on
the bottom correspond, respectively, to a plate with no clamped
interior point and a plate with one interior clamped point. One
can observe that on the top �1 is very close to 0.2 for almost all
modes, which signifies a distribution of energy proportional to
the surface area within the plate (hence, no localization). At the
bottom, the values of �1 are concentrated around 0 and 1;
therefore, the mode energies are either entirely confined to
region 1 or to region 2.
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FIG. 4 (color online). Distributions of the existence areas for
300 first eigenmodes for two different plate eccentricities (top,
e ¼ 1, bottom, e ¼ 20) and two different boundary cases (left,
no interior point clamped, right, one interior point clamped). One
can observe that clamping a point does not split the eigenmode
population in the case of a square plate (top). On the other hand,
in the case of an elongated plate (bottom), clamping a point
clearly separates the eigenmodes into two distinct groups.
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tially remain confined in the same region. Thus, the regions
appear to be almost disconnected except for a very limited
number of frequencies, corresponding to the case depicted
in Fig. 3.

At this point, let us say that in mathematics very little is
known about the relation between the shape of a domain
and the properties of the bi-Laplacian eigenmodes.
However, it is interesting to note that exact results exist
regarding the role of the boundary geometry in the regu-
larity of the solutions to the Dirichlet problem. The eigen-
modes correspond to the response of the system under a
periodic excitation at a given frequency, while the solution
of the Dirichlet problem (or more precisely, the Green
function) corresponds to static flexions induced by a point
load. At the moment we understand quite well the behavior
of the Green function near the boundary and how it is
affected by a cusp, a crack, or by a clamped point [13–
15]. These results were the initial grounds for our intuition
in the present study, although the direct connections be-
tween the properties of the eigenmodes and the shape of
the domain are yet to be explored.

In summary, our simulations have shown that clamping
only one point inside a rectangular clamped plate may be
sufficient to trigger a dramatic change in the spatial local-
ization of its vibrational eigenmodes. In a plate of eccen-
tricity 20, this localization is so strong that almost all the
modes are confined either strictly to the left or strictly to
the right of the clamped point. Such an effect may be of
great importance in the control of vibrations, as it reveals a
very simple way to achieve an almost complete mechanical

isolation between two regions of the same plate. Moreover,
the same property should be observed with respect to the
localization of eddies in 2D flow of viscous fluids, as these
systems share the same mathematical frame.
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FIG. 6. The ‘‘connection’’ coefficient C [as defined in Eq. (5)]
as a function of the plate eccentricity. If all the eigenmodes have
a rather uniform spatial distribution of energy, then the coeffi-
cient C is close to 0.2. On the other hand, if the eigenmode
energy is concentrated either in region 1 or in region 2, the
coefficient C is close to 0. For the classical rectangular plate, C
almost does not depend on the eccentricity, which means that all
the modes are more or less uniformly distributed. With one
clamped point inside the structure, the steady decrease of C
for the values of eccentricity between 1 and 20 expresses the
increasing disconnection between regions 1 and 2.
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