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1 Introduction

Anderson localization is a phenomenon that was first characterized by Philip
Anderson in 1958. Anderson later won a Nobel Prize for his work. On a intuitive
level, Anderson localization occurs when classical waves described by the wave
equation or quantum-mechanical wavefunctions described by the Schrodinger
equation become “trapped” or localized in a random medium. There is a certain
level of randomness at which this occurs - if the randomness is below this level
than Anderson localization will not be observed. A rigorous understanding of
the mathematics behind Anderson localization has been elusive despite a large
amount of research in the area.

2 Description of System

The purpose of this research is to gain a better understanding of Anderson
localization through the use of a finite elements numerical simulation. We are
specifically interested in describing the time-independent Schrodinger operator
in R2 with Dirichlet boundary conditions:

−∆u+ V (x)u = λu

u
∣∣
∂Ω

= 0

where Ω is an a× b rectangle in R2, and V (x) is a random function of x in [0, 1].
We split up the rectangle into an array of smaller rectangles (in this case

40×40 = 1600 rectangles). Each of these smaller rectangles is randomly assigned
a value between 0 and Vmax. Vmax thus acts as an upper bound on the amount
of disorder on the rectangular domain. Vmax can be interpreted as a random
potential matrix for the Schrodinger operator.

We define N(λ) as the number of eigenvalues of the operator less than or
equal to λ. We also define the localization coefficient α(u) of an eigenfunction
u as follows:

α(u) =

(∫
Ω
u2dΩ

)2∫
Ω
u4dΩ
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The localization coefficient α(u) provides a measure of the existence area of the
eigenfunction u.

3 Case When Vmax = 0: Laplacian

When Vmax = 0 we have the case of a Laplacian:

∆u = λu

u
∣∣
∂Ω

= 0

with eigenvalues

λm,n =
(nπ
a

)2

+
(mπ
b

)2

.

where m and n are positive integers. The corresponding eigenfunctions are

um,n(x, y) = sin
(nπx

a

)
sin
(mπy

b

)
.

3.1 Asymptotic Behavior of N(λ)

For any eigenvalue λ, we can rearrange the expression for an eigenvalue to get(
nπ

a
√
λ

)2

+

(
mπ

b
√
λ

)2

= 1.

This is the equation for an ellipse in the mn plane with area

Ae =
abλ

π
.

Now the eigenvalues less than or equal to λ must be within this ellipse. More
precisely, they are the positive integer lattice points contained within Ae. The
number of positive integer lattice points contained within the ellipse is less than
or equal to 1

4Ae (because we are only interested in the quadrant with m,n > 0),
i.e.

N(Λ ) ≤ abλ

4π
.

We have thus placed an upper bound on N(λ). For a lower bound, notice

that the ellipse intersects the m axis at m = b
√
λ
π and intersects the n axis at

n = a
√
λ

π . Now,

N(λ) =

b a
√
λ

π c∑
n=1

⌊
b

√
λ

π2
− n2

a2

⌋
.

Compare N(λ) to the area under the shape formed by moving the shape of N(λ)
up one unit on the m axis and to the right one unit on the n axis. This area
A+ is greater than or equal to Ae. More specifically,

A+ = N(λ) +
⌈b√λ
π

⌉
+
⌈a√λ

π

⌉
− 1 ≥ Ae.
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Rearranging,

N(λ) ≥ Ae −
⌈b√λ
π

⌉
−
⌈a√λ

π

⌉
+ 1.

Since the ceiling function is always greater than or equal to its argument, we
can write

N(λ) ≥ Ae −
b
√
λ

π
− a
√
λ

π
+ 1.

N(λ) is now bounded from above and below:

abλ

4π
≥ N(λ) ≥ abλ

4π
− b
√
λ

π
− a
√
λ

π
+ 1.

If we take the limit as λ approaches infinity and consider the ratio N(λ)/λ, we
get

ab

4π
≥ N(λ)

λ
≥ ab

4π
.

In other words, N(λ)/λ is asympotically equal to ab
4π .

Figure 1: Plot 1

3.2 Localization Coefficient of Laplacian Eigenfunctions

The localization coefficient for eigenfunctions of the lapalcian on the a× b rect-
angle is a constant for all of the eigenfunctions:

α(u) =

(∫ b
0

∫ a
0

sin2 (nπxa ) sin2 (mπyb )dxdy
)2

∫ b
0

∫ a
0

sin4 (nπxa ) sin4 (mπyb )dxdy
=

(ab/4)2

9ab/64
=

4

9
ab.
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The fact that the localization coefficents are all equal for the Laplacian means
that there is no localization when Vmax = 0.

4 Plots and Discussion

Plot 1 is a 3-dimensional plot of the Schrodinger operator on a 1× 1.1 domain
with eigenvalues (λ) on the x-axis, Vmax on the y-axis, and N(λ) on the z-axis.
Code 1 (file included) is the Matlab code used to generate Plot 1.

Plot 2 is a 3-dimensional plot of the Schrodinger operator on a 1×1.1 domain
with eigenvalues (λ) on the x-axis, Vmax on the y-axis, and α(u) on the z-axis.
Code 2 (file included) is the Matlab code used to generate Plot 2.

Figure 2: Plot 2

For both plots, the program used to generate the plot looped 120 times.
Each time, the value of Vmax is increased by 1/10. So the value of Vmax reaches
a maximum of 12 on each plot. The value of Vmax multiplies each element in
the random potential matrix. The random matrix has values between 0 and
2997.311. Also, each plot has the first 200 eigenvalues for each value of Vmax.

4.1 Behavior at Vmax = 0

The behavior of the plots at Vmax = 0 verifies the calculations for N(λ) and
α(u) for the Laplacian. When Vmax = 0 on Plot 1, the plot of N(λ) vs. λ is a
straight line. When Vmax = 0 on Plot 2, α remains approximately a constant
at a value of 0.45.
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4.2 Evolution with Increasing Disorder

As Vmax increases on Plot 1, the plot of N(λ) vs. λ looks increasingly like an
increasing exponential function rather than a straight line. As Vmax increases
on Plot 2, the value of the localization constant α drops off very quickly to
almost zero.

4.3 Conjecture of Behavior at Infinite Disorder

As Vmax goes to infinity, it is expected that the localization coefficient α(u) will
go to zero. α might actually approach zero more closely in reality than it does
in the plot, because the use of the finite elements method to solve the boundary
value problem The minimum value of α on the plot is about 0.0025, which may
be close to a limiting value because the localization area cannot be smaller than
then area of one of the finite element squares.
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