Homework 3 Solutions

3.1.2

(a) $\exp(-n^2 t) \sin n x$ for n = 1, 2, ...

(b)
$$\exp\left[-\left(n+\frac{1}{2}\right)^2 t\right] \sin\left(n+\frac{1}{2}\right) x$$
 for $n=0,1,2,...$

3.1.5

5. (a)

λ	Eigenfunctions	Eigensolutions
$\lambda = -\omega^2 - 1 < -1$	$\cos \omega x, \sin \omega x$	$e^{-(\omega^2+1)t}\cos\omega x, \ e^{-(\omega^2+1)t}\sin\omega x$
$\lambda = -1$	1, x	$e^{-t}, e^{-t}x$
$\lambda = \omega^2 - 1 > -1$	$e^{\omega x}, e^{-\omega x}$	$e^{(\omega^2-1)t+\omega x}, e^{(\omega^2-1)t-\omega x}$

(b)
$$e^{-t}$$
, $e^{-(n^2+1)t}\cos nx$, $e^{-(n^2+1)t}\sin nx$, for $n=1,2,3,\ldots$

3.2.1d

$$\star (d) \frac{\pi^2}{3} + 4 \sum_{k=1}^{\infty} (-1)^k \frac{\cos kx}{k^2}$$

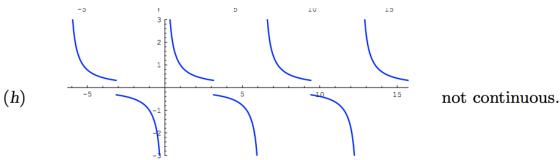
3.2.2d

(d)
$$\frac{2}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^j \sin(2j+1)x}{(2j+1)^2}$$

3.2.3

Solution: $\sin^2 x \sim \frac{1}{2} - \frac{1}{2} \cos 2x$ and $\cos^2 x \sim \frac{1}{2} + \frac{1}{2} \cos 2x$.

3.2.6h



3.2.9

(a)
$$\int_a^{a+\ell} f(x) \, dx = \int_0^\ell f(x) \, dx - \int_0^a f(x) \, dx + \int_\ell^{a+\ell} f(x) \, dx.$$
 (*) But, applying the change of variables $y = x - \ell$,

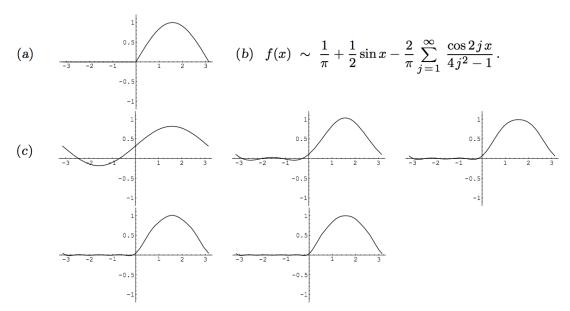
$$\int_{\ell}^{a+\ell} f(x) \, dx = \int_{0}^{a} f(y+\ell) \, dy = \int_{0}^{a} f(y) \, dy,$$

which follows from the periodicity of f. Thus, the second and third integrals in (*)cancel, which establishes the result. Q.E.D.

(b) Using the change of variables y = x + a and part (a),

$$\int_0^{\ell} f(x+a) \, dx = \int_a^{a+\ell} f(y) \, dy = \int_0^{\ell} f(x) \, dx.$$

3.2.25

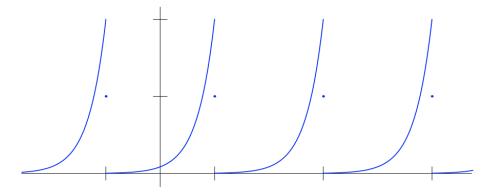


The maximal errors on $[-\pi, \pi]$ are, respectively .3183, .1061, .06366, .04547, .03537, .02894. (d) The Fourier series converges (uniformly) to $\sin x$ when $2k\pi \le x \le (2k+1)\pi$ and to 0 when $(2k-1)\pi \le x \le 2k\pi$ for $k = 0, \pm 1, \pm 2, ...$

3.2.27

(a)
$$e^x \sim \frac{\sinh \pi}{\pi} + \frac{2 \sinh \pi}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{\cos k x - k \sin k x}{1 + k^2}$$
.

(b) The Fourier series converges for all real x to the 2π -periodic extension of e^x , with values $\cosh \pi = \frac{1}{2}(e^{\pi} + e^{-\pi})$ at the discontinuities at $x = \pm \pi, \pm 3\pi, \ldots$ The convergence is not uniform because the limiting sum is not continuous.



3.2.30

- (a) If $\tilde{f}(x)$ is the 2π -periodic extension of f(x), then the Fourier series converges to $\tilde{f}(2x)$, which is the π -periodic extension of f(2x).
- (b) The Fourier series $2\left(\sin 2x \frac{1}{2}\sin 4x + \frac{1}{3}\sin 6x \cdots\right)$ converges to the π -periodic

extension of the function
$$\widehat{f}(x)=2x$$
 for $-\frac{1}{2}\pi< x<\frac{1}{2}\pi$, or, equivalently, the $2\pi-$ periodic extension of $f(x)=\begin{cases} 2(x+\pi), & -\pi< x<-\frac{1}{2}\pi,\\ 0, & x=\pm\frac{1}{2}\pi,\\ 2x, & -\frac{1}{2}\pi< x<\frac{1}{2}\pi,\\ 2(x-\pi), & \frac{1}{2}\pi< x<\pi. \end{cases}$