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Figure 1. Counting functions N(E) and Nw (E) computed on
an interval of length L = 3.10° for p = 1, superimposed with
the corresponding predicted analytical formulas.

In their comment, Comtet and Texier propose two in-
teresting test cases of the formula Napjmr(E) = N(E)
introduced in [1]. Here N(F) is the counting function
(or IDOS) and Napymr(E) (called hereafter Ny ) is ob-
tained by replacing in the asymptotic Weyl formula the
original potential V by the effective potential W = 1/u, u
being the localization landscape. Although this effective
potential brings out a “classical” interpretation of the
disorder-induced quantum confinement, consistent with
the use of Weyl’s law even at low energies, we did not ex-
pect the above formula to be a universal. Nevertheless,
the efficiency of this formula has been tested in [1] and
successfully applied to disordered semiconductors [2, 3].

More recent works of our team help us to answer the
authors’ comment. It was observed in [4] that the min-
imum of W inside a localization region, Wi i, often
offers a very good approximation of the fundamental
eigenvalue Ej; of the same region through the relation
Eoi = (1 +d/4) Winin,i, d being the dimension. In the
case of a one-dimensional infinite square well of width a,
this prediction gives (h?/2m)(10/a?), remarkably close
to the exact value (h%/2m)(n2/a?).

The potential of the “pieces” model is a sum of Dirac
functions of infinite weights, which amount to partition-
ing the domain into many infinite square wells of various
sizes. The resulting IDOS is a superposition of the IDOS
of these wells. Its low energy asymptotics is dominated
by the lower eigenvalues of the larger wells. This ex-
plains why the factor found in the asymptotics of Ny,
is exp(—\/gp/k) instead of exp(—mp/k). Accounting for
the aforementioned factor (1 + d/4) would lead instead
to an asymptotic factor exp(—v/10p/k), much closer to
the real one (v/10 ~ 3.16 ~ 7). In addition, despite the
difference between the analytic formulas for N(E) and
Nw (E), Fig. 1 shows that they are remarkably close on
a wide range of values of F.

It has to be underlined that recent developments

on the landscape theory introduced a new approxima-
tion N, (E), called “landscape law” [5], which provides
bounds to N(F) at all energies in the form

CiNu(aE) < N(E) < CoNy(E) . (1)

This rigorous estimate confirms that the landscape-based
formula N, (E) accurately captures the scaling of the
counting function.

In the second example (called “supersymmetric”’) the
distribution of values of the landscape u is found to fol-
low a power law, P(u) o< u~#1=1 leading to Ny (E) =
L J%O (E—1/u) P(u)du o EM+z which differs
from the theoretical behavior N(F) o E*l found in
the literature [6]. Interestingly in this case, we can
evaluate the aforementioned N, (E) with a back-of-the
envelope calculation. N, (F) is defined as the number
of sub-intervals of length 1/vE where the maximum
of u is larger than 1/FE. The probability of u being

larger than 1/E is fl—;oEo P(u)du and the total num-

ber of sub-intervals is about Ly/E which, assuming in-
dependence of the sub-intervals, means that N, (F) =
L\/Ef;;? P(u)du o EM+z . According to Eq. (1), the
actual IDOS N(F) should follow the same behavior. The
W-based formula Ny (E) is then consistent with the scal-
ing of N(E).

We can imagine several reasons for the discrepancy be-
tween Ny and the scaling of N found in [6]. Among
others, the independence assumption above may fail due
to the possible clustering of the minima of 1/u. Also, the
potentials presented in both examples are much more
singular than those considered in [1, 5].

More generally, the comment raises the question of
the domain of validity of Ny (E) which has proved to
be very efficient in surprisingly many cases. We reiter-
ate, however, that the new landscape law [5], rigorously
proven for all potentials bounded from below provides
the correct scaling independently of energy. On the other
hand, what are the precise prefactors, which approxima-
tion gives a better asymptotics in concrete examples, and
why remains to be seen.
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