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1. Vectors and the Three-Dimensional Space

Problem 1.1. Determine if the given three points are co-linear (i.e. lie on one line).
(1) A = (2, 0,−1), B = (1,−1,−2) and C = (−3, 1, 0)
(2) A = (−1, 4, 3), B = (−2, 4, 1) and C = (2, 0, 1)

Solution. Three points A,B,C are co-linear if and only if the two vectors
−→
AB and

−−→
BC have

the same direction (or equivalently,
−→
AB and

−→
AC, or

−−→
BC and

−→
AC). Recall two vectors have

the same direction if and only if one is a scalar multiple of another.

(1) We calculate that
−→
AB = B − A = 〈−1,−1,−1〉 and

−−→
BC = C − B = 〈−4, 2, 2〉. −→

AB is
not a scalar multiple of

−−→
BC, therefore A,B,C are not co-linear.

(2): Similarly,
−→
AB = B − A = 〈−3, 0,−2〉 and

−−→
BC = 〈4,−4, 0〉. So

−→
AB is not a scalar

multiple of
−−→
BC, therefore A,B,C are not co-linear. □

Problem 1.2. Describe and find the equation of the set of all points that are equidis-
tant to the two points A = (−1, 5, 3) and B = (6, 2,−2).

Solution. It is a plane that is perpendicular to the line AB and contains the middle point of
A and B.

Algebraically, it has all the points (x, y, z) which satisfies the following equation
󰁳

(x+ 1)2 + (y − 5)2 + (z − 3)2 =
󰁳

(x− 6)2 + (y − 2)2 + (z + 2)2,

namely, the distance to point A (LHS) equals the distance to point B (RHS).

Now we simplify the above equation.

(x+ 1)2 + (y − 5)2 + (z − 3)2 = (x− 6)2 + (y − 2)2 + (z + 2)2

x2 + 2x+ 1 + y2 − 10y + 25 + z2 − 6y + 9 = x2 − 12x+ 36 + y2 − 4y + 4 + z2 + 4z + 4

14x− 6y − 10z − 9 = 0

where we end up with a linear equation, which is plane in R3. □

Problem 1.3. For each of the vectors given below, find a unit vector that has the
same direction.

v = 〈2, 1,−2〉 w = 〈−4, 0, 3〉
Further, find vectors of length 2 with the same direction.

Solution. To scale a vector v into a unit vector, we simply divide by its magnitude: 1
|v|v.
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So the unit vector for v is
1

|v|v =
1󰁳

22 + 12 + (−2)2
〈2, 1,−2〉 = 1

3
〈2, 1,−2〉 =

󰀟
2

3
,
1

3
,−2

3

󰀠

And similarly
1

|w|w =
1󰁳

(−4)2 + 02 + 32
〈−4, 0, 3〉 = 1

5
〈−4, 0, 3〉 =

󰀟
−4

5
, 0,

3

5

󰀠

To find the vectors with length 2, we simply multiply the unit vectors by 2.
2

|v|v = 2

󰀟
2

3
,
1

3
,−2

3

󰀠
=

󰀟
4

3
,
2

3
,−4

3

󰀠

2

|w|w = 2

󰀟
−4

5
, 0,

3

5

󰀠
=

󰀟
−8

5
, 0,

6

5

󰀠
□

Problem 1.4. In R2, v is a unit vector which lies in the first quadrant. Suppose the
angle between v and the positive y-axis is π/4, find v in component form.

Solution. We may assume that v starts at the origin.

x

y

v

√
2
2

√
2
2

The v forms an angle of π/4 = 45◦ with the y-axis, as depicted in the diagram above.
Since the length of v is 1, it follows that the ‘head’ of v is (

√
2/2,

√
2/2), therefore v =

〈
√
2/2,

√
2/2〉. □

Problem 1.5. Let a = 〈2, 1, 1〉 and b = 〈−1, x, 3〉. Find the value of x such that a is
orthogonal to b .

Solution. Two vectors are orthogonal if and only if their dot product is zero. Therefore we
need to find the x such that

〈2, 1, 1〉 · 〈−1, x, 3〉 = −2 + x+ 3 = 0

Solving for x we get x = −1. □
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2. Cross Product, Lines and Planes

Problem 2.1. Find a non-zero vector that is orthogonal to the plane containing the
three points

A = (2,−3, 4) B = (−1,−2, 2) C = (3, 1,−3)

Solution. We first calculate the vectors
−→
AB and

−−→
BC.

−→
AB = B − A = 〈−3, 1,−2〉
−−→
BC = C − B = 〈4, 3,−5〉

A vector that is perpendicular to both
−→
AB and

−−→
BC will be perpendicular to the plane of

ABC. We find such a vector using the cross product.

−→
AB ×−−→

BC =

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

i j k

−3 1 −2

4 3 −5

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
= i

󰀏󰀏󰀏󰀏󰀏󰀏
1 −2

3 −5

󰀏󰀏󰀏󰀏󰀏󰀏
− j

󰀏󰀏󰀏󰀏󰀏󰀏
−3 −2

4 −5

󰀏󰀏󰀏󰀏󰀏󰀏
+ k

󰀏󰀏󰀏󰀏󰀏󰀏
−3 1

4 3

󰀏󰀏󰀏󰀏󰀏󰀏
= 〈1,−23,−13〉 □

Problem 2.2. Determine whether the following points are co-planer.
A = (1, 3, 2) B = (3,−1, 6) C = (5, 2, 0) D = (3, 6,−4)

Solution. We use the triple product method. Consider the vectors
−→
AB = 〈2,−4, 4〉 −→

AC = 〈4,−1,−2〉 −−→
AD = 〈2, 3,−6〉.

The four points are coplaner if and only if the volume of the parallelepiped determines by
these three vectors is zero. Said volume is the given by the triple product

−→
AB · (−→AC ×−−→

AD)

=
−→
AB ·

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

i j k

4 −1 −2

2 3 −6

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

=〈4,−1,−2〉 · 〈12, 20, 14〉
=0

Therefore the four points are indeed coplaner. □

Problem 2.3. Use equations of lines to determine whether the following three points
are colinear.

A = (2, 4,−3) B = (3,−1, 1) C = (1, 9, 1)

Hint: Find the equation of the line through AB and check if C is on the line.
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Solution. The equation of a line through two points r0 and r1 is given by

r(t) = (1− t)r0 + tr1

We use this to calculate the equation of AB:

r(t) = (1− t)〈2, 4,−3〉+ t〈3,−1, 1〉
= 〈2(1− t) + 3t, 4(1− t)− t,−3(1− t) + t〉
= 〈2 + t, 4− 5t,−3 + 4t〉

If C is on AB, then we need to have 2 + t = 1 =⇒ t = −1 in order for the first component
to match up.

r(−1) = (1, 9,−7) ∕= C

Therefore C does not lie on the line AB, hence A,B and C are not co-linear. □

Problem 2.4. Find the equation of the plane through A = (2, 4,−3), B = (3,−1, 1),
and C = (1, 9, 1).

Solution. We first calculate the vectors
−→
AB = 〈1,−5, 4〉 and

−→
AC = 〈−1, 5, 4〉. Their cross

product is
−→
AB×−→

AC = 〈−40,−8, 0〉 This is a vector that is orthogonal to both AB and AC,
hence is orthogonal to the plane. Therefore it is a normal vector. Hence the equation of the
plane is

−40(x− 2)− 8(y − 4) + 0(z + 3) = 0

which can be simplified to
5x+ y − 14 = 0 □

Problem 2.5. Find the equation of the line through (3, 2,−4) with direction 〈−1, 2, 5〉.
Find its intersection with the plane from Problem 2.4.

Solution. The line has parametric equation

r(t) = 〈3− t, 2 + 2t,−4 + 5t〉,

and the equation of the plane from previous problem is 5x+y = 14. Substitute the parametric
equation of the line to the standard equation of the plane

5(3− t) + (2 + 2t) = 14.

Solving for t we get t = 1. Therefore the intersection is r(1) = (2, 4, 1). □
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3. Multivariable Functions, Limits and Partial Derivatives

Problem 3.1. Find the domains and level curves of the functions
f(x, y) =

󰁳
4− x2 − y2 and f(x, y) = x+

√
y,

and sketch their graphs.

Solution.

(1) The domain for f(x, y) is the points where 4− x2 − y2 ≥ 0, i.e. x2 + y2 ≤ 4, which is
the set of points inside the circle centered at (0, 0) with radius 2 (including boundary).

The level curves are

f(x, y) = 0 =⇒ x2 + y2 = 4

f(x, y) = 1 =⇒ x2 + y2 = 3

f(x, y) = 2 =⇒ x2 + y2 = 0

There are no level curves for L > 2 or L < 0. (Why?) The level curves are circles.
And the graph is a sphere.

(2) We only need y ≥ 0 for the domain, so it is the upper half of the plane.
The level curves are

x+
√
y = −1 =⇒ y = (x+ 1)2, x ≤ −1

x+
√
y = 0 =⇒ y = x2, x ≤ 0

x+
√
y = 1 =⇒ y = (x− 1)2, x ≤ 1

x+
√
y = 2 =⇒ y = (x− 2)2, x ≤ 2

These are (half) parabolas, so the graph of f(x, y) is a parabolic cylinder. □

Problem 3.2. Find the following limits, or demonstrate if not exists.

(1) lim
(x,y)→(2,−1)

x2y + xy2

x2 − y2

(2) lim
(x,y)→(0,0)

xy3

x4 + y4

(3) lim
(x,y)→(0,0)

5y2 cos2 x

x2 + y2

Solution. (1) This is a rational function, which is continuous everywhere in its domain.
(Recall that the domain of a rational function is the set of points where the denominator is
non-zero.) (2,−1) is in the domain, so the limit is

lim
(x,y)→(2,−1)

f(x, y) = f(2,−1) =
22 · (−1) + 2 · (−1)2

22 − (−1)2
= −2

3



MATH 2263 SPRING 2022 7

(2) Taking the limit in the direction of y = 0, we have

lim
x→0

f(x, 0) = lim
x→0

x · 0
x2 + 0

= 0

And taking the limit through y = x we have

lim
x→0

f(x, x) = lim
x→0

x · x3

x4 + x4
=

1

2

Since 0 ∕= 1/2, the limit DNE.

(3) With x = 0, the limit is

lim
y→0

f(0, y) = lim
y→0

5y2 cos2(0)

y2
= lim

y→0

5y2

y2
= 5.

For y = 0, the limit is

lim
x→0

f(x, 0) = lim
x→0

5 · 0 · cos(x)
x2

= 0

Since 0 ∕= 5, the limit DNE. □

Problem 3.3. Determine the set of points where the function is continuous.

(1) f(x, y) =
2x2 + y

1− x2 − y2

(2) f(x, y) =

󰀻
󰀿

󰀽

2xy

x2 + y2 + xy
if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0)

Solution. (1) The function is a rational function, which is continuous everywhere in its do-
main. The domain of the function is {(x, y) ∈ R2 |1− x2 − y2 ∕= 0}.

(2) the function
2xy

x2 + y2 + xy
is continuous whenever the denominator is non-zero. First we

show that the denominator x2 + y2 + xy equals 0 only when (x, y) = (0, 0), by solving the
equation x2 + y2 + xy = 0.

x2 + y2 + xy = 0

4x2 + 4y2 + 4xy = 0

(4x2 + 4xy + y2) + 3y2 = 0

(2x+ y)2 + 3y2 = 0

Since both (2x+ y)2 and 3y2 are non-negative, it follows that the solution will satisfy both

(2x+ y)2 = 0 and 3y2 = 0.

Clearly then the only solution is x = 0, y = 0. Therefore the rational function
2xy

x2 + y2 + xy
is not continuous only at (0, 0).
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Now the function f(x, y) is defined to be 0 at (0, 0). So it would be continuous if

lim
(x,y)→(0,0)

2xy

x2 + y2 + xy
= 0

This is false because, the limit with direction y = 0 is

lim
x→0

0

x2 + 0 + 0
= 0

while the limit with direction y = x is

lim
x→0

2x2

x2 + x2 + x · x =
2

3
∕= 0.

Therefore the limit DNE, so the function f(x, y) is continuous at {(x, y) ∈ R2 |(x, y) ∕=
(0, 0)}. □

Problem 3.4. Evaluate the following second partial derivatives.

(1)
∂2

∂x∂y
ln(x+ y)

(2)
∂2

∂x∂y
exy sin(x)

Solution. (1)
∂

∂x

󰀕
∂

∂y
ln(x+ y)

󰀖
=

∂

∂x

󰀕
1

x+ y

󰀖
= − 1

(x+ y)2

(2)

∂

∂y
(exy sin x) = sin x

󰀕
∂

∂y
exy

󰀖
= sin x · ∂exy

∂(xy)
· ∂xy
∂y

= sin x · exy · x

∂

∂x

󰀕
∂

∂y
exy sin x

󰀖

=
∂

∂x
xexy sin x

=sin x

󰀕
∂

∂x
xexy

󰀖
+ xexy

󰀕
∂

∂x
sin x

󰀖

=sin x

󰀕
exy + x

󰀕
∂

∂x
exy

󰀖󰀖
+ xexy cos x

=sin x (exy + x (exyy)) + xexy cos x □
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4. Chain Rule and Directional Derivatives

Problem 4.1. Find dz/dt for z =
√
xy + 1, x = tan t and y = arctan(t).

Solution. We use chain rule.
dz

dt
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t

=

󰀕
y

2
√
xy + 1

󰀖
· sec2(t) +

󰀕
x

2
√
xy + 1

󰀖
·
󰀕

1

t2 + 1

󰀖
□

Problem 4.2. Find ∂u/∂s and ∂u/∂t for
u = zexy x = s+ t y = s− t z = st

Solution. Use chain rule.
∂u

∂s
=

∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s
+

∂u

∂z

∂z

∂s

= (yz · exy) · 1 + (xz · exy) · 1 + exy · t
= exy(yz + xz + t)

∂u

∂t
=

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t
+

∂u

∂z

∂z

∂t

= (yz · exy) · 1 + (xz · exy) · (−1) + exy · s
= exy(yz − xz + s) □

Problem 4.3. Find ∂z/∂x and ∂z/∂y, where

x2 + 4y2 + z2 − 2z = 6

Solution. We use chain rule and implicit differentiation. The above equation can be written
as

F (x, y, z) = x2 + 4y2 + z2 − 2z − 6 = 0.

Therefore,
∂z

∂x
= − ∂F

∂x

󰀡
∂F

∂z
= − 2x

2z − 2

∂z

∂y
= − ∂F

∂y

󰀡
∂F

∂z
= − 8y

2z − 2
□
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Problem 4.4. For each function f , find the gradient ∇f and the directional derivative
Duf.

(1) f(x, y, z) = x2z + xyz + yz2, u = 〈1,−1, 1〉.
(2) f(x, y) = ex sin(xy), u = 〈2, 1〉.
(3) f(x, y, z) = xey − y2exz, u = 〈−1, 0, 2〉.

Solution. (1) ∇f =

󰀕
∂f

∂x
,
∂f

∂y
,
∂f

∂z

󰀖
= (2xz + yz, xz + z2, x2 + xy + 2yz) We turn u into a

unit vector by dividing by its magnitude |u| =
󰁳

12 + (−1)2 + 1 =
√
3. Then

Duf = ∇f · u

|u| =
1√
3
(2xz + yz − (xz + z2) + x2 + xy + 2yz)

(2) ∇f = (ex(sin(xy) + y cos(xy)), exx cos(xy))

Duf =
1

|u|∇f · u =
1√
5
(2ex(sin(xy) + y cos(xy)) + exx cos(xy))

(3) ∇f = 〈ey − y2zexz, xey − 2yexz,−xy2exz〉. Duf = 1
|u|∇f · u = 1√

5
(−ey + y2zexz −

2xy2exz) □

Problem 4.5. Find the maximal rate of change of f(x, y, z) = xey−y2exz at the point
P (1, 0,−1). In what direction does that occur?

Solution. ∇f(x, y, z) = 〈ey − y2zexz, xey − 2yexz,−xy2exz〉. The gradient vector at P is
∇f(1, 0,−1) = 〈1, 1, 0〉. So the maximal rate of change is |∇f(P )| = |〈1, 1, 0〉| =

√
2, which

happens in the direction of the gradient vector 〈1, 1, 0〉. □

Problem 4.6. Find the tangent plane and normal line to xy2 = 2zex+y + 3 at
(1,−1,−1).

Solution. Let F (x, y, z) = xy2 − 2zex+y − 3. We first calculate the gradient vector

∇F (x, y, z) = 〈y2 − 2ex+yz, 2xy − 2ex+yz,−2ex+y〉 ∇F (1,−1,−1) = 〈3, 0,−2〉

Then the tangent plane is

3(x− 1) + 0(y + 1)− 2(z + 1) = 0 =⇒ 3x− 2z − 5 = 0

The normal line is

r(t) = 〈1,−1,−1〉+ t〈3, 0,−2〉 = 〈1 + 3t,−1,−1− 2t〉 □
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A. Additional Problems I

Problem A.1. Show that the following limits do not exist.

(1) lim
(x,y)→(0,0)

x sin y

y2

(2) lim
(x,y)→(0,0)

x3y2

x6 + y4

Solution. (1) We find two paths, x = 0 and y = x, which produce different limits as follows.

lim
x=0,y→0

x sin y

y2
= lim

y→0

0

y2
= 0

lim
x→0,y=x

x sin y

y2
= lim

x→0

x sin x

x2
= lim

x→0

sin x

x
= 1

(2) Use the two paths x = 0 (or y = 0) and y = x3/2.

lim
x=0,y→0

f(x, y) = lim
y→0

0 · y2
y4

= 0

lim
x→0,y=x3/2

f(x, y) = lim
x→0

x3(x3/2)2

x6 + (x3/2)4
= lim

x→0

x6

x6 + x6
=

1

2
□

Problem A.2. Find the limit or show that it doesn’t exist.

(1) lim
(x,y)→(2,1)

x2 − 2xy

x2 − 4y2

(2) lim
(x,y)→(0,1)

y − 1

x2 + y − 1

(3) lim
(x,y)→(0,0)

x4y + x2y2

2x6 + y3

Solution. (1) The denominator is zero at (2, 1), however, since the numerator also vanishes
at (2, 1), we can factor and simplify the rational function:

lim
(x,y)→(2,1)

x2 − 2xy

x2 − 4y2
= lim

(x,y)→(2,1)

x(x− 2y)

(x+ 2y)(x− 2y)
= lim

(x,y)→(2,1)

x

x+ 2y
=

1

2

(2) Along x = 0 we have lim
y→1

y − 1

y − 1
= 1. But when y = 1,lim

x→0

0

x2 + 0
= 0. So DNE.

(3) Along the path x = 0 or y = 0, the limit is zero (verify this). But along the path y = x2,

we have lim
x→0

x4x2 + x2(x2)2

2x6 + (x2)3
= lim

x→0

x6

2x6 + x6
=

1

3
□
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5. Maxima and Minima

Problem 5.1. Find the local maxima/minima and saddle points of the function.

f(x, y) = x2 + y − 2xy and f(x, y) =
x2 + y2

ex

Solution. (1) fx(x, y) = 2x − 2y, fy(x, y) = 1 − 2x. So fy(x, y) = 0 =⇒ 1 − 2x = 0 =⇒
x = 1/2. Then fx(x, y) = 2x− 2y = 21

2
− 2y = 0 =⇒ x = 1/2. So the only critical point is

(1/2, 1/2). Next we use the second derivative test:

fxx = 2, fyy = 0, fxy = −2

Therefore D(x, y) = fxxfyy − f 2
xy = −4, which is a constant function. So the critical point

must be a saddle point.

(2) Taking the partial derivatives

fx(x, y) = −(x2 + y2 − 2x)e−x

fy(x, y) = 2ye−x

We first find the critical points, if fx(x, y) = 2ye−x = 0, then since e−x ∕= 0, we must have
y = 0. Going from here, we have fx(x, y) = −(x2 + 0 − 2x)e−x = 0, which (for the same
reason that e−x = 0) implies that x2−2x = 0. Then x(x−2) = 0, which yields two solutions
x = 0 and x = 2. Therefore there are two critical points (2, 0) and (0, 0).

Next we use 2nd derivative test to determine the types of the critical points. We have

fxx(x, y) = e−x(2− 4x+ x2 + y2)

fyy(x, y) = 2e−x

fxy(x, y) = fyx(x, y) = −2e−xy

At the point (0, 0), we have fxx(0, 0) = 2 > 0, and

D(0, 0) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)
2 = 2× 2− 0 = 4 > 0

Therefore (0, 0) is a local minimum. For (2, 0) we have

fxx(2, 0) = −2e−2 < 0

D(2, 0) = −2e−2 · 2e−2 − 0 < 0

Therefore it’s a saddle point. □

Problem 5.2. Find the shortest distance from the plane x − 2y − z − 3 = 0 to the
origin.
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Solution. A point on the plane has the form (x, y, x− 2y − 3). Let

f(x, y) = distance2 = x2 + y2 + (x− 2y − 3)2

And we would like to find the local minimum (if any) of f . We first find its critical points.
We have fx(x, y) = 4x− 4y − 6 and fy(x, y) = −4x+ 10y + 12. Thus we have to solve for a
2× 2 system of linear equations:

󰀫
4x− 4y = 6 (1)

4x− 10y = 12 (2)

eq.(1)− eq.(2) gives 6y = −6, thus y = −1. And plug this back in eq.(1) we get 4x = 2, thus
x = 1/2. So the only critical point is (1

2
, 1).

Now let’s check if this indeed is a local minimum.

The second derivatives are

fxx(x, y) = 4 fyy(x, y) = 10 fxy = −4

And
D(x, y) = 4× 10− (−4)2 = 24

(Note that all the second derivatives are constant functions.) Since fxx > 0 and D > 0, the
critical point is a local minimum. Therefore, the shortest distance is

󰁶

f

󰀕
1

2
,−1

󰀖
=

󰁳
(1/2)2 + (−1)2 + (1/2 + 2− 3)2 =

√
6

2

□

Problem 5.3. Find the absolute minima of the function f(x, y) = x2 − 4xy+ y2 +3y
in the quadrilateral given by the four points (0, 0), (2, 0), (0, 3) and (2, 3).

Solution. First, we find all the critical points.

fx(x, y) = 2x− 4y = 0 fy(x, y) = 2y − 4x+ 3 = 0

This yields one solution: (1, 1
2
). Second, we examine the values of f(x, y) at the boundary

of the region, i.e. the four sides of the quadrilateral.

(i) y = 0, 0 ≤ x ≤ 2. In this case, f(x, y)|y=0 = x2 , which is an increasing function of x for
x ∈ [0, 2]. (What is the vertex of a parabola?) Thus the minimum along this boundary is
f(0, 0) = 0.

(ii) If y = 3, 0 ≤ x ≤ 2. In this case, f(x, y)|y=3 = x2 − 12x + 18. For x ∈ [0, 2], this is a
decreasing function in x, thus the minimum is f(2, 3) = −2.

(iii) If x = 0, 0 ≤ y ≤ 3. Here we have f(x, y)|x=0 = y2+3y, which is increasing for y ∈ [0, 3].
Therefore the minimum is f(0, 0) = 0.

(iv) If x = 2, 0 ≤ y ≤ 3, we have f(x, y)|x=2 = y2 − 5y + 4. The minimum is attained when
y = 5/2. (Why? Try sketching the graph.) So the minimum is f(2, 5/2) = −9/4.
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Finally we compare the value of critical points and the minima at the boundary:

f(1,
1

2
) =

3

4
f(0, 0) = 0 f(2, 3) = −2 f(2,

5

2
) = −9

4
Hence the minimum is −9/4 which is attained at the boundary with (x, y) = (2, 5/2). □

Problem 5.4. Find the absolute maximum and minimum of the function f(x, y) =
x2 + 2xy + y in the region bounded by y = 1− x2, y = x− 1, the y-axis and x ≥ 0.
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6. Lagrange Multipliers

Problem 6.1. Find the extreme values of f(x, y, z) = exyz with constraint 2x2 + y2 +
z2 = 24

Solution. Let g(x, y, z) = 2x2 + y2 + z2, and we need to solve for ∇f(x, y, z) = λ∇g(x, y, z)
and g(x, y, z) = 24.

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

yzexyz = 4xλ (1)

xzexyz = 2yλ (2)

zyexyz = 2zλ (3)

2x2 + y2 + z2 = 24 (4)

Take the ratio of equation (1) and equation (2), we get

(5)
yzexyz

xzexyz
=

4xλ

2yλ
=⇒ y

x
=

2x

y
=⇒ y2 = 2x2

Take the ration of equation (1) and equation (3), we get

(6)
yzexyz

xyexyz
=

4xλ

2zλ
=⇒ z

x
=

2x

z
=⇒ z2 = 2x2

Now substitute (5) and (6) into (4) we get

2x2 + 2x2 + 2x2 = 24 =⇒ x2 = 4 =⇒ x = ±2

Plug x2 = 4 into (5) and (6) we get y2 = 8 and z2 = 8, hence y = ±
√
8 and z = ±

√
8.

So extreme value is attained at 8 points (±2,±
√
8,±

√
8). But there are only two extreme

values, f(±2,±
√
8,±

√
8) = e±16. □

Problem 6.2. Find the shortest distance from the plane x − 2y − z − 3 = 0 to the
origin. Problem 5.2 once again, this time use Lagrange multiplier.

Solution. Let (x, y, z) be an arbitrary point in the 3-space, its distance to the origin is󰁳
x2 + y2 + z2. Let f(x, y, z) be the square of said distance: f(x, y, z) = x2 + y2 + z2.

We would like to find the extreme (minimum) value of f(x, y, z), when (x, y, z) is on the
plane, i.e. with constraint that x−2y− z−3 = 0. So set g(x, y, z) = x−2y− z. The system
of equations is 󰀻

󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

2x = λ (1)

2y = −2λ (2)

2z = −λ (3)

x− 2y − z = 3 (4)
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Equations (1) to (3) can be rewritten as x = λ
2
, y = −λ, and z = −λ

2
. Substitute these to

equation (4) we get
λ

2
− 2(−λ)− (−λ

2
) = 3

which yields λ = 1. Now plug this back in to the equations (1) to (3) we found x = 1
2
, y = −1

and z = −1
2
. So (1

2
,−1,−1

2
) is the point on the plane that is closest to the origin. Thus the

shortest distance is
󰁴

(1
2
)2 + (−1)2 + (−1

2
)2 =

√
6
2

□

Problem 6.3. Find the extreme value of f(x, y, z) = x2+y2+ z2 subject to x−y = 1
and y2 − z2 = 1.

Solution. Set up the system of equations for Lagrange multipliers:
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

2x = λ (1)

2y = −λ+ 2yµ (2)

2z = −2zµ (3)

x− y = 1 (4)

y2 − z2 = 1 (5)

First observe that equation (3) can be simplified to 2z(µ + 1) = 0 which has two possible
solutions: µ = −1 or z = 0. We break into two cases.

(i) Suppose µ = −1. Substitute µ = −1 into eq.(2) gives 2y = −λ − 2y =⇒ λ = −4y.
Combining this with eq.(4) we get λ = −4(x−1). Now use eq. (1) we get 2x = λ = −4(x−1),
which implies x = 2

3
, thus by eq.(4) y = −1

3
. Then by eq.(5), z2 = y2 − 1 = 1

9
− 1 = −8

9

which has no real solutions. (But there are two complex solutions z = ±
√
8
3
i. So in this cases

there are two complex solutions of the equations: (x, y, z) = (2
3
,−1

3
,±

√
8
3
i).)

(ii) Now suppose z = 0. Then by equation (5) we know y2 = 1 which means y = ±1. If
y = 1, by eq.(4) we have x = 2, thus we have (x, y, z) = (2, 1, 0). In case of y = −1, by eq.
(4) we have x = 0, giving the other solution (x, y, z) = (0,−1, 0).

Finally, in R3 the function f attains extreme value at two points (2, 1, 0) and (0,−1, 0).
The extreme values are f(2, 1, 0) = 21 + 12 = 5 (the maximum) and f(0,−1, 0) = 1 (the
minimum). □
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7. Basic Double Integrals

Problem 7.1. Evaluate the following integrals.

(1)
󰁝 π

0

󰁝 1

0

2x+ sin(y) dx dy

(2)
󰁝 3

1

󰁝 1
3

1

ln y

xy
dy dx

(3)
󰁝󰁝

R

2xy2

x2 + 1
dA, where R = [0, 1]× [−3, 3]. (i.e. 0 ≤ x ≤ 1, −3 ≤ y ≤ 3.)

Solution.
󰁝 π

0

󰀕󰁝 1

0

2x+ sin(y) dx

󰀖
dy(1)

=

󰁝 π

0

󰀓󰀅
x2 + x sin(y)

󰀆1
0

󰀔
dy =

󰁝 π

0

(1 + sin y) dy = [y − cos(y)]π0 = 2 + π

󰁝 3

1

󰁝 1
3

1

ln y

xy
dy dx =

󰀕󰁝 3

1

1

x
dx

󰀖󰀣󰁝 1
3

1

ln y

y
dy

󰀤
= ln 3 ·

󰀗
ln(y)2

2

󰀘 1
3

1

=
ln(3)3

2
(2)

󰁝󰁝

R

2xy2

x2 + 1
dA =

󰁝 1

0

󰁝 3

−3

2xy2

x2 + 1
dy dx(3)

=

󰁝 1

0

2x

x2 + 1
dx ·

󰁝 3

−3

y2 dy =
󰀅
ln(x2 + 1)

󰀆1
0
·
󰀗
y3

3

󰀘3

−3

= 18 ln(2) □

Problem 7.2. Fill in the boxes so that the following equality holds
󰁝 2

0

󰁝 x2−1

−1

xy dy dx =

󰁝 □

□

󰁝 □

□
xy dx dy.

Then evaluate the integral using one of the above.

Solution. The region is given by D = {0 ≤ x ≤ 2,−1 ≤ y ≤ x2 − 1}. We rewrite these
inequalities: y ≤ x2 − 1 =⇒ y − 1 ≤ x2 =⇒

√
y − 1 ≤ x. Plug in x = 2 to y ≤ x2 − 1 we

get y ≤ 3. Thus D = {
√
y − 1 ≤ x ≤ 2,−1 ≤ y ≤ 3}. Therefore we have
󰁝 2

0

󰁝 x2−1

−1

xy dy dx =

󰁝 3

−1

󰁝 2

√
y+1

xy dx dy.

󰁝 3

−1

󰁝 2

√
y+1

xy dx dy =

󰁝 3

−1

󰀗
yx2

2

󰀘2
√
y+1

dy =

󰁝 3

−1

4y − y(y + 1)

2
dy =

4

3
□
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8. More on Double Integrals

Problem 8.1. Evaluate the following double integrals.

(1)
󰁝 π

2

0

󰁝 x

0

x sin y dy dx

(2)
󰁝󰁝

D

ey
2

dA, where D = {(x, y) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y}

Solution. (1) =
󰁝 π/2

0

󰀅
−x cos y

󰀆x
0
dx =

󰁝 π/2

0

(−x cos x+x) dx =

󰀗
−x sin x− cos x+

x2

2

󰀘π/2

0

=

1− π

2
+

π2

8
. (Need to use integration by part for the integrand x cos x.) (2)

(2) =
󰁝 1

0

󰁝 y

0

ey
2

dx dy =

󰁝 1

0

󰁫
xey

2
󰁬y
0
dy =

󰁝 1

0

yey
2

dy =

󰀥
ey

2

2

󰀦1

0

=
e− 1

2
□

Problem 8.2. Evaluate the following integrals.

(1)
󰁝󰁝

D

(x2 + 2y) dA, where D is bounded by y = x, y = x3, x ≥ 0.

(2)
󰁝󰁝

D

(2x− y) dA, where D is the circle centered at the origin with radius 2.

Solution. (1)
󰁝 1

0

󰁝 x

x3

(x2 +2y) dy dx =

󰁝 1

0

󰀅
x2y+ y2

󰀆x
x3dx =

󰁝 1

0

(x3 + x2 − x5 − x6) dx =
23

84
.

(2)
󰁝 2

−2

󰁝 √
4−y2

−
√

4−y2
(2x− y) dx dy =

󰁝 2

−2

󰀅
x2 − xy

󰀆√4−y2

−
√

4−y2
dy =

󰁝 2

−2

2y
󰁳

4− y2 dy = 0. □

Problem 8.3. Find the volume of the solid bounded by the cylinders x2 + y2 = r2

and y2 + z2 = r2.

Solution. First we find the volume above the xy-plane.
󰁝 r

−r

󰁝 √
r2−y2

−
√

r2−y2

󰁳
r2 − y2 dx dy

=

󰁝 r

−r

󰁫
x
󰁳

r2 − y2
󰁬√r2−y2

−
√

r2−y2
dy =

󰁝 r

−r

2(r2 − y2) dy = 2

󰀗
r2y − y3

3

󰀘r

−r

=
8

3
r3

Finally by symmetry, we multiply by 2 to get the volume of the solid,
16

3
r3. □
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9. Double Integral with Polar Coordinates

Problem 9.1 (Problems 8.2 (2)). Evaluate
󰁝󰁝

D

(2x − y) dA, where D is the circle

centered at the origin with radius 2.

Solution.

=

󰁝 2π

0

󰁝 2

0

r(2r cos(θ)− r sin(θ)) dr dθ

=

󰁝 2

0

r2 dr

󰁝 2π

0

(2 cos θ − sin θ) dθ

=

󰀗
r3

3

󰀘2

0

·
󰀅
2 sin(x) + cos(x)

󰀆2π
0

=
8

3
· 0 = 0

□

Problem 9.2. Find the following integral using polar coordinates.
󰁝 a

0

󰁝 √
a2−y2

0

xy2 dx dy

Solution.
󰁝 π

2

0

󰁝 a

0

r(r cos(θ)r2 sin2(θ)) dr dθ =

󰀣󰁝 π
2

0

sin2(θ) cos(θ) dθ

󰀤󰀕󰁝 a

0

r4dr

󰀖

󰀗
sin3(θ)

3

󰀘π
2

0

·
󰀗
r5

5

󰀘a

0

=
1

3
· a

5

5
=

a5

15
□

Problem 9.3. Find the
󰁝󰁝

R

(x2 + y2) dA where R is in the first quadrant bounded

by x2 + y2 = 1, x2 + y2 = 9, y = x and y = 0.

Solution.
󰁝󰁝

R

(x2 + y2) dA =

󰁝 π/4

0

󰁝 3

1

r2 · r dr dθ =

󰁝 π/4

0

󰀗
r4

4

󰀘3

1

dθ = 5π

□
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10. Triple integrals

Problem 10.1. Evaluate the integral
󰁝 1

0

󰁝 2y

y

󰁝 x+y

0

6xy dz dx dy

Solution.

=

󰁝 1

0

󰁝 2y

y

󰀅
6xyz

󰀆x+y

0
dx dy

=

󰁝 1

0

󰁝 2y

y

6xy(x+ y) dx dy

=

󰁝 1

0

󰀗
6y

󰀕
x3

3
+

x2y

2

󰀖󰀘2y

y

dy

=

󰁝 1

0

23y4 dy =
23

5

□

Problem 10.2. Evaluate the integral
󰁝󰁝󰁝

E

ez/y dV , where E is bounded by E =

{(x, y, z)|0 ≤ y ≤ 1, y ≤ x ≤ 1, 0 ≤ z ≤ xy}.

Solution.
󰁝 1

0

󰁝 1

y

󰁝 xy

0

e
z
y dz dx dy

=

󰁝 1

0

󰁝 1

y

󰁫
ye

z
y

󰁬xy
0

dx dy

=

󰁝 1

0

󰁝 1

y

(yex − y) dx dy

=

󰁝 1

0

[yex − yx]1y dy

=

󰁝 1

0

(ey − y − yey + y2) dy

=

󰀗
y3

3
+

(e− 1)y2

2
− ey(y − 1)

󰀘1

0

=
e

2
− 7

6

□
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Problem 10.3. Evaluate
󰁝󰁝󰁝

E

x2 dV where E is the solid bounded by x2 + y2 = 4,

x+ z = 2, and z = 0. (Hint: You may use the fact that
󰁕 2π

0
cos3(θ) dθ = 0.)

Solution. We can rewrite the integral as
󰁝󰁝

D

󰁝 2−x

0

x2 dz dA, where D is the the region given

by x2 + y2 = 4 (the circle). Going from here, we have󰁝󰁝

D

󰀅
x2z

󰀆2−x

0
dA =

󰁝󰁝

D

󰀅
x2z

󰀆2−x

0
dA =

󰁝󰁝

D

x2(2− x) dA

From here we switch to polar coordinates1:
󰁝 2π

0

󰁝 2

0

(2r2 cos2(θ)− r3 cos3(θ))r dr dθ

=

󰁝 2π

0

󰀗
2r4

4
cos2(θ)− r5

5
cos3(θ)

󰀘2

0

=

󰁝 2π

0

󰀕
8 cos2 θ − 25

5
cos3 θ

󰀖
dθ =

󰁝 2π

0

8 cos2 θ dθ

=

󰁝 2π

0

8

󰀕
1

2
+

1

2
cos(2θ)

󰀖
dθ

= 8π + 4

󰁝 2π

0

cos(2θ) dθ = 8π □

Problem 10.4. Find the volume of the solid bounded by the cylinders x2 + y2 = r2

and x2 + z2 = r2.

Solution.
󰁝 r

−r

󰁝 √
r2−x2

−
√
r2−x2

󰁝 √
r2−x2

−
√
r2−x2

dz dy dx

=8

󰁝 r

0

󰁝 √
r2−x2

0

󰁝 √
r2−x2

0

dz dy dx

=8

󰁝 r

0

󰁝 √
r2−x2

0

√
r2 − x2 dy dx

=8

󰁝 r

0

r2 − x2 dx = 8

󰀗
r2x− x3

3

󰀘r

0

=8 · 2
3
r3 =

16

3
r3 □

1Note that this is essentially using cylindrical coordinates (in the next section)
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11. Cylindrical, spherical coordinates, and change of variables.

Problem 11.1. Set up the integral to calculate the volume bounded by the sphere
x2+y2+z2 = 16 and the cone z =

󰁳
3(x2 + y2) using Cartesian coordinates, cylindrical

coordinates and spherical coordinates respectively.

Solution. □

Problem 11.2. Rewrite the integral
󰁝󰁝󰁝

E

xex
2+y2+z2dV where E is the portion of

the sphere x2 + y2 + z2 = 1 in the first octant.

Solution. □

Problem 11.3. Evaluate
󰁕󰁕

R
(4x + 8y)dA where R is the parallelogram wit vertices

(−1, 3), (1,−3), (3,−1) and (1, 5). Use the transformation x = 1
4
(u + v) and y =

1
4
(v − 3c).

Solution. □
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12. Vector Fields and Line Integral

Problem 12.1. Find the gradient vector fields of the following functions and sketch
them.

f(x, y) =
1

2
(x2 − y2), f(x, y) = (x+ y)2

Solution. The gradients are
〈x, y〉 〈2(x+ y), 2(x+ y)〉

□

Problem 12.2. Find the gradient vector fields of

f(x, y, z) = x2ye
y
z , f (x, y, z) = z2ex

2+4y + ln
󰀓xy
z

󰀔

Solution.

∇f =

󰀟
2ey/zxy,

ey/zx2(y + z)

z
,−ey/zx2y2

z2

󰀠

∇f =

󰀟
2xz2ex

2+4y +
1

x
, 4z2ex

2+4y +
1

y
, 2zex

2+4y − 1

z

󰀠
□

Problem 12.3. Compute the line integral
󰁝

C

ex dx where C is the arc of the curve

x = y3 from (−1,−1) to (1, 1).

Solution. The curve C is parametrized by r(t) = (x(t), y(t)) = (t3, t). The end points are
r(−1) = (−1,−1) and r(1) = (1, 1). Note that x(t) = t3. Therefore the line integral is

󰁝 1

−1

et
3

x′(t) dt =

󰁝 x(1)

x(−1)

ex dx = ex
󰀏󰀏x(1)
x(−1)

= ex
󰀏󰀏1
−1

= e− e−1. □
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Problem 12.4. Compute the line integral
󰁝

C

y2z ds where C is the line segment from

(3, 1, 2) to (1, 2, 5).

Solution. First we parametrize the line C: r(t) = (1 − t)〈3, 1, 2〉 + t〈1, 2, 5〉 = 〈3 − 2t, 1 +
t, 2 + 3t〉. Note that from this parametrization we automatically have r(0) = (3, 1, 2) and
r(1) = (1, 2, 5) Then

󰁝

C

y2z ds =

󰁝 1

0

(1 + t)2(2 + 3t)
󰁳

(−2)2 + 12 + 32 dt

=
√
14

󰁝 1

0

(1 + t)2(3(1 + t)− 1) dt =
√
14

󰁝 1

0

3t3 + 8t2 + 7t+ 2 dt =
107

12

√
14 □

Problem 12.5. Find the line integral
󰁝

C

F · dr where F(x, y, z) = (x2 + y) i+ xz j+

(y + z) k, and C is given by the function r(t) = t2 i+ t3 j− 2t k, 0 ≤ t ≤ 2.

Solution. 󰁝 2

0

F(r(t)) · r′(t) dt

=

󰁝 2

0

〈t4 + t3,−2t3, t3 − 2t〉 · 〈2t, 3t2,−2〉 dt

=

󰁝 2

0

(4t− 2t3 + 2t4 − 4t5) dt

=− 538

15
□
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13. Conservative vector fields and fundamental theorem of path integrals.

Problem 13.1. Determine whether or not F is a conservative vector field, and if so,
find the function f such that F = ∇f .

(1) F(x, y) = (y2 − 2x)i+ 2xyj
(2) F(x, y) = yexi+ (ex + ey)j

Solution. (1) ∂
∂y
(y2− 2x) = 2y = ∂

∂x
2xy, so F is conservative. First take antiderivative w.r.t.

x: f(x, y) =
󰁕
(y2 − 2x) ∂x = xy2 − x2 + g(y) Then we take partial derivative w.r.t. y:

∂
∂y
(xy2 − x2 + g(y)) = 2xy + g′(y) = 2xy. Therefore g(y) = C, so f(x, y) = xy2 − x2 + C.

(2) ∂
∂y
yex = ex = ∂

∂x
(ex + ey), so F is conservative. First taking antiderivative w.r.t. x,

we have f(x, y) =
󰁕
yex ∂x = yex + g(y). Then taking partial derivative w.r.t y, we get

∂
∂y
(yex + g(y)) = ex + g′(y) = ex + ey. So g′(y) = ey, which means that g(y) = ey +C. Thus

f(x, y) = yex + ey + C. □

Problem 13.2. Evaluate the following line integrals
󰁕
C
∇f dr.

(1) f (x, y) = x3 (3− y2) + 4y and C is given by r (t) = 〈3− t2, 5− t〉 with −2 ≤
t ≤ 3

(2) f (x, y) = yex
2−1 + 4x

√
y and C is given by r (t) = 〈1− t, 2t2 − 2t〉 with 0 ≤

t ≤ 2.

Solution. (1)
󰁕

C

∇f ▪ dr = f (r (3)) − f (r (−2)) = f (−6, 2) − f (−1, 7) = 224 − 74 = 150.

(2)
󰁕

C

∇f ▪ dr = f (r (2))− f (r (0)) = f (−1, 4)− f (1, 0) = −4− 0 = −4. □

Problem 13.3. Evaluate
󰁕
C
F dr, where F(x, y, z) = (y2z + 2xz2)i+ 2xyzj+ (xy2 +

2x2z)k and C is given by 〈
√
t, t+ 1, t2〉 with 0 ≤ t ≤ 1.

Solution. First we find f(x, y, z) such that ∇f = F. Taking antiderivative w.r.t. x we get:
f(x, y, z) =

󰁕
(y2z + 2xz2) ∂x = xy2z + x2z2 + g(y, z). Then take partial derivatives:

(i) ∂
∂y
(xy2z + x2z2 + g(y, z)) = 2xyz + ∂g(y,z)

∂y
= 2xyz

(ii) ∂
∂z
(xy2z + x2z2 + g(y, z)) = xy2 + 2x2z + ∂g(y,z)

∂z
= xy2 + 2x2z

Eq. (i) implies that ∂
∂y
g(y, z) = 0 and eq. (ii) implies that ∂

∂z
g(y, z) = 0. Therefore g(y, z)

is a constant. So f(x, y, z) = xy2z + x2z2 + C.

Then apply fundamental theorem of path integrals, we have
󰁕
C
F dr = f(1, 2, 1)−f(0, 1, 0) =

(4 + 1)− 0 = 5. □
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14. Green’s Theorem

Problem 14.1. Evaluate the integral
󰁝

C

y4 dx+ 2xy3 dy where C is the ellipse x2 +

2y2 = 2 oriented positively.

Solution. Let D be the region enclosed by C, by Green’s theorem, we have
󰁝

C

y4 dx+ 2xy3 dy =

󰁝󰁝

D

󰀕
∂ 2xy3

∂x
− ∂ y4

∂y

󰀖
dA =

󰁝󰁝

D

−2y3 dA.

The parametrization for C is x =
√
2 cos θ, y = sin θ, so points in D has the form

x = r
√
2 cos θ, y = r sin θ

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. The Jacobian for this change of variable is

J =

󰀏󰀏󰀏󰀏󰀏󰀏

√
2 cos θ −r

√
2 sin θ

sin θ r cos θ

󰀏󰀏󰀏󰀏󰀏󰀏
=

√
2r.

Thus we have
󰁝󰁝

D

−2y3 dA =

󰁝 2π

0

󰁝 1

0

−2(r sin θ)3(
√
2r) dr dθ = −2

√
2

󰀕󰁝 2π

0

sin3 θ dθ

󰀖󰀕󰁝 1

0

r4 dr

󰀖

Note that
󰁝 2π

0

sin3 θ dθ =

󰁝 π

−π

sin3(θ) dθ = 0, because sin3 θ is an odd function. So by

substitution, the above integral is 0. □

Problem 14.2. Evaluate
󰁕
C
F · dr where F = (x2 + y) i + (2x − y2) j and C is a

positively oriented circle given by (x− 2)2 + (y − 7)2 = 4.

Solution. By Green’s theorem
󰁕
C
F · dr =

󰁕󰁕
D

󰀓
∂ 2x−y2

∂x
− ∂ x2+y

∂y

󰀔
dA =

󰁕󰁕
D

dA which is the
area of the circle, i.e. 4π. □

Problem 14.3. Find the area of the polar curve r = 1− cos θ. (Use calculator.)

Solution. The curve is parametrized by x = (1 − cos θ) cos θ and y = (1 − cos θ) sin θ. By
inverse Green’s theorem, the area is

󰁝

C

x dy =

󰁝 2π

0

(1− cos θ) cos θ dy =

󰁝 2π

0

(1− cos θ) cos(θ)(sin2 θ − cos2 θ + cos θ) dθ

=

󰁝 2π

0

(2 cos4 θ − 3 cos3 θ + cos θ) dθ =

󰁝 2π

0

2 cos4 θ =
3π

2
. □
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15. Curl and Divergence

Problem 15.1. Find the curl and divergence of the vector fields.
(1) F(x, y, z) = sin(yz) i+ sin(xz) j+ sin(xy) k
(2) F(x, y, z) = xyz4 i+ x2z4 j+ 4x2yz3 k

Solution. (1) curlF =
󰀓

∂ sin(xy)
∂y

− ∂ sin(xz)
∂z

󰀔
i +

󰀓
∂ sin(yz)

∂z
− ∂ sin(xy)

∂x

󰀔
j +

󰀓
∂ sin(xz)

∂x
− ∂ sin(yz)

∂y

󰀔
k

= x(cos(xy)− cos(xz))i+ y(cos(yz)− cos(xy))j+ z(cos(xz)− cos(yz))k, and divF = 0.

(2) curlF = −4xyz3 j+ xz4 k, divF = yz2(12x2 + z2). □

Problem 15.2. Show that F = 〈yexy+yz+z, x(exy+z)−z sin(yz), xy+x−y sin(yz)〉
is a conservative vector field and find the function f such that F = ∇f .

Solution. The first step is to show that curlF = 0, and that F has continuous partial
derivatives, details of this step is omitted. First we take the partial antiderivative w.r.t. x:

f(x, y, z) =

󰁝
(yexy + yz + z) ∂x = exy + xyz + xz + g(y, z)

Next we take the partial derivative of f w.r.t. y and z:
fy = xexy + xz + gy = xexy + xz − z sin(yz)

fz = xy + x+ gz = xy + z − y sin(yz)

These give us that
∇g(y, z) = 〈gy, gz〉 = 〈−z sin(yz),−y sin(yz)〉

To find g(x, y), we take the partial antiderivative of gy w.r.t y:

g(x, y) =

󰁝
−z sin yz ∂y = cos(yz) + h(z)

Then we take the partial derivative of g(y, z) w.r.t z:
gz = −y sin(yz) + h′(z) = −y sin(yz)

Therefore h′(z) = 0, which means that h(z) = C. Thus g(y, z) = cos(yz) + C, and hence
f(x, y, z) = exy + xyz + xz + cos(yz) + C. □
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16. Parametric surface and surface integrals

Problem 16.1. Find a parametrization for the following surfaces.
(1) The plane that passes through the point (0,−1, 5) and contains the vectors

〈2, 1, 4〉 and 〈−3, 2, 1〉.
(2) The part of the ellipsoid x2 + 4y2 + 9z2 = 1 which lies to the left of xz-plane.
(3) The parts of the plane x+2y+ z = 1 which lies inside the cylinder x2+y2 = 1.

Solution. (1) r(u, v) = 〈0,−1, 5〉+ 〈2, 1, 4〉u+ 〈−3, 2, 1〉v = 〈2u− 3v,−1+u+2v, 5+4u+ v〉

(2) r(u, v) = 〈sin(u) cos(v), 1
2
cos(v), 1

3
sin(u) sin(v)〉, where 0 ≤ u ≤ 2π and π

2
≤ v ≤ π.

(3) For the cylinder we need x = u sin v and y = u cos v with 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π. Plug
this into the plane equation we get z = 1 − x − 2y = 1 − u sin v − 2u cos v. Therefore the
parametrization is

r(u, v) = 〈r cos v, r sin v,−x− 2y = 1− u sin v − 2u cos v〉 □
.

Problem 16.2. Find the tangent plane to surfaces r(u, v) = (u2 + 1)i + (v3 + 1)j +
(u+ v)k at (5, 2, 3).

Solution. First we find the values of u, v such that r(u, v) = (5, 2, 3). We have v3 + 1 = 2,
which means v = 1. Then u+ v = 3 implies that u = 2. So the point is r(2, 1).

Next we calculate the tangent vectors: ru(u, v) = 〈2u, 0, 1〉, hence ru(2, 1) = 〈4, 0, 1〉. Next
we have rv(u, v) = 〈0, 3v2, 1〉, thus rv(2, 1) = 〈0, 3, 1〉.

Therefore, the tangent plane is parametrized by

〈5, 2, 3〉+ 〈4, 0, 1〉u+ 〈0, 3, 1〉v = 〈5 + 4u, 2 + 3v, 3 + u+ v〉 □

Problem 16.3. Evaluate the surface integral
󰁝󰁝

S

(x2 + y2) dS, where S is given by

r(u, v) = 〈2uv, u2 − v2, u2 + v2〉, u2 + v2 ≤ 1.

Solution. First we compute |ru × rv| = |〈8uv, 4u2 − 4v2,−4u2 − 4v2〉| = 4
√
2(u2 + v2). Use

polar coordinates:
󰁝󰁝

S

(x2 + y2) dS =

󰁝󰁝

D

(4u2v2 + (u2 − v2)2) · 4
√
2(u2 + v2) dA =

󰁝󰁝

D

4
√
2(u2 + v2)3 dA

=

󰁝 1

0

󰁝 2π

0

4
√
2 r7 dθ dr = 8π ·

√
2

󰁝 1

0

r7 dr =
√
2π. □
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Problem 16.4. Find the surface area of part of the sphere x2+ y2+ z2 = 4 which lies
inside the cylinder x2 + y2 = 2x.

Solution. The projection of the part of the sphere (inside the cylinder) on the xy-plane is
the circle given by x2 + y2 = 2x, which is given by

󰁱
(r, θ) : 0 ≤ r ≤ 2 cos θ, −π

2
≤ θ ≤ π

2

󰁲

in polar coordinates. The upper-half sphere is represented by z =
󰁳

4− x2 − y2, which can
be written as z =

√
4− r2 in polar coordinates, so we parametrize the upper-half sphere as

s(r, θ) = (r cos(θ), r sin(θ),
√
4− r2).

We calculate that |sr × sθ| = 2r√
4−r2

. So the surface area of the upper-half sphere inside the
cylinder is

󰁝󰁝

D

|sr × st| dA =

󰁝󰁝

D

2r√
4− r2

dA =

󰁝 π/2

−π/2

󰁝 2 cos(θ)

0

2r√
4− r2

dr dθ = 2(2π − 4).

=

󰁝 π/2

−π/2

󰁫
−2

√
4− r2

󰁬2 cos θ
0

dθ =

󰁝 π2

−π/2

−2
󰁳

sin2 θ + 4 dθ =

󰁝 π/2

−π/2

4− | sin θ| dθ

= 2

󰁝 π/2

0

4− sin θ dθ = 4π − 8

Finally multiplying by 2 we get 4(2π − 4). □

Problem 16.5. Evaluate the surface integral
󰁝󰁝

S

z2 dS where S is the part of the

sphere x2 + y2 + z2 = 1 which lies inside the cone z =
󰁳

x2 + y2.

Solution. The parametrization of the sphere is
r(u, v) = 〈cos(u) sin(v), sin(u) sin(v), cos(v)〉 0 ≤ u ≤ 2π, 0 ≤ v ≤ π.

We want the part of the sphere under the cone, i.e. satisfy the equation z ≤
󰁳

x2 + y2.

cos(v) ≤
󰁳

(cos(u) sin(v))2 + (sin(u) sin(v))2 = | sin(v)|,
which gives π

4
≤ v ≤ π. Now back to the integral

󰁝󰁝

S

z2 dS =

󰁝󰁝

D

cos2(v)|ru × rv| dA =

󰁝 2π

0

󰁝 π

π
4

cos2(v) sin(v) dv du

= 2π

󰁝 π

π
4

cos2(v) sin(v) dv = 2π

󰀗
−1

3
cos3(v)

󰀘π

π/4

=
2 +

√
3

6
□
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17. Flux integral

Problem 17.1. Let S be the part of the cone z = x2 + y2 which lies above the region
given by x2+y2 ≤ 1 and x ≥ 0. Assuming downward orientation, calculate the surface
integral of F = 〈x, y, xy〉 over S.

Solution. The cone is parametrized by r(x, y) = 〈x, y, x2 + y2〉. The normal vector is.

rx × ry = 〈1, 0, 2x〉 × 〈0, 1, 2y〉 = 〈−2x,−2y, 1〉
We want the downward orientation, so negate the normal vector: n = 〈2x, 2y,−1〉.

󰁝󰁝

S

F · dS =

󰁝󰁝

D

F · n dS

=

󰁝󰁝

D

〈x, y, xy〉 · 〈2x, 2y,−1〉 dA

=

󰁝󰁝

D

2x2 + 2y2 − xy dA

=

󰁝 π
2

−π
2

󰁝 1

0

(2r − r cos(θ)r sin(θ))r dr dθ

=

󰁝 π
2

−π
2

󰁝 1

0

(2r2 − r3 cos θ sin θ) dr dθ

=
π

2
□

Problem 17.2. Find
󰁕󰁕

F · dS for F(x, y, z) = 〈y,−x, 2z〉, where S is the hemisphere
x2 + y2 + z2 = 4 (z ≥ 0) oriented downward.

Solution. The semisphere is the graph of the function z = g(x, y) =
󰁳

4− x2 − y2. Thus the
integral with upward orientation is

F · dS =

󰁝󰁝

D

󰀣
(−y)

󰀣
− x󰁳

4− x2 − y2

󰀤
+ x

󰀣
− y󰁳

4− x2 − y2

󰀤
+ 2

󰁳
4− x2 − y2

󰀤
dA

= 2

󰁝󰁝

D

󰁳
4− x2 − y2 dA = 2

󰁝 2π

0

󰁝 2

0

√
4− r2 r dr dθ = 2 · 2π ·

󰁝 0

4

−1

2

√
u du =

32π

3
.

Finally, we negate the result, and get −32π
3

. □
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Problem 17.3. Evaluate
󰁕󰁕

S

F · dS where F = −x i+ 2y j− z k and S is the portion

of y = 2x2 + 2z2 that lies behind y = 8 oriented in the positive y-axis direction.

Solution. Set the two equations equal 2x2 + 2z2 = 8, we get x2 + z2 = 4. So D is the circle
x2 + y2 ≤ 4. Write the surface as f (x, y, z) = 2x2 + 2z2 − y = 0, so the normal vector is

n =
∇f

|∇f | =
1

|∇f |〈4x,−1, 4z〉.

We leave the magnitude of ∇f uncalculated because it will eventually get canceled. Note
that we need the normal vector to point at the positive y-direction, we by negating it we
obtain a normal vector with positive y-component: n = − ∇f

|∇f | =
1

|∇f |〈−4x, 1− 4z〉. Next
󰁝󰁝

S

F · dS =

󰁝󰁝

S

F
󰀃
x, 2x2 + 2z2, z

󰀄
·n dS =

󰁝󰁝

S

󰀍
−x, 2

󰀃
2x2 + 2z2

󰀄
,−z

󰀎
· 〈−4x, 1,−4z〉

|∇f | dS

=

󰁝󰁝

S

1

|∇f |8(x
2 + z2) dS =

󰁝󰁝

D

8(x2 + z2) dA =

󰁝 2π

0

󰁝 2

0

8r3 dr dθ = 64π. □
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18. Stokes’ theorem and divergence theorem

Problem 18.1. Use Stokes’ Theorem to evaluate
󰁕󰁕

S

curlF · dS where F = y i− x j+

yx3 k and S is the portion of the sphere of radius 4 with z ≥ 0 with upwards orientation.

Solution. By Stoke’s theorem, we have
󰁕󰁕

S

curlF ▪ dS =
󰁕

C

F ▪ dr, where C is the intersection

of the sphere with the xy-plane, i.e. the circle with radius 4. Thus C is parametrized by
〈4 cos θ, 4 sin θ, 0〉 where 0 ≤ θ ≤ 2π. We have F (r (t))·r′ (t) = 〈4 sin t,−4 cos t, 256 sin tcos3t〉▪
〈−4 sin t, 4 cos t, 0〉 = −16(sin2t+ cos2t) = −16. Then

󰁝

C

F · dr =

󰁝 2π

0

−16 dθ = −32π □

Problem 18.2. Use Stokes’ theorem to evaluate
󰁕
C
F · dr where F(x, y, z) = 〈1, x+

yz, xy −
√
z〉 and C is the boundary of the plane 3x+ 2y + z = 1 in the first octant.

Solution. First we calculate the curl of F: curlF = 〈x − y,−y, 1〉. By Stokes’ theorem, we
have 󰁝

C

F · dr =

󰁝󰁝

S

curlF · dS

The surface S can be written as a graph of a function z = g(x, y) = 1− 3x− 2y, thus
󰁝󰁝

S

curlF · dS =

󰁝󰁝

D

󰀕
−(x− y)

∂g

∂x
− (−y)

∂g

∂y
+ 1

󰀖
dA =

󰁝󰁝

D

(3x− 5y + 1) dA.

Next we need to figure our D, which is the triangle made from the intersection of the plane
and the first quadrant of the xy-plane. Set z = 0, the plane becomes 3x+2y = 1, which has
x-intercept 1

3
and y-intercept 1

2
. Therefore the integral is

󰁝 1
2

0

󰁝 1−2y
3

0

(3x− 5y + 1) dx dy =
1

24
□

Problem 18.3. Use divergence theorem to calculate
󰁕󰁕

S
F · dS where F(x, y, z) =

〈3xy2, xez, z3〉 and S is the surface bounded by the cylinder y2 + z2 = 1 and planes
x = −1 and x = 2.

Solution. First we calculate the divergence: divF = 3(y2+z2). Then by divergence theorem
󰁝󰁝

S

F · dS =

󰁝󰁝

E

3(y2 + z2) dV
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Use polar coordinates on yz-plane, we have

=

󰁝 2

−1

󰁝 1

0

󰁝 2π

0

3r3 dθ dr dx = 3 · 2π · 3
4
=

9π

2
□
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