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Abstract. LP algebras, introduced by Lam and Pylyavskyy, are a generalization of
cluster algebras. These algebras are known to have the Laurent phenomenon, but
positivity remains conjectural. Graph LP algebras are finite LP algebras encoded by a
graph. For the graph LP algebra defined by a tree, we define a family of clusters called
rooted clusters. We prove positivity for these clusters by giving explicit formulas for
each cluster variable. We also give a combinatorial interpretation for these expansions
using a generalization of T-paths.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [2] as a tool for studying to-
tal positivity and dual canonical basis of algebraic groups, and have since been linked to
quiver representations, integrable systems, Poisson geometry, Teichmüller theory, math-
ematical physics, and other topics. They are commutative rings with a family of dis-
tinguished generators called cluster variables. The cluster variables occur in overlapping
subsets of fixed size called clusters. Given a cluster C, we can obtain a unique distinct
cluster C ′ by a process called mutation where one cluster variable in C is replaced with a
different cluster variable. The two cluster variables involved in this process are related
by a binomial exchange relation; that is, their product can be expressed as a binomial in
terms of the other variables in C (or, equivalently, in C ′).

Cluster algebras have several important features, including the following.

(1) (Laurent phenomenon) Given a fixed choice of cluster C = (x1, . . . , xn), every cluster
variable can be written as a Laurent polynomial in x1, . . . , xn.
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(2) (Positivity) The Laurent polynomial in (1) has positive coefficients.

Lam and Pylyavskyy introduced Laurent phenomenon (LP) algebras as a general-
ization of cluster algebras [3]. In an LP algebra, the restriction that exchange relations
be binomial is relaxed to allow arbitrary irreducible polynomials. Lam and Pylyavskyy
proved that the Laurent phenomenon holds for LP algebras and conjectured that posi-
tivity holds as well.

Graph LP algebras are a particularly nice class of LP algebras having exchange rela-
tions that can be encoded in a graph. Lam and Pylyavskyy explored graph LP algebras
in depth in [4] and gave simple descriptions of all of the clusters along with several
formulas for computing the cluster variables. However, positivity for graph LP algebras
remains conjectural. In this paper, we describe progress towards that conjecture.

We begin by introducing rooted clusters for graph LP algebras. Our first main result,
which we prove by giving explicit formulas for every cluster variable in terms of each
rooted cluster, is positivity for such clusters.

Theorem 1. If Γ is a tree and C is a rooted cluster for Γ, then every cluster variable in the graph
LP algebra associated to Γ can be expressed as a Laurent polynomial with positive coefficients in
the elements of C.

We then introduce a generalization of Schiffler’s T-paths for type A cluster alge-
bras [7] for our setting.

Theorem 2. Let Γ be a tree and C be a rooted cluster for Γ. If S is a connected subset of vertices
of Γ, then the cluster variable YS has the combinatorial expansion formula

YS = ∑
complete hyper
T-paths α for S

wt(α).

We will begin in Section 2 by giving more background graph on LP algebras and
introducing rooted clusters. Section 3 gives formulas for the cluster variables in terms
of a rooted cluster C and sketches the proof of Theorem 1. We begin Section 4 with
background on T-paths for type A cluster algebras and then define hyper T-paths. This
section culminates with a summary of the proof of Theorem 2. We conclude with a few
thoughts about future work.

2 Preliminaries

Laurent phenomenon (LP) algebras were defined by Lam and Pylyavskyy in [3]. A
seed for an LP algebra consists of n cluster variables each with an associated exchange
polynomial. We can mutate at any cluster variable to obtain a new seed. An LP algebra
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is a ring generated by all the cluster variables we can obtain from some initial seed by
mutation. This paper will focus on a subset of LP algebras called graph LP algebras. As
these LP algebras can be defined in an equivalent and simpler way (see Theorem 3), we
will not include a full definition of LP algebras here and instead direct interested readers
to [3].

For every undirected graph Γ, we obtain a graph LP algebra AΓ. The initial seed for
AΓ is encoded by the edges of the graph.

Definition 1. Let Γ be an undirected graph on [n] := {1, · · · , n} and R = Z[A1, . . . , An].
Then the graph LP algebra AΓ is the LP algebra generated by initial seed{(

Xi, Ai + ∑
i adjacent to j

Xj

)}
1≤i≤n

Lam and Pylyavskyy prove that these LP algebras have a particularly nice structure
using nested collections.

Definition 2. Let Γ be an undirected graph on [n]. A family of subsets of [n], S =
{S1, . . . , Sk}, is a nested collection if

• for any i, j ≤ k, either Si ⊆ Sj, Sj ⊆ Si, or Si ∩ Sj = ∅, and

• if Si1 , . . . Siℓ are pairwise disjoint, then Si1 , . . . Siℓ are exactly the connected compo-
nents of

⋃ℓ
j=1 Sij .

We say S is a maximal nested collection on S if
⋃k

i=1 Si = S and there is no S′ ⊆ S such that
{S1, . . . , Sk, S′} is a nested collection.

If Γ is a graph on [n] and S is a maximal nested collection on S = [n], we will
generally say that S is a maximal nested collection without specifying S.

Example 1. Let Γ be the following graph:

1 2 3
4

5

Then S = {{1}, {3}, {1, 2, 3, 4}} is a nested collection on S = {1, 2, 3, 4}. However, it
is not maximal because adding the set S′ = {1, 2, 3} still yields a nested collection.

As a nonexample, consider S = {{1}, {1, 2}, {3}, {1, 2, 3, 4}}. We can see that this is
not a nested collection by looking at the disjoint sets {1, 2} and {3}. The union of these
sets is {1, 2, 3}, which has only one connected component.
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Theorem 3 (Theorem 1.1 of [4]). Let Γ be an undirected graph on [n]. Define the matrix
N = (nij) by

nij =


Ai + ∑i adjacent to j Xj

Xi
i = j,

−1 i adjacent to j,
0 otherwise.

Then the graph LP algebra AΓ has cluster variables {X1, . . . , Xn} ∪ {YS | S ⊂ [n] is connected}
where YS is the determinant of the submatrix of N obtained by taking only rows and columns
indexed by S. The clusters for A are of the form {Xi1 , . . . , Xik} ∪ {YS | S ∈ S} where S is a
maximal nested collection on [n] \ {i1, . . . , ik}.

In a slight abuse of notation, we will generally write Ys1...sr as shorthand for Y{s1,...,sr}.

Example 2. Let Γ be the graph from Example 1. One example of a valid cluster for AΓ
is {X2, Y1, Y5, Y35, Y345}. This is because {{1}, {5}, {3, 5}, {3, 4, 5}} is a maximal nested
collection on {1, 3, 4, 5}. In this case, the N matrix is:

N =



A1+X2
X1

−1 0 0 0
−1 A2+X1+X3

X2
−1 0 0

0 −1 A3+X2+X4+X5
X3

−1 −1
0 0 −1 A4+X3

X4
0

0 0 −1 0 A5+X3
X5


We can use this to rewrite the Y-variables in our cluster. For example,

Y35 =

∣∣∣∣∣A3+X2+X4+X5
X3

−1
−1 A5+X3

X5

∣∣∣∣∣ = A3A5 + A5X2 + A5X4 + A5X5 + A3X3 + X2X3 + X3X4

X3X5

Lam and Pylyavskyy also completely describe the exchange relations for AΓ (see
Lemmas 4.7 and 4.11 of [4]).

We focus on the case when Γ is a tree. In this setting, we can define a special type of
cluster we call a rooted cluster that has desirable properties. There is one rooted cluster
Cv for each vertex v of Γ. In order to define this cluster, we think of Γ as being rooted at
v. We then think of Γ as a poset with the root v being the maximal element and cover
relations given by edges of Γ. This leads us to establish the following notation:

• Notice that if i ̸= v, then i is covered by exactly one vertex. We call this vertex i+.

• The set of elements covered by i is denoted Γv
⋖i. Similarly we have the sets Γv

⋗i, Γv
<i,

Γv
>i, Γv

≤i, and Γv
≥i (note that Γv

⋗i = {i+} if i ̸= v).
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1

2

3

4

5

Figure 1: We can picture the cluster rooted at vertex 3 by taking subsets which are
closed going down. For example, I2 = {1, 2, 5} and I5 = {5}.

Definition 3. Let Γ be a tree on [n]. Make Γ into a rooted tree by choosing a vertex v to
be the root. Then for each vertex x in Γ, let Ix = Γv

≤x. The rooted cluster Cv is {Ix}x∈[n].

Example 3. Consider the tree in Figure 1. The cluster C3 consists of I1 = {1}, I2 =
{1, 2, 5}, I3 = {1, 2, 3, 4, 5}, I4 = {4}, and I5 = {5}. One can check that these sets form
a nested collection, and that it is not possible to add another set compatible with all
others. If we root at 2 instead, then C2 consists of the sets I1 = {1}, I2 = {1, 2, 3, 4, 5}, I3 =
{3, 4}, I4 = {4}, and I5 = {5}.

3 Formulas

Although Theorem 3 and the exchange relations for graph LP algebras give formulas for
all cluster variables, these formulas are not guaranteed to be in terms of the variables
of any particular cluster. In this section, we provide formulas for each of the Xi and YS
cluster variables in terms of a rooted cluster Cv. Positivity for this case follows as an
immediate consequence.

One useful observation, which simplifies the presentation of our formulas, is that:

Lemma 1. Let Γ be a tree rooted at v and i a vertex of Γ. Then

YΓv
<i
= ∏

u∈Γv
⋖i

YIu

and for u ∈ Γv
<i we have,

YΓv
<i\Γv

≥u
= ∏

w∈Γv
≤i∩Γv

≥u

∏
x∈Γv

⋖w\Γv
≥u

YIx

Using Theorem 3 and Lemmas 4.7 and 4.11 of [4], we obtain an expansion formula
for YS when |S| = 1. It follows from Lemma 1 that this formula only includes Y-variables
from Cv.
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Proposition 1. Let Γ be a tree rooted at v. For every vertex i of Γ,

Y{i} =
YIi + ∑u∈Γv

⋖i
YΓv

<i\{u}

YΓv
<i

.

Example 4. Consider the tree shown in Figure 1 and the rooted cluster C3. Using the
formula from Proposition 1, we compute

Y{2} =
YI2 + ∑u∈Γ3

⋖2
YΓ3

<2\{u}

YΓ3
<2

=
YI2 + YΓ3

<2\{1} + YΓ3
<2\{5}

YΓ3
<2

=
Y{1,2,5} + Y5 + Y1

Y1Y5
.

Later, we will see that this is consistent with the expansion computed via our hyper
T-path construction.

We then establish the following technical lemmas, which are used to obtain expansion
formulas for YS for arbitrary S.

Lemma 2. Let Γ be a tree, S be a connected subset of vertices, and T = {(a, b) ∈ S × S | a =
b+}. Then

YS =

⌊
|S|
2

⌋
∑
n=0

(−1)n ∑
A∈A(n)

 ∏
x∈(S\A′)

Y{x}


where A(n) = {A ⊆ 2T | |A| = n and {a, b}∩{c, d} = ∅ for all (a, b), (c, d) ∈ A with (a, b) ̸=
(c, d)} and for any A ∈ A(n), A′ = {s | s is part of a pair in A}.

Lemma 3. Let Y(n)
S = ∑A∈A(n)

(
∏x∈(S\A′) Y{x}

)
. If t is a monomial that appears as a term in

Y(m+1)
S , then t also appears in Y(m)

S .

As a consequence of Lemma 3, the set of monomials that appear in the expansion
of the sum in Lemma 2 are exactly those that appear in the expansion of ∏x∈S Y{x}. By
counting the number of times each monomial appears in the expansion of the sum in
Lemma 2, we obtain an expansion formula for all YS. To obtain an expansion formula
for all Xi, we first apply Lemmas 4.7 and 4.11 of [4] to S = Γv

<i to obtain a formula for
Xv and then induct on the distance from i to the root vertex v.

Theorem 4. Let Γ be a tree rooted at v. For all vertices i of Γ and vertex subsets S, we have

Xi =
∑u∈Γv

≥i

(
∏w∈Γv

≥i\Γv
≥u

YΓv
<w

) (
∏w∈Γv

>u
YIw

) (
∑w∈Iu YΓv

<u\Γv
≥w

Aw

)
∏u∈Γv

≥i
YIu

, (3.1)

YS = ∑
O⊆S containing all

minimal elements of Γ in S

∑
u:S\O→V(Γ)
u(x)∈Γv

⋖x\O

(∏x∈O YIx)
(

∏x∈S\O YΓv
<x\{u(x)}

)
∏x∈S YΓv

<x

. (3.2)

Theorem 1 follows as a corollary of these expansion formulas, using Lemma 1.
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4 Hyper T-paths

We reprove Theorem 1 about positivity of the Y-variables via a combinatorial interpre-
tation of the expansions of YS in terms of a rooted cluster. Our constructions are a
generalization of T-paths, which were originally introduced by Schiffler [7] as a tool for
finding cluster expansion formulas in type A cluster algebras.

4.1 T-paths for Type A Cluster Algebras

Type A cluster algebras are modeled by triangulations of an (n + 3)-gon, with each
initial seed corresponding to a unique initial triangulation. Consider an (n+ 3)-gon with
vertices labeled 1, . . . , n + 3 and a fixed triangulation T = {T1, . . . , Tn, Tn+1, . . . , T2n+3}
where T1, . . . , Tn are interior diagonals and Tn+1, . . . , T2n+3 are boundary edges. Let i and
j be non-adjacent boundary vertices and let Mi,j denote the interior diagonal connecting
i and j. Fix an orientation on Mi,j and let i = p0, p1, . . . , pd, pd+1 = j be the ordered list
of intersection points of Mi,j and arcs of T. Then let i1, . . . , id be a list of indices such that
intersection point pk lies on the arc Tik ∈ T. For k ∈ [d], let Mk denote the segment of the
diagonal Mi,j between the intersection points pk and pk+1.

In [5], Musiker and Schiffler define a complete T-path from i to j as a sequence α =
(t1, . . . , tℓ(α)) such that

(T1) i = a0, a1, . . . , aℓ(α) = j are (not necessarily distinct) vertices of the (n + 3)-gon,

(T2) tk ∈ α is an arc in the triangulation T that connects vertices ak−1 and ak, and

(T3) the even arcs are precisely the arcs crossed by Mi,j in order, i.e. t2k = Tik .

We denote the set of all complete T-paths from i to j as Tij. Given a complete T-path
α, the weight of α is defined to be the Laurent monomial

wt(α) :=

(
∏

i odd
wt(ti)

)(
∏

i even
wt(ti)

)−1

where the weight of edge ti is given by wt(ti) := xti . By summing over the set Tij,
Schiffler [7] then obtains an expansion formula for the cluster variable corresponding to
Mi,j in terms of the cluster seed corresponding to the triangulation T:

xMi,j := ∑
α∈Tij

wt(α)

Although it is not immediately obvious, this cluster expansion formula is independent
of the choice of orientation on Mi,j.
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4.2 Construction and Examples

In this section, we generalize the notion of T-paths to define hyper T-paths. We first
construct an auxiliary graph, ΓC .

Let Γ be a tree and C be a rooted cluster for Γ. For each vertex x of degree 1 in ΓC
we add an additional vertex x′ which is adjacent only to x. Call this extended graph Γ′.
We will continue to think of Γ′ as a poset where x′ < x if x is not the root and x′ > x
if x is the root. For every S ∈ C, let S′ be the set of vertices in Γ′ that are adjacent to a
vertex in S but are themselves not in S. Add a hyperedge labelled S which connects all
the vertices of S′. As a convenient abuse of notation, we often refer to this hyperedge
simply as S. We refer to this new hypergraph as ΓC . See Figure 2 for an example.

I2

5′

5

2

1

1′

344′

I5

I4

I1
ΓC3

I3

Figure 2: The hypergraph associated to the tree from Figure 1.

For x a vertex in the rooted tree Γ, we will use Lx to denote to all minimal elements
of Γ′ that are less than x. Equivalently, Lx is the elements of Γ′ \ Γ that are less than x.

Definition 4. Let S be a connected subset of Γ. A complete hyper T-path for S with re-
spect to C is a set of nodes, labelled by vertices of ΓC , joined by connections labelled by
hyperedges of ΓC such that the diagram is connected and the following hold.

1. If a connection is labelled by hyperedge e, it joins nodes labelled by all the end-
points of e with multiplicity 1.

2. There are a distinguished set of boundary nodes labelled by elements of S′ with
multiplicity 1. Other nodes are called internal nodes.

3. Connections are specified to be even or odd.

4. Boundary nodes are adjacent only to odd connections.

5. Internal nodes labelled by elements of S are adjacent to exactly one even and at
least one odd connection.
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6. Internal nodes labelled by elements not in S are adjacent to exactly one even and
exactly one odd connection.

7. If x, y are below elements of S, any path in any complete hyper T-path from bound-
ary node x to boundary node y uses even connections labelled, in order, by Ix, Iap ,
Iap−1 , . . . , Ia1 , Ib1 , Ib2 , . . . , Ibq , Iy where the shortest path from x to y in Γ′ is x, ap, ap−1,
. . . , a1, x ∨ y, b1, b2, . . . , bq, y for p, q ≥ 0.

8. If x is below an element of S and y above the maximal element of S, any path in
any complete hyper T-path from the boundary node x to the boundary node y uses
even connections labelled, in order, by Ix, Iap , . . . , Ia2 , where the shortest path from
x to y in Γ′ is x, ap, ap−1, . . . , a1, y, p ≥ 1. If p = 1, then a path from x to y uses the
even connection Ix.

9. If x, y are boundary nodes, where the shortest path from x to y in Γ′ is x, ap, . . . , a1, x∨
y, b1, . . . , bq, y , then any path in any complete hyper T-path from x to y uses nodes
labelled by elements of Lx∨y and ap, ap−1, . . . , a1, x ∨ y, b1, b2, . . . , bq, with any mul-
tiplicity. If one of the nodes, say y, is adjacent to the maximal element of S, then
x ∨ y = y and q = 0.

Definition 5. The weight of a hyper T-path α is

wt(α) =

(
∏

odd connections c
wt(c)

)(
∏

even connections c
wt(c)

)−1

where the weight of a connection labelled by a set Ix is YIx and the weight of a connection
labelled by an edge in Γ′ is 1.

Example 5. Consider the graph Γ in Figure 1 with a cluster rooted at 3. Below we list
the three hyper T-paths associated to the set {2}.

2 1′

2

5′ I55

I1
I1

3

1 1 1′

2

5′

I1

25
I5 I5

3 3
1′

5′

2

2

1

5

I1

I5

I2

From left to right, these T-paths have weight 1
YI5

, 1
YI1

and
YI2

YI1YI5
. This is consistent with

the expansion of Y2 computed by Proposition 1, shown in Example 4.
We also give one example of a T-path associated to the set {2, 3} from the same graph

with the same rooted cluster. The T-path below has weight 1
YI1YI4

.

1 1′

2 3

5′

4′ 4

I1

I4

25
I5 I5

5′

1′
I2

I2

3
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Remark 1. The T-paths in Example 5 illustrate that these sometimes have adjacent odd
and even connections with the same label. The contributions of these connections then
cancels in the weight of the T-path. To avoid this, one could instead define reduced hyper
T-paths. Here, we find it simpler to work with complete hyper T-paths.

Our main result in this section (Theorem 2) is that the hyper T-paths provide a com-
binatorial interpretation of the expansion of a variable YS with respect to a rooted cluster.
Because the coefficients of this expansion formula count the number of hyper T-paths
with a particular weight, they are manifestly positive integers. By Equation (3.1), this
also implies that the coefficients of the X-variables are positive; thus, the hyper T-paths
provide a second proof of Theorem 1.

The proof of Theorem 2 has similarities with the proof of Theorem 4. We first prove
the theorem in the case of singleton sets; recall the description of the expansion of Y{i} in
Proposition 1. We then define valid pastings of hyper T-paths and study which T-paths
associated to {i} and {j} can be pasted, provided that i and j are adjacent in Γ. The
pasting requirements mirrors the algebraic computations from the proof of Theorem 2,
leading us to our result. See [1] for complete proofs of both results.

5 Future Directions

5.1 From Rooted Clusters to Other Clusters

We would like to extend our results to other clusters for trees. Our definition of rooted
clusters is motivated by the algebraic formulas for the exchange relations (Lemmas 4.7
and 4.11 of [4]). For rooted clusters, the exchange relations give expansions in terms of
the cluster variables in the initial seed. This is not, however, true for an arbitrary cluster.

Proving formulas algebraically for other types of clusters will likely require an in-
ductive argument, which seems to be easiest in star graphs because of their symmetry.

Conjecture 1. Let Sn denote the star graph on n vertices whose central vertex is labeled by 1. Let
C be the cluster {{3}, {4}, . . . , {n}, {1, 3, 4, . . . n}}. For any vertex subset S such that 1 ∈ S,
we conjecture that

YS =



∏
i∈S\{1,2}

Y2
i

Y[n]\{1,2}

(
∑

i ̸∈S
∏

j ̸=1,2,i
Yj

)
+

Y[n]
∏

i∈[n]\S
Yi
+

Y[n]
Y[n]\{2}

(
∑

i∈[n]\S

1
Yi

)
if 2 ̸∈ S

Y[n]\{2}
∏

i∈[n]\(S∪{2})
Yi
+

(
∏

i∈S\{1}
Yi

)(
∑

j∈[n]\(S∪{2})

1
Yi

)
if 2 ∈ S
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If 1 ̸∈ S, then S either consists of a set of disconnected leaves or a single leaf. Because {i} ∈ C
for all i ̸= 2, we then have

Ys = ∏
i∈S

Yi

We are also hopeful that we can extend our hyper T-path expansion formula to other
types of clusters. For a type A cluster algebra, T-paths can be used to find expansions
for cluster variables in terms of any cluster. Because the definitions of T-paths and hyper
T-paths for path graphs are similar, this suggests that it might be possible to use hyper
T-paths for other clusters when Γ is an arbitrary tree.

Unfortunately, our current hyper T-path construction does not work for arbitrary
clusters. One immediate problem is that Rules (7) and (8) would need to be rewritten to
be more general. That is, we would need to allow the even edges to be labelled by any
set in the cluster that is incompatible with S. However, that change would be insufficient
because we still wouldn’t have “enough" valid hyper T-paths. Further, the expansions of
some cluster variables with respect to certain clusters contain monomials with squared
terms in the denominator. This is not possible with our current definition. Thus, it is
clear that there is some other modifications are required for us to be able to extend our
construction to other clusters.

5.2 Snake Graphs

In [6], Musiker, Schiffler and Williams provided an alternative combinatorial formula
for type A cluster algebras using perfect matchings on certain snake graphs. For such
cluster algebras, there exists a weight-preserving bijection between the set of (complete)
T-paths associated to an arc and the set of perfect matching of its snake graph. Since our
hyper T-path are generalizations of complete T-paths, we hope to extend this bijection
to obtain a graph-theoretic formula analogous to [6] for LP algebras from trees. We
illustrate the rough idea in the following example.

3

4

5′

4

2

3
1

5′

1′

5

2

1′
3

4

5′

4

2

3
1

5′

1′

5

2

1′

Figure 3: A generalized snake graph and one of its matchings.

Example 6. On the left of Figure 3, we draw a snake graph associated to the set {2, 3} of
the graph Γ in Figure 2. In its perfect matchings, the vertex 2 is allowed to have valence
2. On the right of Figure 3 is the perfect matching which has the same weight as the
hyper T-path in Example 5.
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Snake graphs may prove more tractable for non-rooted clusters; however, the full
construction of a generalized snake graph is still in progress. We were able to complete
the preceding example because all vertices in the underlying graph Γ had degree three
or less. When the vertices in Γ have higher degree, it is unclear how to draw the snake
graphs.
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