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Abstract—Low-duty-cycle radio operations have been proposed
for wireless networks facing severe energy constraints. Despite
energy savings, duty-cycling the radio creates transient-available
wireless links, making communication rendezvous a challenging
task under the practical issue of clock drift. To overcome limita-
tions of prior work, this paper presents PSR, a practical design
for synchronous rendezvous in low-duty-cycle wireless networks.
The key idea behind PSR is to extract timing information nat-
urally embedded in the pattern of radio duty-cycling, so that
normal traffic in the network can be utilized as a “free” input
for drift detection, which helps reduce (or even eliminate) the
overhead of traditional time-stamp exchange with dedicated
packets or bits. To prevent an overuse of such free information,
leading to energy waste, an energy-driven adaptive mechanism
is developed for clock calibration to balance between energy
efficiency and rendezvous accuracy. PSR is evaluated with both
test-bed experiments and extensive simulations, by augmenting
and comparing with four different MAC protocols. Results show
that PSR is practical and effective under different levels of traffic
load, and can be fused with those MAC protocols to improve their
energy efficiency without major change of the original designs.

I. INTRODUCTION

In wireless networks with severe energy constraints, e.g.,

wireless sensor networks [1], low-duty-cycle radio operations

have been proposed as one of the major techniques to elongate

the network lifetime [5], since the radio can be a main source

of energy consumption [13]. Basically, the RF module of a

node stays active only for a small percentage of time during

each duty-cycle period (e.g., 1%), while keeps in low-energy

sleep/off mode for the rest of the time [5][28]. Low-duty-cycle

radio activity has been favorable in applications such as envi-

ronment monitoring (e.g., Redwood [3], GreenOrbs [9]), ani-

mal observation (e.g., Great Duck Island [10]), civil structure

surveillance (e.g., Mine [11]), etc. In all those applications,

low-duty-cycle networking provides a nice trade-off between

service quality and energy cost; however, it also brings about

transient-available radio links that are essentially at odd with

highly efficient communication. This is because in low-duty-

cycle networks, two nodes located within each other’s radio

range can communicate only when both of them are active

simultaneously for transmitting (TX) and receiving (RX) [12].

A problem called communication rendezvous [17].

Many smart ideas have been proposed for the rendezvous

task in low-duty-cycle wireless networks. They usually func-

tion at the MAC layer and can be categorized into two general

classes: (i) asynchronous [5][6][28][17][23][39] and (ii) syn-

chronous [8][22][25][26][27][29]. In asynchronous designs,

the sender tries to capture the unknown active time of the

receiver, by sacrificing energy [5][6][28], channel efficiency

[5][6], or per-hop delay [23][17], which can work well under

low traffic load. Synchronous solutions, on the contrary, show

improved channel efficiency by controlling and tracking active

schedules. Designs in this category usually have to depend on

the underlying support of time synchronization [8][22][27] to

eliminate negative impacts of clock drift. However, synchro-

nization [4][18][19][20] itself could be costly and difficult in

low-duty-cycle wireless networks [15] due to impaired radio

channels being lack of broadcasting capability and ultra-tight

energy budgets that deny periodic time-stamp exchanges.

To overcome limitations of prior work, this paper presents

PSR, a practical design for synchronous rendezvous in low-

duty-cycle wireless networks. The novelty of PSR originates

from our observation that the pattern of radio duty-cycling can

be used as a time-domain reference for clock drift detection.

By extracting such timing information naturally embedded in

low-duty-cycle wireless networks, normal traffic can be emp-

loyed to achieve 0-bit synchronization, and thus reduces or

even eliminates the overhead of traditional time-stamp ex-

change. To prevent an overuse of such free information, which

leads to energy waste, an adaptive mechanism is proposed to

balance between energy efficiency and rendezvous accuracy. In

short, the intellectual contributions of this paper may include:

• Practical synchronous rendezvous (PSR) is proposed for

low-duty-cycle wireless networks. As a generic element

at the MAC layer, PSR can be conveniently fused with

many state-of-the-art MAC protocols to improve energy

efficiency without major change of the original designs.

• To the best of our knowledge, PSR is the first work that

enables and implements clock drift detection with normal

traffic in the network, by extracting timing information

naturally embedded in the low-duty-cycle radio pattern.

• An energy-driven adaptive mechanism is developed to

make best use of the timing information extracted from

normal traffic, allowing PSR to work with low, medium

and high traffic loads in an on-demand manner.

• PSR is implemented and tested with four different MAC

protocols from two categorizes using 24 MicaZ motes

coupled as 110 different node pairs. To reveal its perfor-

mance at scale, we also provide an extensive simulation

study obeying real-world constraints
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In the following, we start with the preliminary information

in Section II. Section III gives an overview of key ideas.

Then, PSR is detailed in Section IV and Section V reports

test-bed and simulation evalution results. Finally, Section VII

concludes the whole paper.

II. PRELIMINARY

This section provides basic information on low-duty-cycle

radio, communication rendezvous, and clock drift modeling.

A. Low-duty-cycle Radio Operation

Fig.1 illustrates a typical pattern of low-duty-cycle radio

operation [5][6], where node B turns off its RF module most

of the time during TB (node B’s duty-cycle period) to conserve

energy. Such behavior breaks the traditional always-on radio

and creates transient-available radio links for accessing this

node. As a result, “capturing” the active time slots, denoted as

black-filled bars in Fig.1, becomes the precondition for other

nodes to communicate with node B.

Node B
TB

t

Radio is turned on briefly

Fig. 1. Pattern of Low-duty-cycle Radio

B. Communication Rendezvous

In low-duty-cycle wireless networks, communication usu-

ally consist two steps: link establishment and data exchange.

To capture active time slots for link establishment, two types of

methods have been proposed: asynchronous and synchronous

rendezvous. Fig.2 show examples for both types of methods.

Link Built

DNode B t

(a) Link Establish with Asynchronous Rendezvous

(b) Link Establish with Synchronous Rendezvous

DLink Establishment Data Packet Radio On

Link Built

DNode B t

t0

Node A D
t

D

t0

Node A D
t

Wait
D

Fig. 2. Link Establish in Low-duty-cycle Networks

In the above Fig.2, node A and B are 1-hop neighboring

nodes in a low-duty-cycle wireless network. Consider that

node A has a data packet for node B at time t0 as marked

in the figure. With asynchronous rendezvous as shown in

Fig.2(a), node A does not have any knowledge about node

B’s active schedule and thus has to turn on its radio ever

since t0 and remains active (for TX [5][6] or RX [28][39]) till

capturing node B’s active signal to establish the radio link.

While with synchronous rendezvous as depicted in Fig.2(b),

node A has some knowledge about B’s active schedule and

therefore does not need to turn on its radio until approaching

node B’s next active time [8][25], resulting in a significantly

reduced duration for link establishment, and thus improved

energy and channel efficiency.

C. Clock Drift Modeling

The benefits of synchronous rendezvous essentially come

at the cost of synchronization efforts [8][27] for dealing with

the imperfectness of clocks that could otherwise break the

coordinated communication between node pairs.

Clock A

Clock B
0 τB

τA
tdrift

Fig. 3. Clock Drift Offset

In practice, nodes have clocks running at different speeds,

resulting in accumulated offsets among them. For example, τA
is the interval measured by clock A for τB elapsed at clock

B as shown in Fig.3. In this case, tdrift = τA − τB is the

clock drift between A and B during this common interval.

The speed difference between clocks is defined as clock skew,

and the average skew of clock A respective to clock B in this

example, denoted as S̄B
A , can be calculated with

S̄B
A =

τA − τB
τB

(1)

A real clock features random and dynamic skews varying

as a stochastic process [2][14][29][36][38]. Among multiple

skew models [14], we applied the WGN (white Gaussian no-

ise) random walk model [2][14], expressed by Eq.2, as a

tough-case example studied in this paper.

SB
A (t0 + t) = SB

A (t0) +

∫ t0+t

t0

η(u)du (2)

where η(µ) ∼ N(0, σ2
η) and E[η(u)η(v)] = σ2

η · δ(u− v)

In Eq.2, SB
A (t0) counts for the original speed difference betw-

een two clocks at t0; the integration part
∫

η(u)du accumulates

real-time environmental impacts during t. In practice, the value

of ση can be obtained from empirical literatures [33][14][35]

or system profiling before network deployments [16][34].

With clock skew SB
A (t), the drift offset tdrift in Fig.3 can

be formulated as follows

tdrift = S̄B
A · τB =

∫ τB

0

SB
A (t)dt (3)

Note that as the most generic form, the drift model in Eq.3

can work with any clock skew model.

III. OVERVIEW

PSR is developed as a supporting component at the MAC

layer for efficient synchronous rendezvous in low-duty-cycle

wireless networks. The major challenge is to reduce the energy

cost for the synchronization service. To address this issue, two

unique techniques are proposed: 0-bit clock drift detection and

energy-driven adaptive skew calibration, which are briefed in

the following before touching details of PSR in Section IV.

A. 0-bit Clock Drift Detection

By leveraging the low-duty-cycle radio pattern as a time-

domain reference, PSR enables normal traffic in the network

for clock drift detection without time-stamp exchanges. We

give a simplified example in Fig.4 to illustrate the idea.
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Fig. 4. 0-bit Clock Drift Detection

For the sake of clarity, Fig.4 shows the link establishment

with a zoom-in view while omits the following data exchange.

Assume that at time t0, node A has a message for node B.

Based on the previous knowledge of B’s schedule, A predicts

the next active time of B at t2, and tries to capture it with a

window of length 2L centered at t2. However, node B wakes

up at t3, after which the link is built as shown in Fig.4. In

this case, the interval between t2 and t3 is just the drift offset

between two nodes, which can be estimated at node A by

comparing its original expectation t2 with its detection at t3.

The rationale behind this scheme is that the low-duty-cycle

radio pattern of a node carries implicit information about its

real-time clock readings and can be used as a time reference

equivalent to time-stamps. So, clock drift can be obtained as a

by-product during link establishment, and 0-bit drift detection

could be achieved in the presence of normal traffic.

B. Energy-driven Adaptive Skew Calibration

With 0-bit drift detection, a follow-up question is whether

all “free” detections shall be used equally for synchronization.

The answer is “no” by careful analysis. In PSR, time syn-

chronization is treated as two separate operations with diverse

energy costs (see Section V). Drift calibration can be con-

ducted after each detection for its low-energy profile; while

skew calibration is launched less frequently for dual reasons:

(i) it requires significant calculation efforts, and (ii) updating

skew at a high frequency may do harm to synchronization [36].

PSR applies an energy-driven mechanism for adaptive skew

calibration, the basic principle of which is shown in Fig.5.

t3

Traffic α

t0

τα

τsync

t1 t2

H1: Traffic α

H2: Dedicated Sync. 
Deadline for Skew Calibration

t

Fig. 5. Traffic for Clock Skew Calibration

Fig.5 illustrates two exclusive options for skew calibration:

(i) using the “free” drift detection from traffic α at t0 (choice

H1), or (ii) applying additional radio operations for dedicated

synchronization at t1 that is the deadline for skew calibration

(choice H2). For H1, it can extend the deadline at t1 by τα
to t2 as shown in Fig.5, at the cost of Ecal that is the energy

overhead for skew calculation. For H2, it can extend the dea-

dline by τsync to t3, however, at the cost of (Ecom + Ecal)
where Ecom is the energy cost for additional radio operations.

PSR selects between H1 and H2 based on their cost

performance in term of energy efficiency as follows

τα
Ecal

H1

≷
H2

τsync
(Ecom + Ecal)

(4)

Note that Eq.4 works in an adaptive manner because τα
is determined by the arrival time of traffic α. Generally, the

closer between t0 and t1, the larger τα will be, and the more

likely to select H1. In an extreme case, if traffic α arrives at

t1, i.e., t0 = t1, we would have τα = τsync, resulting in H1
by Eq.4 and by intuition. It will be revealed later that there

exists pivotal points regarding the arrival time of traffic, based

on which a quick decision can be made for skew calibration.

IV. THE PSR DESIGN

This section presents the PSR design starting with the

prediction of active schedules. To obtain the clock skew as a

key parameter, we explain the basics on drift detection (0-bit)

and skew estimation, followed by an analysis of the estimation

uncertainty and its impact on the active schedule prediction.

Then, energy-driven clock calibration is introduced. At last,

practical issues are discussed, including link initialization,

rendezvous failure recovery, and duty-cycle schedule variation.

Unless noted otherwise, x̂ and x̃ are used to express an

estimator (or a detection) and its corresponding error residual,

respectively, for the variable with true value x.

A. Active Schedule Prediction

Active schedule prediction serves as the first step towards

low-duty-cycle synchronous rendezvous. To fulfill this task, a

node requires several pieces of information depicted in Fig.6 as

an example where node A and B have diverse active schedules.

An important difference between Fig.6 and previous figures

is that in Fig.6 two nodes have different timelines: tA and

tB , respectively. This is because PSR itself does not demand

aligned clocks among nodes in the network.

Node A

Node B

tA

tB

DLink Establishment Data Packet Radio On

······

······

D

tA(t1)

[tA(t0),          ]SA (t0)
B^

n ·TB

2L
twait

tA(Bactive)
^

^

tA(t2)

Fig. 6. Predicting the Coming Active Time Slot

Suppose that node A has a data packet for node B at tA(t1)
(time t1 by node A’s clock). To predict B’s next active time,

which eventually comes at tA(t2), node A makes use of four

pieces of information marked in Fig.6: (i) its current clock

reading tA(t1), (ii) the last captured active time of node B
t̂A(t0) (a detection by node A), (iii) its latest skew estimation

respect to node B, i.e., ŜB
A (t0), and (iv) node B’s duty-

cycle period TB. Then, A obtains its prediction, denoted as

t̂A(Bactive) in Fig.6, with the following Eq.5 and Eq.6.

t̂A(Bactive) = t̂A(t0) + n · TB · (1 + ŜB
A (t0)) (5)

where n =

⌊

tA(t1)− t̂A(t0)

TB · (1 + ŜB
A (t0))

⌋

+ 1 (6)

In the above, ⌊· · · ⌋ stands for the floor operation, and the term

(1 + ŜB
A (t0)) is used to convert intervals between tA and tB

based on Eq.1 for the indispensable task of drift compensation.

For example, suppose that n · TB = 3000 s (seconds) and the
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average skew between two nodes is 20 ppm (parts per million)

during this interval, a normal value for clocks with embedded

devices [14][16][33], then a drift of 60 ms (milliseconds) could

get accumulated. Without drift adjustment and if L < 60 ms

in Fig.6, node A would miss node B’s active time slot and

fail the tasks of link establishment (rendezvous).

With drift compensation, in theory we shall have an accurate

prediction such that t̂A(Bactive) = tA(t2) as shown in Fig.6.

In practice, however, node A’s prediction with Eq.5 and 6

suffers from two additional error sources: (i) the detection

error of t̂A(t0), and (ii) the estimation error of ŜB
A (t0) as the

average skew. Fortunately, both errors can be modeled, profiled

and adjusted, allowing unbiased estimation of active schedules

with predictable uncertainty (Section IV-B and IV-C).

Given the active schedule prediction for node B, A can

launch its link establishment phase (the “capturing window”)

after waiting for twait since tA(t1) as follows

twait = t̂A(Bactive)− tA(t1)− L (7)

where L as a constant is the radius of node A’s capturing win-

dow in Fig.6 and can be configured in different applications.

B. Drift Detection and Skew Estimation

Clock skew estimation plays a critical role for drift compen-

sation in schedule prediction (Eq.5 and 6). However, unlike

the drift offset which can be measured with bounded error

uncertainty [7][20], instant skew estimation is challenging for

its dynamic nature [14][35]. This section presents an instant

skew estimator working with the 0-bit drift detection scheme

briefed in the overview section. For clarity, we use the same

example in Fig.6 with slight changes as Fig.7 to convey ideas.

Node A

Node B

tA

tB

Link Establishment Expected Active Time Slot Radio On

2L

toffset tA(t2)tA(Bactive)
^

······

······

n ·TB

[tA(t0),          ]SA (t0)
B^

^ ^

^

Fig. 7. 0-bit Drift Detection and Skew Estimation

In Fig.7, the error offset between node A’s prior prediction

t̂a(Bactive) and the corresponding posterior detection t̂A(t2)
for node B’s active time can be expressed as

t̂offset = t̂A(t2)− t̂A(Bactive) (8)

where time detection t̂A(t2) (and t̂A(t0)) obtained with radio

operations is subject to multiple non-deterministic delays and

noise along the “critical path” of radio communication [20].

We consider the additive results of all delays and noise as a

random variable following the normal distribution based on the

central limit theorem [37] and empirical results [7][20]. With

delay adjustments, time detections in Fig.7 can be written as

t̂A(t0) = tA(t0) + φ(t0), t̂A(t2) = tA(t2) + φ(t2) (9)

where φ(t0) and φ(t2) are independent detection noise satis-

fying φ ∼ N (0, σ2
φ). On the other hand, we have

tA(t2)− tA(t0) = n · TB ·
(

1 + S̄B
A

)

(10)

tA

Skew

SA (t0)
B^

SA (t2)
B^

SA (t2)
B

SA (t)
B

SA 
B

t0 t2∆t

Fig. 8. Example Clock Skew as A Stochastic Process

where S̄B
A is the true average clock skew of node A respect

to node B during the interval from tA(t0) to tA(t2). By

integrating Eq.5, 8, 9 and 10, we can rewrite t̂offset as

t̂offset = n · TB · (S̄B
A − ŜB

A (t0)) + φ(t2)− φ(t0) (11)

which tells that this offset comes from two physical compo-

nents: (i) skew estimation error (S̄B
A − ŜB

A (t0)) and (ii) active

time detection errors φ(t2) and φ(t0).
Given t̂offset from Eq.8 and based on Eq.1, node A can

update its skew estimation at tA(t2) as

ŜB
A (t2) = ŜB

A (t0) +
t̂offset
∆t

, where ∆t = n · TB (12)

The true skew of node A respect to node B varies along the

time line as exampled in Fig.8. ŜB
A (t2) obtained with Eq.12

is actually an estimation of the average skew S̄B
A during ∆t,

marked as the thick dashed line in Fig.8. ŜB
A (t2) may have

random offsets from SB
A (t2) that is the true instant clock skew

at tA(t2). However, we can comfortably apply ŜB
A (t2) for

future schedule prediction based on the following theorem.

THEOREM 1. ŜB
A (t2) from Eq.12 is an unbiased estimator

for S̄B
A during ∆t and for the instant skew SB

A (t2), namely,

E[ŜB
A (t2)] = S̄B

A = E[SB
A (t2)] (13)

with an error variance (respect to its true value SB
A (t2)) of

σ2
ŜB
A
(t2)

=
2σ2

φ

∆t2
+

σ2
η

3
·∆t (14)

where σ2
φ is the error variance of active slot detection and σ2

η

comes from the skew model in Eq.2.

PROOF 1. With Eq.11, Eq.12 and φ ∼ N (0, σ2
φ), we have

E[ŜB
A (t2)] = E[S̄B

A ] +
E[φ(t2)− φ(t0)]

∆t
= S̄B

A (15)

Based on Eq.2 and Eq.3, we can get

S̄B
A = SB

A (t0) +
1

∆t

∫ t2

t0

∫ t

t0

η(u)dudt (16)

Combine Eq.16 with SB
A (t2) = SB

A (t0) +
∫ t2

t0
η(u)du (Eq.2),

SB
A (t2) = S̄B

A −
1

∆t

∫ t2

t0

∫ t

t0

η(u)dudt+

∫ t2

t0

η(u)du (17)

which tells E[SB
A (t2)] = S̄B

A = E[ŜB
A (t2)] with Eq.15.

From Eq.11, 12 and 17, S̃B
A (t2) = SB

A (t2)− ŜB
A (t2) equals

S̃B
A (t2) =

∫ t2

t0

η(u)du−
1

∆t

∫ t2

t0

∫ t

t0

η(u)dudt

− (φ(t2)− φ(t0)) /∆t (18)

For the above expression, we prove in Appendix A.1 that

σ2
ŜB
A (t2)

= E[(S̃B
A (t2))

2] =
2σ2

φ

∆t2
+

σ2
η

3
·∆t (19)

which converges to Eq.14 and finishes the proof. �
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C. Bounding the Error of Schedule Prediction

To guarantee the capture of active time slots of the desired

receiver, the error associated with schedule prediction must

be smaller than the radius of the capture window L with a

high probability. We apply detections at tA(t2) in previous

example as a starting point to explain the error uncertainty of

future schedule prediction as illustrated in Fig.9

Node A

Node B

tA

tB

······

[tA(t0),          ]SA (t0)
B^

∆t

^ [tA(t2),          ]SA (t2)
B^^

2L

t

Link Establishment Expected Active Time Slot Radio On

Fig. 9. Future Active Schedule Prediction

For the example in Fig.9, based on Eq.5 the expected active

time of node B after t since tA(t2) can be expressed as

t̂A(Bactive) = t̂BA(t2) + t · (1 + ŜB
A (t2)) (20)

where t is an integer number of TB and ŜB
A (t2) comes from

the skew updating at tBA(t2) with Eq.12. The error variance of

t̂A(Bactive) in Eq.20 can be described as follows.

THEOREM 2. The prediction with Eq.20 is unbiased with

an error variance of

σ2
t̂A(Bactive)

= σ2
φ +

2σ2
φ

∆t
· t+ σ2

ŜB
A
(t2)

· t2 +
σ2
η

3
· t3 (21)

where ∆t is the interval for the latest skew detection in Fig.9.

PROOF 2. Combining Eq.9, Eq.10 and Eq.20, the error

residual t̃A(Bactive) = tA(Bactive)− t̂A(Bactive) can be

t̃A(Bactive) = t · (S̄B
A − ŜB

A (t2))− φ(t2) (22)

where S̄B
A in this case is the true average skew between node

A and B during t. Similar to Eq.16, S̄B
A can be expressed as

S̄B
A = SB

A (t2) +
1

t

∫ t2+t

t2

∫ t2+v

t2

η(u)dudv (23)

then, Eq.22 turns into

t̃A(Bactive) = t · S̃B
A (t2) +

∫ t2+t

t2

∫ t2+v

t2

η(u)dudv − φ(t2)

where ŜB
A (t2), φ(t2), and η(u) are all zero-mean Gaussian,

therefore E[t̃A(Bactive)] = 0, i.e., t̂A(Bactive) is unbiased.

For the above t̃A(Bactive), we prove in Appendix A.2 that

E[t̃A(Bactive)
2] = σ2

φ +
2σ2

φ

∆t
· t+ σ2

ŜB
A
(t2)

· t2 +
σ2
η

3
· t3

which converges to Eq.21 and finishes the proof. �
Theorem 2 enables quantitative evaluation of the error un-

certainty associated with future schedule predication, based on

which PSR adaptively sets a deadline tsync (an interval τsync
into the future) for the next skew calibration, immediately after

the current skew calibration by solving

3σt̂A(Bactive)
= L (24)

where σt̂A(Bactive)
is a function of τsync in Eq.21 in this case.

Eq.24 assures that in theory a “capture window” of radius L
can catch any active time slots before the deadline tsync at the

probability of at least 99.7% (i.e., the 3σ confidence range).

D. Energy-Driven Adaptive Clock Calibration

With 0-bit drift detection, normal traffic in the network can

be utilized for clock calibration, including drift calibration

and skew calibration. For drift calibration, a node can simply

update its record for the receiver’s active schedule with the

new detection, e.g., t̂A(t2) in Fig.9, which incurs little cost.

While for skew calibration, besides skew updating with Eq.12,

the deadline Tsync for future skew calibration also needs to

be refreshed by solving the equation listed as Eq.24, which

could demand considerable computation efforts. Realizing the

different energy costs, PSR develops diverse mechanisms for

offset and skew calibration, respectively.

1) Immediate Drift Calibration: A node updates its record

of the receiver’s active schedule immediately after obtaining

the “free” offset information from each traffic in the network.

tASA (t2)
B^

t2 tsync

toffset

Traffic α Traffic β Traffic γ

Immediate Offset Calibration

Fig. 10. Immediate Offset Calibration

Fig.10 illustrates an example of immediate offset calibra-

tion, where the deadline tsync is set after skew estimation at

t2. The operation of immediate offset calibration can reset the

error of schedule prediction, denoted as the y-axis toffset in

Fig.10, upon traffic α, β and γ. This is because a new and

accurate active time detection can be obtained with each traffic.

As a result, tsync set at t2 becomes a conservative deadline.

Note that the slope of offset accumulation enlarges after

each traffic as depicted in Fig.10. This is actually not because

of the traffic but the nature of dynamic clock skew variation.

Without skew calibration, the confidence of ŜB
A (t2) employed

as the expected average skew for schedule prediction decreases

quickly as time elapses, the uncertainty of which is essentially

evaluated by the term (σ2
η ·t

3/3) in Eq.21. Therefore, it is clear

that such immediate drift calibration alone is not sufficient

for sustaining the synchronous rendezvous, especially for net-

works without extra-high traffic load.

2) Energy-driven Skew Calibration: A node conducts skew

calibration based on the “free” drift detection form normal

traffic only when it is more energy efficient than not doing so.

tsync

tA

SA (t0)
B^

t0 τsync

tsync′

∆t t2

SA (t2)
B^

′τsync

Traffic α

Fig. 11. Not Using Traffic for Skew Calibration

Fig.11 depicts the situation of not using the “free” drift

detection from normal traffic for skew calibration, in which

skew recalibration has to be conducted with additional radio

operations at tsync, extending the deadline by τ ′sync to t′sync.

Note that τ ′sync is obtained by solving the same equation

in Eq.24, and in this case ∆t in Eq.21 and Eq.14 becomes

τsync. Such option in Fig.11 is named as H2 that contributes

a synchronous interval τsync′ at the cost of (Ecal + Ecom)
where Ecal and Ecom are the energy overhead for the radio

operation and computation (equation solving), respectively.
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∆t

tsync

tA

SA (t0)
B^

t0

Traffic α

τα

tsync′

t2

SA (t2)
B^

∆tα τsync-∆tα

Fig. 12. Using Traffic for Skew Calibration

Fig.12 shows the opposite situation of using normal traffic

for skew calibration, in which skew recalibration can also be

conducted at tsync but with the “free” drift detection recorded

from traffic α, extending the deadline by τα to t′sync. In theory,

skew calibration with traffic α contributes a synchronous

interval of (τsync − ∆tα) + τα in Fig.12, by solving Eq.24,

Eq.21 and Eq.14. However, (τsync−∆tα) can not be counted

as “new”, because it is an duration before the deadline tsync.

Therefore, the option of using traffic for skew calibration,

denoted as H1, contributes τα at the cost of Ecal.

Based on the above analysis, we can choose H1 or H2 by

comparing their energy efficiency as follows

τα
Ecal

H1
≷
H2

τ ′sync
(Ecom + Ecal)

(25)

Eq.25 is simple and conceptually elegant, however it can hard-

ly be used directly in practice, because neither τα nor τsync is

available before conducting the corresponding skew calibrati-

on. PSR overcomes this challenging dilemma by identifying

pivotal points computed off-line based on Eq.25 and potential

network settings, so that a node can select H1 or H2 simply

depending on whether the traffic occurs after or before the

pivotal point. For example, ∆tα in Fig.12 determines the use

of traffic α or not for skew calibration.
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Fig. 13. Example Pivotal Point Profiling

Fig.13 shows results of off-line pivotal point profiling for

an example set of parameters used in our test-bed experiments

(L, Ecal, Ecom, σφ, ση). The x-axis shows ∆t in Fig.11.

The envelop of the pattern depicted as the red-solid curve

gives the deadline tsync for different ∆t, which is also the

possible range of traffic arrival time, since ∆tα in Fig.11 can

not be larger than tsync. The green-dashed curve gives the

lower bound of ∆tα in Fig.11 for selecting H1, above which

using the traffic for skew calibration is always more energy

efficient. The color density (or darkness) in Fig.13 indicates

additional deadline extensions comparing with the threshold

value given by the lower bound. For this example, two pivotal

points are selected: if ∆t < 2600, the pivotal point is set as

7682 s (the black square), otherwise 1078 s (the black circle),

as marked in Fig.13. Note that both pivotal points are set in a

very conservative manner for the sake of simplicity, and such

pivotal points can always be set with different systems.

Algorithm 1: PSR Adaptive Clock Calibration

input : [t̂offset,∆tα], ∆t, Ŝ(k − 1), tsync(k − 1)
output: t̂A(Bactive), Ŝ(k), tsync(k)

t̂A(Bactive) ← driftCal(t̂offset);1

if ∆tα exceeds the pivotal point for ∆t then2

sample ← detectionRec([t̂offset,∆tα]);3

end4

if reach deadline tsync(k − 1) then5

if sample = ∅ then6

sample ← radioAct(t̂A(Bactive), Ŝ(k − 1));7

end8

[Ŝ(k), tsync(k)] ← skewEst(sample, Ŝ(k − 1));9

end10

return [t̂A(Bactive), Ŝ(k), tsync(k)];11

To summarize, we list major operations for clock calibration

as Algorithm 1 triggered upon traffic or at the calibration

deadline. Line 1 conducts immediate drift calibration with

each traffic. Line 2 to 4 performs the pivotal point test to

determine whether the current traffic can be used for skew

calibration later. Line 5 to 10 describes tasks at the calibration

deadline, including skew and deadline updating with the latest

traffic sample or additional radio actions. Skew calibration

with the latest traffic may not be optimal, but good enough as

a heuristic solution featuring little cost (see Fig.13). Finally,

line 11 returns results for future active schedule prediction.

E. Discussion on Practical Issues

In practical systems, rendezvous failure happens because of

various reasons, including (i) schedule prediction error that

occurs with expected marginal probability, (ii) poor radio link

quality, (iii) uninformed duty-cycle schedule variation, (iv)

node malfunction, etc. For failures caused by (i), (ii) and

(iii), PSR degrades to the asynchronous rendezvous method for

reestablishing the line as a special case of system initialization.

PSR launches normal system initialization under two cir-

cumstances: (i) a new node joins the network; and (ii) lost

neighbor is declared. In both situations, a long link estab-

lishment phase is used by either the new node or the sender

node experiencing neighbor lost, the length of which equals the

maximum possible period as that in B-MAC [5], X-MAC [6]

or RI-MAC [28] so as to guarantee active schedule capturing.

V. EVALUATION

We implemented the PSR design as an non-intrusive sup-

porting layer with four low-duty-cycle MAC protocols (i.e.,

X-MAC [6], RI-MAC [28], Wise-MAC [25], and CSMA-MPS

[26]) as illustrated in Fig.15, and evaluated their performance

with test-bed experiments (using 24 MicaZ nodes coupled as

110 different node pairs) as well as an extensive simulation

study obeying real world conditions.

 

RI-MAC X-MAC Wise-MAC 

PSR (Practical Synchronous Rendezvous) 

CPU Radio Timer Flash 

PSR Task 

TinyOS 

5406 Byte ROM 

96 Byte RAM 

Traffic Generator 

CSMA-MPS 

Fig. 15. Implementation of PSR with TinyOS
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Fig. 14. Rendezvous Offset Measurements of RI-PSR (L = 2ms,σφ = 15.03µs), X-PSR, Wise-PSR, and MPS-PSR (L = 7.5ms, σφ = 1ms)

Table II. RI-MAC vs. RI-PSR: Average Energy Cost Per Rendezvous

Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

RI-MAC (in mJ) 40.447 34.743 37.285 46.946 34.348 36.713 47.752 38.377 30.106 43.187

RI-PSR (in mJ) 0.190 0.243 0.279 0.349 0.394 0.428 0.477 0.502 0.552 0.655

Efficiency Improvement (in X) 213.447 143.780 134.691 135.442 88.110 86.756 101.171 77.366 55.512 66.903

Table III. X-MAC vs. X-PSR: Average Energy Cost Per Rendezvous

Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

X-MAC (in mJ) 34.990 37.136 49.281 33.300 42.629 39.661 37.272 40.839 40.414 41.484

X-PSR (in mJ) 0.776 0.867 0.959 0.990 1.025 1.200 1.267 1.318 1.385 1.354

Efficiency Improvement (in X) 46.076 43.826 52.389 34.636 42.565 34.050 30.412 31.983 30.178 31.631

Table IV. Wise-MAC vs. Wise-PSR: Average Energy Cost Per Rendezvous

Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

Wise-MAC (in mJ) 10.176 21.436 33.121 35.251 45.573 50.621 52.760 64.819 67.470 56.056

Wise-PSR (in mJ) 1.961 2.100 2.115 2.582 2.593 2.999 3.193 4.155 3.651 3.398

Efficiency Improvement (in X) 6.188 11.206 16.659 14.653 18.577 17.880 17.525 16.599 19.478 17.494

Table V. CSMA-MPS vs. MPS-PSR: Average Energy Cost Per Rendezvous

Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

CSMA-MPS (in mJ) 7.509 13.499 13.368 18.026 16.742 22.657 30.040 24.741 22.111 27.549

MPS-PSR (in mJ) 0.768 0.954 0.892 1.000 1.200 1.189 1.481 1.318 1.345 1.357

Efficiency Improvement (in X) 10.780 15.143 15.993 19.021 14.952 20.061 21.284 19.770 17.443 21.296

A. Test-bed Evaluation

We implemented PSR with four MAC protocols: X-MAC,

RI-MAC, Wise-MAC, and CSMA-MPS, considering that X-

MAC and RI-MAC are typical asynchronous rendezvous so-

lutions while Wise-MAC and CSMA-MPS are typical syn-

chronous rendezvous methods. Their PSR-augmented versions

are denoted as X-PSR, RI-PSR, Wise-PSR, and MPS-PSR,

respectively. For each protocol, 20 (for RI-MAC) to 30 (for

X-MAC, Wise-MAC, and CSMA-MSP) different MicaZ node

pairs are tested and each experiment lasted for at least 24

hours so as to cover one cycle of daily environment variation.

Table I lists basic system configurations, where the expected

energy parameters Ecal and Ecom are obtained from system

measurements and component data sheets [30][32], details of

which are provided with each experiment in the following.

RI-MAC vs. RI-PSR

RI-MAC [28] is a receiver initiated asynchronous MAC

design. When a node needs to send packets, it keeps listening

for incoming beacons from the desired receiver to build the

link. The expected duration for link establishment in RI-

MAC is about half of the receiver’s duty-cycle period. In

its PSR-augmented version RI-PSR, the maximum RX time

of the sender for each rendezvous is only about 3ms in our

implementation, which is the summation of capture window

width (2L = 2ms) and the duration for beacon receiving

(1ms). The corresponding Ecom is calculated as 160.68µJ .

Table II compares average energy costs per rendezvous be-

Table I. Implementation Configurations

Protocol σφ, ση , L, Ecal, Ecom Sample Size

RI-PSR 15.3µs, 10−9, 1ms, 95.76µJ , 160.68µJ 292

X-PSR 1ms, 10−9, 7.5ms, 95.76µJ , 743.28µJ 454

Wise-PSR 1ms, 10−9 , 7.5ms, 95.76µJ , 1896.93µJ 399

MPS-PSR 1ms, 10−9, 7.5ms, 95.76µJ , 743.28µJ 398

tween RI-MAC and RI-PSR. The traffic is generated following

a uniform random distribution with the density of 1 packet

per Q minutes (min) as a variable listed in the first row.

Throughout our experiments, RI-PSR performs at least 50

times more energy efficient than RI-MAC as shown in the

bottom row of the table, where X stands for “times” obtained

by dividing the energy cost of RI-MAC by that of RI-PSR.

Under high traffic density, for example 1 packet per 15 min,

RI-PSR is about 213X more energy efficient. While as the

traffic load decreases, the synchronization cost increase for RI-

PSR because less traffic can be used for “free” drift detection,

leading to reduced efficiency improvements.

Fig.14 shows boxplots of offsets at recalibration deadlines

for all methods. The left-most part for RI-PSR tells that its

offsets are smaller than the error bound L = 1ms, which is

because (i) a tough-case skew model is used for triggering the

recalibration, resulting in reduced error offsets; and (ii) normal

traffic is utilized by PSR for immediate offset calibration,

contributing to smaller synchronization errors.

X-MAC vs. X-PSR

X-MAC [6] is a typical sender initiated asynchronous MAC
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protocol that proposes the mechanism of early ACK (termi-

nation). We set σφ for X-PSR as 1 ms that is determined by

the minimum TX/RX period within X-MAC’s preamble [31].

With the support of PSR, X-PSR exhibits high efficiency

improvements as shown in Table III. X-PSR requires a longer

link establishment phase (L = 7.5ms in Table I) than that of

RI-PSR due to its larger detection error σφ = 1ms comparing

with σφ = 15.3µs for RI-PSR. Consequently, the rendezvous

offsets of X-PSR spread in a wider range in Fig.14.

Wise-MAC vs. Wise-PSR

Wise-MAC [25] is a typical synchronous MAC protocol

feathering a simple design with adaptive preamble stretch-

ing. The detection uncertainty σφ for Wise-PSR is still 1

ms, because with the MicaZ platform, we have to apply a

packet radio [32] to emulate the continues preamble in the

original Wise-MAC . And in this case, the accuracy of drift

detection is determined by the minimum packet transmission

time as that in X-MAC. Table IV shows the performance

comparison between Wise-MAC and Wise-PSR. Both Wise-

MAC and Wise-PSR favor high traffic load; however, as the

traffic density decreases, Wise-MAC’s energy cost quickly

increases, because its simple drift compensating mechanism

(with 4θ [25]) does not scale well with long periods. Wise-

PSR, supported with skew estimation and uncertainty model,

provides high performance gains with lower traffic densities

towards the right side of Table IV.

CSMA-MPS vs. MPS-PSR

CSMA-MPS [26] is essentially a combined version of Wise-

MAC and X-MAC with better energy performance than both

of them, which can be observed by comparing Table III,

IV and V. With early ACK, MPS-PSR requires less energy

than Wise-PSR in Table V as expected. Like Wise-PSR, the

efficiency improvement of MSP-PSR increases as the traffic

load decreases, because of the power of skew estimation and

on-demand recalibration brought about by PSR.

B. Simulation Evaluation

A discrete event-driven simulator has been developed to

explore PSR’s performance under (i) a broad range of traffic

load, (ii) various environmental conditions, and (iii) different

environmental factor estimation errors. For each data point, we

simulated 30 node pairs running for a duration of 1000 hours

with and without the support of PSR. Unless noted otherwise,

default parameters in Table.I are used in simulation.

Impact of Traffic Density

Fig.16 shows efficiency improvements of PSR-augmented

protocols under a broad range of traffic densities varying from

10−5/s to 10−1/s as the x axis. For RI-PSR and X-PSR,

their efficiency improvements are comparatively low under low

traffic load. However, as traffic density increases, so do their

improvements as shown in the figure. When the traffic density

reaches 10−3/s, RI-PSR achieves 200X or larger, and two

curves becomes flat afterwards as expected. For Wise-PSR

and MPS-PSR (two curves almost overlap in Fig.16), their

maximum efficiency improvements appear with medium traffic

load. Under extremely low traffic load, improvements of Wise-

PSR and MSP-PSR are relatively low because in this case the

synchronization cost can not be amortized among traffic; while

under high traffic load, Wise-MAC and CSMA-MPS improves

regarding energy efficient due to their simple mechanism of

schedule updating and adaptive preamble stretching.

Impact of Environmental Factor ση

Fig.17 gives improvements of PSR-augmented protocol in

different environments, represented by varying ση values as

the x axis. For all four protocols, Fig.17 shows similar trends

for their performance gains: efficiency improvements decline

with increasing ση . This is expected because more energy

is required for synchronization with tougher environments in

which clock skew varies dynamically with a larger ση .

Impact of ση Estimation Error

In practice, estimation errors for the environment factor ση

is unavoidable. We investigated the impact of underestimation

(by factors between 0.05∼0.8) and overestimation (by factors

between 1.6∼12.8) of ση to the rendezvous probability and

energy improvement as shown in Fig.18. Underestimation

of ση results in reduced rendezvous probability, especially

with low traffic load (e.g., 10−4/s denoted as square-marked

curves in the figure) and worse efficiency due to rendezvous

failures. Overestimation of ση does not affect the rendezvous

probability, however at the cost of extra energy for redundant

synchronization, which also results in worse efficiency.

VI. CONCLUSION

This paper presents PSR, a practical design for synchronous

communication rendezvous in low-duty-cycle wireless netwo-

rks. By leveraging the duty-cycle pattern of radio operations,

PSR enables “free” clock drift detection with normal traffic

in the network, which works together with an energy-driven

adaptive scheme for skew calibration. Test-bed and simulation
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evaluations demonstrate that PSR is practical, versatile, and

can be conveniently embedded in state-of-the-art low-duty-

cycle MAC protocols to greatly improve energy efficiency.

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava. Guest Editors’ Introduction:
Overview of Sensor Networks. Computer, 37(8), Aug. 2004.

[2] B. R. Hamilton, X. Ma, Q. Zhao, J. Xu. ACES: Adaptive Clock Estimation
and Synchronization Using Kalman Filtering. Mobicom’08.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
P. Buonadonna, D. Gay, et al. A Macroscope in the Redwoods. SenSys’05.

[4] H.-S. W. So, G. Nguyen, J. Walrand. Practical Synchronization Tech-
niques for Multi-Channel MAC. MobiCom’06.

[5] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. SenSys’04.

[6] M. Buettner, G. V. Yee, E. Anderson, et al. X-MAC: A Short Preamble
MAC Protocol for Duty-cycled Wireless Sensor Networks. SenSys’06.

[7] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal Clock Synchroniza-
tion in Networks. SenSys’09.

[8] W. Ye, J. Heidemann, and D. Estrin. An Energy-efficient MAC Protocol
for Wireless Sensor Networks. Infocom’02.

[9] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li, and G. Dai. Canopy Closure
Estimates with GreenOrbs: Sustainable Sensing in the Forest. SenSys’09.

[10] J. Polastre. Design and Implementation of Wireless Sensor Networks for
Habitat Monitoring. Master Thesis, U.C. Berkeley, 2003.

[11] M. Li and Y.H. Liu. Underground Structure Monitoring with Wireless
Sensor Networks. IPSN’07.

[12] Y. Cao, Z. Zhong, Y. Gu, and T. He. Safeguarding Schedule Updates in
Wireless Sensor Networks. Infocom’11.

[13] J. Hill and D. Culler. Mica: A Wireless Platform for Deeply Embedded
Networks. IEEE Micro, 22(6):1224, Nov. 2002.

[14] The Science of Timekeeping. Hewlet Packard. Application Note 1289.
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APPENDIX

A.1 Proof for Eq.19. Given the expression of S̃B
A (t2) as Eq.18,

where φ(t2), φ(t0) and η(u) are independent, we can have

E[(S̃B
A (t2))

2] = E[X2] +
2σ2

φ

∆t2
(26)

where X =

∫ t2

t0

η(u)du−
1

∆t

∫ t2

t0

∫ t

t0

η(u)dudt (27)

E[X2] includes three terms addressed one by one in the following.
(i) For the left term of X in Eq.27, we have

E

[

(
∫ t2

t0

η(u)du

)2
]

=

∫ t2

t0

∫ t2

t0

E[η(u)η(v)]dudv = σ
2
η ·∆t

which is because E[η(u)η(v)] = δ(u− v) · σ2
η from Eq.2.

(ii) For the right term of X , let w(m) =
∫ t0+m

t0
η(u)du, then

E

[

(∫ t2

t0

∫ t

t0

η(u)dudt

)2
]

=

∫ ∆t

0

∫ ∆t

0

E[w(m)w(n)]dmdn

w(m) is a standard Wiener Process[24], and has a covariance of
E[w(m)w(n)] = min(m,n) · σ2

η [21]. Thus, we have
∫ ∆t

0

∫ ∆t

0

min(m,n) · σ2
ηdmdn =

∆t3

3
· σ

2
η

And the overall expectation is 1
∆t2
· ∆t3

3
· σ2

η = σ2
η ·

∆t
3

(iii) For the cross-product term in X2, we use similar substitution:

E

[∫ t2

t0

η(u)du ·

∫ t2

t0

∫ t

t0

η(u)dudt

]

=

∫ ∆t

0

E[w(∆t)w(m)]dm

where E[w(∆t)w(m)] = m · σ2
η since 0 ≤ m ≤ ∆t. As a result

∫ ∆t

0

E[w(∆t)w(m)]dm =

∫ ∆t

0

(m · σ2
η)dm =

∆t2

2
· σ

2
η

So this term has an expectation of − 2
∆t
· (∆t2

2
· σ2

η) = −σ
2
η ·∆t.

Combining results from (i), (ii) and (iii) with Eq.26, we have

E[(S̃B
A (t2))

2] =
2σ2

φ

∆t2
+

∆t

3
· σ

2
η �

A.2 Given the expression of t̃A(Bactive) in PROOF 2., we have

E[t̃A(Bactive)
2] = t

2
· σ

2
ŜB
A

(t2)
+ σ

2
φ − 2t ·E[S̃B

A (t2)φ(t2)]

+E

[

(∫ t2+t

t2

∫ t2+v

t2

η(u)dudv

)2
]

(28)

because S̃B
A (t2) and φ(t2) are correlated while both of them are

independent from η(u) during t.
Following the same method in A.1 (ii), the last term in Eq.28 is

E

[

(
∫ t2+t

t2

∫ t2+v

t2

η(u)dudv

)2
]

=
σ2
η

3
· t

3
(29)

For E[S̃B
A (t2)φ(t2)], apply S̃B

A (t2) in Eq.18, we have

E[S̃B
A (t2)φ(t2)] = E

[

−
φ2(t2)− φ(t0)φ(t2)

∆t

]

= −
σ2
φ

∆t
(30)

Combining above results, finally we have

E[t̃A(Bactive)
2] = σ

2
φ +

2σ2
φ

∆t
· t+ σ

2
ŜB
A

(t2)
· t

2 +
σ2
η

3
· t

3
(31)

which converges to Eq.21 in THEOREM 2. �


