
uScan: A Lightweight Two-Tier Global Sensing Coverage Design

Yu Gu and Tian He
Department of Computer Science and Engineering, University of Minnesota

{yugu,tianhe}@cs.umn.edu

1 Introduction

Wireless Sensor Networks (WSNs), consisting of thousands
of low-cost sensor nodes, have been used in many applica-
tion domains such as military surveillance [1], habitat monitor-
ing [4] and scientific exploration [6]. Limited power supplies
and difficulties in harvesting ambient energy make energy con-
servation a critical issue to address. As one of solutions, energy-
efficient sensing coverage extends system lifetime by leveraging
on the redundant deployment of sensor nodes. Existing algo-
rithms [5, 7, 8, 9] are designed to be well distributed and local-
ized with solid performance gains. While the state-of-the-art is
encouraging, we believe there are some aspects that need further
investigation. In most algorithms, extending system lifetime is
achieved essentially through coordination among neighboring
nodes. The local node density, therefore, imposes a theoreti-
cal upper bound on the system lifetime, if a continuous sensing
coverage or a partial coverage is required. Such a bound can be
surpassed through global scheduling. However, the overhead of
global scheduling would increase significantly if the coordina-
tion among the nodes goes beyond the neighborhood.

To address these issues, we introduce a two-tier global
scheduling method, called uScan. At the first level, coverage
is scheduled to activate different portions of an area. We pro-
pose an optimal scheduling algorithm to minimize area breach.
At the second level, sets of nodes are selected to cover active
portions. Interestingly, we show that it is possible to obtain
optimal set-cover results in linear time if the layout of areas sat-
isfies certain conditions. We have implemented and evaluated
our design on the Berkeley TinyOS/Mote platform [2], using 30
MicaZ motes. The results indicate that uScan is a lightweight
solution with significant energy savings, compared with local-
ized solutions.

2 uScan Design

uScan is a two-level schedule algorithm, which works as fol-
lows: Suppose we provide sensing coverage to a given area us-
ing uScan. First, uScan divides the area into small regions, and
decides the working schedules for these regions. This level of
scheduling is conceptually independent of the deployment of
the nodes. At the second-level, we assign nodes to cover the
active regions at different time intervals, using a set-cover tech-
nique. By combining the first-level schedule and the set-cover
assignment, we can decide the working schedule of individual
nodes.

2.1 Assumption

We assume that nodes are time-synchronized and their lo-
cations are known. These are common assumptions for many
sensor network applications [1, 4, 6]. Accuracy of time syn-
chronization and localization do not need to be precise, because
clock drift can be resolved by slightly extending the active du-

ration and localization error can addressed using the method
proposed in [8]. For the clarity of the protocol description in
the rest of the paper, we refer the sensing area of a node as a
circle with a nominal radius r centered at the location of the
node. However, our design works under irregular sensing areas
as long as nodes are aware of their sensing areas.

2.2 Definition of the Node Schedule

In essence, a sensing coverage algorithm decides the work-
ing schedule of individual sensor nodes. Specifically, uScan
describes the behavior of a node using two parameters, namely
the schedule bits S and switching rate R.

• Schedule bits S: It is an infinite binary string in which
1 denotes the active state and 0 denotes the inactive state.
Since the sensing coverage schedule is usually periodic,
follows a certain pattern. Therefore, we can express S with
a regular expression. For example, (0010)∗ can be used to
denote a repeated off-off-active-off schedule.

• Switching rate R: It defines the rate of toggling between
states. For example, a switching rate of 0.5HZ requires a
node to read one bit from the schedule S every 2 seconds
(when consecutive bits have the same value, there is no
need to change power state of the node physically).

2.3 Level I: Tile Scheduling

In uScan, we partition an area under surveillance into some
small regions of the same shape, a process called tessellation.
These small regions are called tiles, which can be regular trian-
gles, rectangles or regular hexagons in a 2-D space. The size of
tiles is set to be smaller than the minimum target size, so that a
target is detected as long as a portion of a tile is covered. In this
section, we discuss two methods for the tile-level scheduling.
They differ in the energy consumption rate and the detection
delay.

• Line Scan: Instead of trying to cover all tiles, we only
cover a column/row of tiles in a certain interval of time
during one round of scan. The covered columns/rows are
increasing or decreasing consecutively.

• Systolic Scan: Systolic Scan emulates the cardiac cycles
of a beating heart. Over the area under surveillance, we
sense the tiles from the inner layer to the outer layer con-
tinuously.

Both line scan and systolic scan specify only the set of tiles
need to be activated (covered) at a given point of time. The task
of covering each tile set is accomplished by the second-level
node scheduling, which is described in the next section.

2.4 Level II: Node Scheduling

Tile-level scheduling determines the set of active tiles TSi

at the time interval i. In this section, we describe how we can

1



Fig. 1. Test-bed Setup

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  300  450  600  750  900  1050  1200  1350

C
D

F

Detection Delay

Line Scan
Systolic Scan

Fig. 2. Detection Delay

 0

 2

 4

 6

 8

 10

 1  1.5  2  2.5  3  3.5  4

S
y

st
em

 H
al

f 
L

if
e

Node Density

Ideal Upper Bound

 0

 2

 4

 6

 8

 10

 1  1.5  2  2.5  3  3.5  4

S
y

st
em

 H
al

f 
L

if
e

Node Density

Ideal Upper Bound
DiffSurv

 0

 2

 4

 6

 8

 10

 1  1.5  2  2.5  3  3.5  4

S
y

st
em

 H
al

f 
L

if
e

Node Density

Ideal Upper Bound
DiffSurv
uSense

 0

 2

 4

 6

 8

 10

 1  1.5  2  2.5  3  3.5  4

S
y

st
em

 H
al

f 
L

if
e

Node Density

Ideal Upper Bound
DiffSurv
uSense

All Working

Fig. 3. System Half Life vs. Densities

translate a known tile schedule into a corresponding node sched-
ule bits S, which can be interpreted directly by a generic switch-
ing algorithm.

The main idea of our approach is to find the optimal set of
nodes which could cover all the tiles that need to be active at
time interval i. Before node scheduling, we first map physical
node coverage into the coverage bipartite graph according to
the coverage relationship. Then we divide node scheduling into
two steps. First, for a tile set T Si, we keep identifying 1-cover
set with minimal number of nodes, until the size of 1-cover set
is above a certain threshold. Secondly, we create schedules for
nodes such that each identified 1-cover set provides coverage to
T Si in a round-robin fashion.

The generic Minimum Set Cover problem has been proven
NP-Hard [3]. Fortunately, we find line scan coverage is a spe-
cial case of the generic set cover problem, because a node only
needs to cover a continuous segment of tiles. By mapping the
coverage bipartite graph into a directed acyclic graph with fol-
lowing rules:

1. Map N tiles in TSi into N vertex V = {v1, ...,vN} and add
one extra vertex vN+1.

2. If a node covers a set of tiles {Ti, ...,Ti+n}, we create n
directional edges (vi,v j) where v j = vi+1, ...,vi+n+1. Each
edge has a unit cost.

We reduce the tile set cover problem to the problem of find-
ing out the shortest paths from v1 to vN+1, with the overall run-
time of O(|V |)+ O(|E|).

We note that the proposed polynomial algorithm does not
apply to generic tile scheduling, where a tile set does not form
a continuous curve or where a node can cover multiple seg-
ments of a tile set simultaneously. In these cases, we adopt a
greedy set-cover method by choosing the node that covers the
most number of tiles first.

In order to support line scan or systolic scan in a 2-D space,
we need to identify cover sets for the whole area (not just for a
single tile set). Thus a node may need to cover multiple tile sets
T Si. To effectively handle the cases where we have to select
cover sets for multiple T S, we designed an algorithm that each
node maintains a counter SC which records how many times
it has been selected into a unique cover sets. While selecting
cover sets for each tile set T S, instead of solely consider the
number of nodes in the cover sets, the algorithm calculates the
minimum cover set among the nodes whose SC counter values
are as small as possible.

After obtaining cover sets for every tile set T Si, we build
the final schedule of node according to all the cover sets it’s be-
longed to, which can be executed directly by our generic switch-
ing algorithm.

3 Implementation and Evaluation

We have implemented a complete version of uScan on
Berkeley TinyOS/Mote platform, using 30 MicaZ motes as
shown in Figure 1. The compiled image of a full implemen-
tation occupies 21,040 bytes of code memory and 907 bytes
of data memory. The results showed that uScan is a lightweight
and efficient coverage design. To reveal the system performance
at scale, we have conducted some initial large scale simulations
with 10,000-node. Under full coverage mode as shown in Fig-
ure 3, we demonstrated that our global scheduling algorithms
provide significant energy savings over previous protocols such
as DiffSurv [8] under metrics such as Half-life, Coverage Over-
time and Node Energy Consumption. In the future, we plan
to investigate the performance under partial coverage mode at
scale as well, with additional metrics such as Detection Delay
for Static Targets and Worst-Case Breach (WCB) for Mobile
Targets.

4 Conclusion

The major contribution of this work is a two-level global
scheduling algorithm called uScan. In the first level, we pro-
pose two tile-level scheduling algorithm. In the second level,
we propose a linear algorithm to address the set-cover problem
when the layout of tiles satisfies certain conditions. We evaluate
our architecture with a network of 30 MicaZ motes, an exten-
sive simulation with 10,000 nodes, as well as theoretical anal-
ysis. We believe our work has successfully provided flexibility
and efficiency for the sensor network coverage problem.

5 References
[1] A. Arora and et al. A Wireless Sensor Network for Target Detection,

Classification, and Tracking. Computer Networks (Elsevier), 2004.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System Architecture Directions for Networked Sensors. In ASPLOS’00,
2000.

[3] V. T. Paschos. A Survey of Approximately Optimal Solutions to Some
Covering and Packing Problems. In ACM Computing Surveys, June 1997.

[4] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler. An Analysis of
a Large Scale Habit Monitoring Application. In SenSys’04, 2004.

[5] D. Tian and N. Georganas. A Node Scheduling Scheme for Energy Con-
servation in Large Wireless Sensor Networks. Wireless Communications

and Mobile Computing Journal, May 2003.

[6] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, S. Burgess, D. Gay,
P. Buonadonna, W. Hong, T. Dawson, and D. Culler. A Macroscope in the
Redwoods. In Sensys’05, November 2005.

[7] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated
Coverage and Connectivity Configuration in Wireless Sensor Networks. In
Sensys’03, November 2003.

[8] T. Yan, T. He, and J. A. Stankovic. Differentiated Surveillance Service for
Sensor Networks. In SenSys’03, November 2003.

[9] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS: A Robust Energy Conserv-
ing Protocol for Long-lived Sensor Networks. In Proc. of International

Conference on Distributed Computing Systems (ICDCS), May 2003.

2



Tier I: Tile Scheduling:
Tile-level scheduling determines the set of active tiles 
at a certain time interval. Nodes within a sensor 
network only support a generic switching algorithm, 
which has neither the concept of tiles nor the partition
information of the tiles.

Research Issue:
Wireless Sensor Networks (WSNs), consisting of 
thousands of low-cost sensor nodes, have been used 
in many application domains such as military 
surveillance, habitat monitoring and scientific 
exploration. Limited power supplies and difficulties in 
harvesting ambient energy make energy conservation 
a critical issue to address. As one of solutions, 
energy-efficient sensing coverage extends system 
lifetime by leveraging on the redundant deployment of 
sensor nodes. Existing algorithms are designed to be 
well distributed and localized with solid performance 
gains. While the state-of-the-art is encouraging, we 
believe there are some aspects that need further 
investigation. In most algorithms, extending system 
lifetime is achieved essentially through coordination 
among neighboring nodes. The local node density, 
therefore, imposes a theoretical upper bound on the 
system lifetime, if a continuous sensing coverage or a 
partial coverage is required. 

Tier II: Node Scheduling
Node Scheduling translates a known tile schedule into 
a corresponding node schedule bits S.  The main idea 
of our approach is to find the optimal set of nodes 
which could cover all the tiles that need to be active at 
time interval i. Before node scheduling, we first map 
physical node coverage into the coverage bipartite 
graph according to the coverage relationship. Then we 
divide node scheduling into two steps. First, for a tile 
set TSi, we keep identifying 1-cover set with minimal 
number of nodes, until the size of 1-cover set is above 
a certain threshold. Secondly, we create schedules for
nodes such that each identified 1-cover set provides 
coverage to TSi in a round-robin fashion.

uScan: A Lightweight Two-Tier Global Sensing Coverage Design

Yu Gu and Tian He
Department of Computer Science and Engineering, University of Minnesota

{Yugu, tianhe}@cs.umn.edu

Specification of Node Schedule:
In essence, a sensing coverage algorithm decides the 
working schedule of individual sensor nodes. 
Specifically, uScan describes the behavior of a node 
using two parameters, namely the schedule bits S and
switching rate R.

Schedule bits S: It is an infinite binary string in which
1 denotes the active state and 0 denotes the inactive 
state.

Switching rate R: It defines the rate of toggling 
between states. 

Implementation:
We have implemented a complete version of uScan 
on Berkeley TinyOS/Mote platform, using 30 MicaZ
motes as shown below. The compiled image of a full 
implementation occupies 21,040 bytes of code
memory and 907 bytes of data memory.

Conclusion:
The major contribution of this work is a two-level 
global scheduling algorithm called uScan. In the first 
level, we propose two tile-level scheduling algorithm. 
In the second level, we propose a linear algorithm to 
address the set-cover problem when the layout of tiles 
satisfies certain conditions. We evaluate our 
architecture with a network of 30 MicaZ motes, an 
extensive simulation with 10,000 nodes, as well as 
theoretical analysis. We believe our work has 
successfully provided flexibility and efficiency for the
sensor network coverage problem.

Acknowledgements:
This work is supported by NSF Nets NOSS Program

More information can be found at
Minnesota Embedded Sensor System Group
Http://mess.cs.umn.edu

Project Overview
To address these issues, we introduce a two-tier 
global scheduling method, called uScan. At the first 
level, coverage is scheduled to activate different 
portions of an area. We propose an optimal 
scheduling algorithm to minimize area breach. At the 
second level, sets of nodes are selected to cover 
active portions. Interestingly, we show that it is 
possible to obtain optimal set-cover results in linear 
time if the layout of areas satisfies certain conditions. 
We have implemented and evaluated our design on 
the Berkeley TinyOS/Mote platform [2], using 30
MicaZ motes. The results indicate that uScan is a 
lightweight solution with significant energy savings,
compared with localized solutions.

Assumptions:
We assume that nodes are time-synchronized and 
their locations are known. These are common 
assumptions for many sensor network applications. 
Accuracy of time synchronization and localization do 
not need to be precise, because clock drift can be 
resolved by slightly extending the active duration and 
localization error can addressed using the method 
proposed by DiffSense. For the clarity of the protocol 
description, we refer the sensing area of anode as a 
circle with a nominal radius centered at the location of 
the node. However, our design works under irregular 
sensing areas as long as nodes are aware of their
sensing areas.

Asymmetric Architecture:
We employ an asymmetric architecture to improve the 
flexibility and extensibility of the design.

Fig 2. Line Scan

Fig 3. Systolic Scan

Evaluation:
We evaluate our architecture with physical system  as 
well as an extensive simulation with 10,000 nodes.

Sensor i

Sensor j

Sensor k

Algorithm 1

Algorithm 2

Algorithm n

…..

Pa
ra

m
et

er
 T

ra
ns

la
tin

g

Generic
Switching 
Algorithm

Parameters

Connectivity

Sensor Network
Computational

Entity

Switching Side Scheduling Side

Fig 1. Asymmetric System Architecture

Fig 5.  System Implementation

Fig 4. Set-Cover Based Scheduling

Fig 6.  Evaluation  Set-up

Fig 7.  Detection Delay 

Fig 8.  System Life-Time over Different Node Densities


