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Abstract—Contradicting the widely believed assumption of link
independence, recently the phenomenon of reception correlation
among nearby receivers has been revealed and exploited for
varieties of protocols [3], [8], [17], [21], [23], [24]. However,
despite the diversified correlation-aware designs proposed up
to date, they commonly suffer from a shortcoming where
link correlation is inaccurately measured, which leads them to
sub-optimal performance. In this work we propose a general
framework for accurate capturing of link correlation, enabling
better utilization of the phenomenon for protocols lying on top
of it. Our framework uses SINR (Signal to Interference plus
Noise Ratio) to detect correlations, followed by modeling the
correlations for in-network use. We show that our design is
light-weight, both computation and storage-wise. We apply our
model to opportunistic routing and network coding on a physical
802.15.4 test-bed for energy savings of 25% and 15%.

I. INTRODUCTION

Currently, most existing radio link status studies [1], [5],

[6], [7], [9], [14], [18], [22] focusing on the individual link

or path quality are based on the assumption that receptions

among links are independent. However, the unprecedented

popularity of wireless technology has created an emerging

need for taking link correlation into consideration because

of (i) the increasing cross-technology interference due to

co-existence of different wireless technologies and (ii) the

correlated shadowing introduced by dynamic environments.

Correlation of concurrent receptions at nearby receivers was

experimentally revealed in recent works [17], [24], contradict-

ing the popular assumption that wireless links are independent.

Then, the significant impact of link correlation was demon-

strated, where noticeable performance gain were achieved by

incorporating correlation-aware designs into a wide range of

applications including: flooding [8], [24], code dissemina-

tion [23], reliable broadcast [21], opportunistic routing [3],

protocol performance analysis [17], and more.

Despite various representations of link correlation intro-

duced in the works up to date, they all share the common idea

of measuring link correlation at the link layer; correlation is

solely determined by the similarity of reception success and

failure patterns between links. For example, by representing

reception success and failure as 0 and 1, measuring link corre-

lation simply turns to be a comparison between two Bernoulli

processes. Although the link level correlation measurement is

simple, it provides limited information on the phenomenon

due to the ignorance on the root cause.

In this work, we propose a framework that addresses the

issues in the previous studies, to accurately capture and model

link correlation. We utilize SINR, which embeds fine-grained

PHY layer information, to replace binary reception status to

obtain high granularity measurement. We note that SINR is

a well-known metric. Therefore, instead of reinventing the

wheel, the focus of this work is in exploring the causes and

intensities of link correlation using SINR, and showing how

they are modeled. Our contributions are three-fold:

• Although the phenomenon of link correlation has been

mentioned in previous literatures, we provide the first

extensive study to explore the root causes of link cor-

relation.

• Through test-bed experiments consisting of 41 MICAz

nodes, we show SINR’s superiority in capturing correla-

tions in comparison with RSSI (Received Signal Strength

Indicator) and LQI (Link Quality Indicator). We then

demonstrate how correlations are modeled via SINR for

in-network use.

• We apply our model to two popular routing protocols,

opportunistic routing and network coding, on a test-bed

with 15 MICAz nodes. Experiment results show that our

model helps opportunistic routing and network coding to

save about 25% and 15% transmissions on average.

The rest of the paper is organized as follows: Section II

presents what motivated this work. Means to capturing the

link correlation and distinguishing the root causes follows in

sections III and IV. Section V illustrates the link correlation

model, where its performance is evaluated in Section VI.

Section VII demonstrates two applications. Related works are

discussed in Section VIII. Finally, Section IX concludes the

paper.

II. MOTIVATION

In this section we first introduce link correlation, where

the root causes of the effect is experimentally revealed. Then,

the importance of identifying the causes and their intensities,

which the existing studies fall short on, is illustrated.

A. Existence and Causes of Link Correlation

Link correlation is a phenomenon where broadcast packet

receptions among closely-positioned receivers are not inde-

pendent. That is, successful packet reception at one receiver

strongly indicates success (i.e., positive correlation) or failure

(i.e., negative correlation) in nearby receivers. The existence

of link correlation was reported and its effect were exploited

in recent works [17], [21], [24]. However they do so without
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(c) Correlated Shadowing

Fig. 1. Independent effect of two correlations. While correlation between the two receivers is vague in the original trace, it becomes clear when we separate
the cases of correlated shadowing and CTI.

considering the underlying causes, hindering accurate mea-

surement of correlation and thus limited utilization of the

phenomenon. Here we introduce the two causes, which are

empirically revealed in the following subsection.

• CTI (Cross-Technology Interference): Multiple wireless

technologies used today share unlicensed band. For instance

802.11b/g/n and 802.15.4, all reside on the 2.4 GHz ISM

band. This leads to CTI, as high-power wireless networks

(e.g., Wi-Fi) introduce destructive interference in low-power

networks (e.g., ZigBee) [11] throughout a large region, causing

correlated packet loss in multiple links simultaneously.

• Correlated Shadowing: Wireless signals suffer shadow fad-

ing caused by the presence of obstacles in the propagation path

of the radio waves. This affects closely positioned receivers

altogether, leading to correlation among them [16].

B. Impact of the Two Causes

We now demonstrate the two distinct causes of link cor-

relation, i.e., CTI and correlated shadowing. Based on the

experimental result we show that they ought to be treated

separately in order to accurately capture correlation. We run

an experiment with three MICAz nodes, equipped with IEEE

802.15.4 compliant TI CC2420 radio. Two receivers are placed

1.6m apart while the sender sits in between them. While the

sender broadcasts 1,200 packets, the two receivers listen and

record the sequence numbers of the received packets, which is

downloaded to a PC at the end of the experiment for analysis.

This experiment has two states to isolate CTI from corre-

lated shadowing, and vice versa. In state one, nodes tune to

channel 26 to avoid CTI from Wi-Fi, while people walk freely

between sender and receivers, causing shadow fading. On the

other hand, state two uses channel 12 to take the effect of

CTI into account, while no obstacles are allowed. The nodes

periodically switch between the two states every 100 packets.

The reception traces obtained from the two receivers is shown

in Figure 1(a), where the correlation is hardly observed.

However, the trend becomes much more clear when CTI and

correlated shadowing are distinguished from each other, as

shown in figures 1(b) and 1(c). In Figure 1(b) the two receivers

are positively correlated via CTI, due to powerful Wi-Fi signal

propagating throughout a long distance to corrupt packets at

multiple 802.15.4 receivers. Negative shadowing correlation in

Figure 1(c) is a result of obstacles that block either one of the

two. We note that, This result not only shows the existence of

correlation induced by CTI and correlated shadowing, but also

offers insight on the importance of differentiating one cause

from another for an accurate correlation measurement.

IR1

R2 I

S

S

I

I S

S

Packet Seq. Number

1 2 3 4 5 6 7 8

Fig. 2. Example packet reception history. Black boxes with I and S stand
for packet losses due to CTI and correlated shadowing.

The walk-through example in Figure 2 clarifies that the lack

of the capability of differentiating the two causes leads to

incorrect correlation measurements. In the example we have

two receivers, R1 and R2, receiving broadcast packets from

a sender. The white boxes indicate successful receptions. The

black boxes imply failures, where the letters indicate the cause;

i.e., I and S stand for CTI and correlated shadowing. It is

clear that receivers are perfectly positively correlated in CTI,

and negatively correlated by correlated shadowing. However,

treating CTI and correlated shadowing altogether falsely di-

agnose the receivers as independent. Let H1 and H2 denote

R1 and R2’s histories, where 1 indicates a success (white

box) and 0 indicates a failure (black box). Then, we have

H1 = {0, 0, 1, 1, 0, 1, 0, 1} and H2 = {0, 1, 0, 1, 1, 1, 0, 0}. In

this case, the correlation, computed by Pearson’s rho, becomes

ρ = 0, indicating independence.

C. The Need for High-granularity Measurement

Existing works on link correlation measures the phe-

nomenon at the link layer, where they simply consider the re-

lationship between the reception success or failure on different

links, without taking the quality of the reception into account.

Let us assume link correlation is to be measured between R1

and R2. Under existing approach, observing link correlation is

simplified to measuring the chance of reception failure on R2

given failure on R1. Although simple and intuitive, this method

lies on a rather strong assumption: all reception failures on

R1 implies the same chance of failure on R2. However, this

is often not the case in practice. The probability of failure

on R2 when R1’s reception has failed, is highly dependent

on the intensity of the cause for the failure. For example,

if failure on R1 has occurred due to high-power CTI, the

chance of R2 facing a failure is high. Low-power CTI imposes

lower chance of failure on R2. The same applies to correlated

shadowing. The degree of the cause can be obtained from the

reception quality at R1, from the PHY layer. In other words,

link correlation should account for information from both link

and PHY layer for accuracy.
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III. OBTAINING SINR

This section shows how SINR is obtained. Computed for

each packet based on the RSSI, we adopt an improved RSSI

sampling to overcome the limitation present in the default

sampling method.

A. Partial-sampling Problem

In 802.15.4-compliant radios (e.g., CC2420), RSSI is mea-

sured for the first 8 symbols, following the very beginning of

a packet indicated by SFD (Start of the Frame Delimiter) [20].

Therefore RSSI only reflects a small initial portion of the

packet, and is unable to detect any event that occurs in

the following parts; an issue we call the partial-sampling

problem. This imposes a significant limitation on accurately

presenting the quality of a packet reception, especially when

Wi-Fi is identified as the main source of CTI in low power

networks [15]. Specifically, there exists a high possibility

of partially corrupted packet in 802.15.4 networks, as Wi-

Fi packets usually have much shorter in-air durations than

those of 802.15.4. For instance, the duration of the maximum-

sized packet in 802.11b and 802.11g networks are 1,906µs and

542µs, whereas 802.15.4 packets can span up to 4,256µs [11].

To address the partial-sampling problem, we directly access

the RSSI register on the radio chip to acquire series of RSSI

samples throughout the whole duration of a packet. We refer

to this approach as full-sampling, which is discussed in detail

in the following subsection.

RSSI duration 

(128 us)

RSSI sample interval (156 us)

Blind spot (28 us)

RSSI duration 

(128 us)

Fig. 3. 6.4kHz RSSI Sampling

B. Full-sampling

Packet duration can be detected via SFD pin, where it rises

upon beginning of a packet reception and falls at the end.

RSSI series that cover the entire packet can be obtained by

sampling RSSI values between SFD pin rise and fall at a high

frequency. Our 6.4kHz RSSI sampling rate is achieved using

32.768kHz watch crystal on MICAz’s Atmega128 [2]. The rate

is chosen to appropriately capture CTI induced by the minimal

802.11g packets. Referring to Figure 3, an RSSI sample is

computed as an average during 8 symbols, which corresponds

to 128µs. The 6.4kHz sampling rate indicates a sample interval

of 156µs. Therefore, the duration of the blind spot where we

cannot sense the interference comes to be only 28µs, which

is sufficiently small to ensure capturing of a minimum-sized

802.11g packet (194µs) or even ACK (112µs).

The effectiveness of full sampling is validated via an ex-

periment. A pair of closely-positioned MICAz receivers, R1

and R2, listen to a broadcast from a sender in the presence of

a Wi-Fi interferer that generates CTI. Figure 4 depicts RSSI

series obtained from the receivers. The figure demonstrates

Fig. 4. Full-sampling of RSSI to capturing CTI.

two properties of full sampling: (i) It is capable of capturing

CTI in partially corrupted packets. It exhibits a steep increase

for the duration of CTI, which is 608µs (456-byte PHY

Protocol Data Unit at 6Mbps data rate) in the figure. (ii) Link

correlation caused by CTI is clearly observable via similar

trend on the two series. In fact, the packet did not pass CRC

checks on both receivers, indicating a correlated packet loss.

Fig. 5. Acquiring parameters for SINR computation

C. Computing SINR

Now we describe how SINR can be computed from RSSI

series obtained via full-sampling, with the help of the noise

floor. Figure 5 shows R1’s RSSI series borrowed from Fig-

ure 4. The signal corresponds to the packet being received.

Note that when CTI occurs, its power simply adds up on top

of the signal. The noise floor is acquired by the RSSI value

as soon as the link turns idle after packet reception, in order

to best reflect the noise floor at the time of reception. Let

R = {r1, r2, ..., rm} indicate the RSSI series obtained during

receiving a packet when ri represents the i-th sample in the

series. Finally, let rn denote the noise floor level. Then, we

can compute the power of signal ps, noise pn, and CTI pi as

follows:

pn = 10rn/10

ps = 10min(R)/10 − pn

pi = 10max(R)/10 − ps − pn

(1)

where min(R) and max(R) indicate the minimum and

maximum elements in R. The minimum value is used for

the signal power simply to exclude the effect of CTI. The

rationale behind taking the maximum value for The CTI

power is to consider a part of the packet that is the most

vulnerable to corruption. This is because 802.15.4 does not

support correction codes, and thus an error in any part of the

packet directly leads to packet loss. Then SINR in dB can be

computed as:
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(a) Experiment Setting (b) On-site view

Fig. 6. Test-bed Deployment

S

Receivers 1-20 Receivers 21-40

(a) Correlated Shadowing

Receivers 1-20 Receivers 21-40

(b) CTI

S

Receivers 1-20 Receivers 21-40

(c) Real-life

Fig. 7. Experimental Scenarios. In (a) and (b) we isolate the two causes to verify metrics’ performances. (c) is when both simultaneously occur; the case
where most of the real-life situations fall into.

(a) RSSI (b) LQI (c) SINR

Fig. 8. Capturing correlated shadowing. All three metrics are able to capture correlated shadowing.

(a) RSSI (b) LQI (c) SINR

Fig. 9. Capturing CTI correlation. Both RSSI and LQI suffer from partial-sampling problem, leading to failure in capturing CTI correlation.

SINRdB = 10log10
ps

pn + pi

= 10log10
10min(R)/10 − 10rn/10

10max(R)/10 − 10min(R)/10 + 10rn/10

where the subscript dB is omitted from now on for simplic-

ity. The strength of SINR lies in its capability to capture

both correlated shadowing and CTI. Moreover, we note that

the computation for SINR offers CTI power (i.e., pi) as

a byproduct. This allows us to distinguish the causes of

correlation, which is another key point for accurate correlation

measurement. Correlation capturing as well as differentiating

the causes are further discussed in the next section.

IV. PERFORMANCE OF SINR

In this section we experimentally demonstrate that SINR

successfully captures both correlated shadowing and CTI. In

comparison, we validate the performance of two well-known

metrics, RSSI and LQI. We also show how SINR can express

the distinct correlation trends with the help of CTI power, pi.

A. Experimental Setup

SINR, RSSI, and LQI are tested in three distinct experi-

ments under correlated shadowing, CTI, and both. Each exper-

iment consists of 41 MICAz nodes, where one is the sender

and the rest are receivers. Deployment scenario depicted in

Figure 6(a) is installed on an indoor test-bed as in Figure 6(b).
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Specifically, the test-bed takes place in a large conference

room in a university building where a high volume of Wi-Fi

traffics (i.e., CTI) with more than 20 access points are present.

In all three experiments, the transmission power of the

sender is tuned to 0dBm. The sender periodically broadcasts

54-byte payload packet at a rate of a packet per second for

an hour for the scenarios in figures 7(a) and 7(b), and for 4

hours for the case in Figure 7(c) (a total of 21,600 packets). In

the correlated shadowing scenario depicted in Figure 7(a) we

allow people to walk or stand around the sender to induce

shadowing. We avoid the CTI by running the test-bed on

channel 26, which does not overlap with Wi-Fi. We do the

opposite in the second experiment in Figure 7(b) where we

tune the test-bed to channel 12, which overlaps with Wi-Fi

channel 1 to introduce CTI. Meanwhile, this time we avoid

obstacles. Finally, in the last experiment we test the case where

both CTI and correlated shadowing are present; the scenario

where most of the real-life situations fall into.

B. Capturing Correlation

Figure 8 shows the correlation between receivers 10 and 12

(i.e., R10 and R12), which share the same LOS path from the

sender. The three results for RSSI, LQI, and SINR are from the

same series of broadcast packets for a 10-minute duration, to

enable direct comparison of the performances. RSSI and SINR

in figures 8(a) and 8(c) show a clear drop under correlated

shadowing, between sequence numbers of 200 and 500 during

which R10 experiences continuous packet reception failures.

For example, when the RSSI of R12 is below to -80dBm, PRR

(Packet Reception Ratio) on R10 drops to 28.6%. Similarly,

for R12 SINR smaller than 13dB, R10 PRR is only 22.6%.

This trend is also observable on LQI in Figure 8(b) but is not

as clear compared to RSSI and SINR.

(a) R12 SINR vs R10 Reception

(b) R12 SINR vs R10 PRR

Fig. 10. Capturing correlated shadowing and CTI simultaneously in real-life
scenario.

The limitation of RSSI and LQI is clearly revealed in

Figure 9. In this result obtained from the CTI scenario in Fig-

ure 7(b), both metrics fail to show a clear relationship between

R10 and R12 (figures 9(a) and 9(b)). This is because both RSSI

and LQI suffer from partial-sampling problem, where only the

first 8 symbols of the packet are considered. Partial-sampling

brings fundamental limitation in detecting CTI, which often

corrupt packets partially. Meanwhile, Figure 9(c) demonstrates

that SINR successfully addresses this problem and effectively

detects correlation under CTI: At R12 SINR above 2dB, R10

PRR is 90.5%, where otherwise is only 4.8%.

C. Distinguishing the Causes

Now that we know SINR is capable of detecting both

correlated shadowing and CTI separately, we look into the

real-life scenario in Figure 7(c) where both phenomena occur

simultaneously. The result for 1 hour duration is depicted

in Figure 10(a) in which two trends are observable, which

can be distinguished via the value of pi. Recall that pi is a

parameter in computing for SINR, representing CTI power;

therefore pi = 0 indicate CTI-free case (i.e, under shadowing)

while pi > 0 implies the existence of CTI. This essentially

enables SINR to offer clear trends from the two independent

phenomena as shown in Figure 10(b). Therefore, SINR is

capable of capturing correlations in full under mixture of the

two phenomena.

V. LINK CORRELATION MODEL

This section discusses how the effects of CTI and correlated

shadowing are modeled with SINR.

A. Applying Logistic Regression

As demonstrated in Figure 10(b), the relationship between

SINR and PRR of two receivers induces two separate curves

due to correlated shadowing and CTI. We adopt logistic

regression to model each curve, a technique widely adopted

especially in the field of machine learning. To offer a better

idea on the technique, we first show the results in Figure 11,

where the left-most plot in the figure shows the result when

it is applied between R10 and R12 (cf. Figure 10(b)). Black

curve indicate CTI correlation (pi > 0), whereas correlated

shadowing (pi = 0) is presented in gray. The figure clearly

shows that two logistic regression curves are very different,

again justifying the need to separately model the two corre-

lations. Note that R19 and R29 are negatively correlated by

shadowing. This is because the two receivers are on the other

side of the sender, where obstacle are only big enough to block

one side of the sender.

Among various modeling techniques, logistic regression was

selected due to its exclusive advantages for our purpose: (i)

The y-axis of the model ranges from 0 to 1, which can be di-

rectly interpreted as probability. (i.e., PRR) (ii) Computational

simplicity makes logistic regression feasible even under strict

resource constraints, such as in sensor nodes [13]. Now we

move on to how logistic regression is applied to express the

relationship between RA’s PRR and RB’s SINR. Let Y be
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Fig. 11. Logistic regression results for representative receiver pairs in our test-bed. CTI and correlated shadowing are plotted in black and gray, respectively.

a Bernoulli random variable denoting reception success and

failure on RA, where 1 and 0 indicate reception success and

failure, respectively. Next, let X be a 2× 1 vector, [X0 X1]
T ,

where X0 is fixed to 1 (intercept term) and X1 is SINR

measured at RB . Finally, according to logistic function, the

success and failure probabilities of RA given RB’s SINR is

denoted as:

Pr(Y = 1|X) =
1

1 + e−(θTX)
= hθ(X)

Pr(Y = 0|X) =
e−(θTX)

1 + e−(θTX)
= 1− hθ(X)

(2)

where θ = [θ0 θ1]
T indicates the parameters to be adjusted;

that is, θ1 is the slope of the function and the function shifts

along x-axis according to θ0
θ1

. Now, let (Xi, Y i) 1 ≤ i ≤ m

indicate m training samples, where each sample is obtained

from a packet. Then, training, or adjustment of θ, is done such

that it maximizes the log likelihood below:

J(θ) =

m
∑

i=1

Y ilog(hθ(X
i)) + (1− Y i)log(1− hθ(X

i)) (3)

We apply Newton’s method to solve for the maximum, where

for each iteration θ is updated to

θ ⇐ θ −H−1∇θJ (4)

where H is Hessian matrix and ∇θJ is the gradient vector

with respect to θ. They are computed as

∇θJ =

m
∑

i=1

(Y i − hθ(X
i))Xi

H =

m
∑

i=1

hθ(X
i)(hθ(X

i)− 1)(Xi)(Xi)T
(5)

B. Optimization

As shown in Eq. 3 and 4, logistic regression adjusts its

parameter, θ, such that it closely matches the measured re-

lationship between SINR of one node and PRR of the other

(by maximizing log-likelihood). There are different optimiza-

tion techniques that can achieve this, including batch gradi-

ent descent, SGD(stochastic gradient descent), and Newton’s

method. Among these we chose Newtons’s method for several

reasons, described in the following.

The main advantage of Newton’s method is its converge

speed. In our data, the method took less than 3 iterations

to converge, sufficiently light to be adopted even on plat-

forms with low computational power including wireless sensor

nodes. SGD was also tested on the same dataset; it returned

worse curve fit even after taking more than 30 iterations under

step size of 0.1. Moreover, Newton’s method does not require

step size parameter, which is a considerable benefit in terms of

adaptability and simplicity. Meanwhile, the main disadvantage

of the technique is the heavy computational complexity in

obtaining the inverse of H in Eq. 4. However, this is not a

severe issue in our case, since H is only a square matrix of

size 2×2.

We note that, at the first glance, techniques that allow on-

line learning (e.g., SGD) might appeal as a better candidate,

due to their advantage in accommodating newly obtained

samples without the need to reconstruct the entire model.

However, we argue that such on-line update techniques suffer

from keeping the old samples intact, which degrades their

performance in the face of dynamically changing correlation

over time. This issue will be further discussed in Section VI-D

when we examine the effect of temporal dynamics.

VI. MODEL EVALUATION

A. Baseline and Terminologies

Our model is evaluated against conditional reception, or

CR in short. Recent studies have shown that CR offers

considerable amount of benefit in reception estimation [3],

[8], [24]. For a brief idea on CR, let there be two receivers

RA and RB that hear a broadcast packet from a sender. When

the event of reception success at each receiver is indicated

as SA and SB , CR = Pr(SA|SB). Note that CR differs

from PRR = Pr(SA) due to correlation between SA and

SB . CR is a link-level metric, as it only uses the information

on reception success or failure. On the other hand, our model,

which we refer to as CM(correlation model), takes advantage

of information from the PHY layer.

Denoting the dataset from which both CM and CR is

computed as the training set, whereas the dataset on which

estimation is performed as the test set, our model is evaluated

in terms of accuracy, estimation performance, and the cost of

maintaining estimation quality in the face of temporal link

dynamics. The results in this section is based on the data

obtained from the real-life experiment shown in Section IV,

Figure 7(c). Specifically, since the estimation is very obvious

for links with very high and very low PRRs, evaluation is

performed among 18 links (i.e.,
(

18
2

)

= 153 link pairs) that
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exhibit intermediate PRRs from 19.2% to 80.8%, with an

average of 63.9%.

Fig. 12. Model Accuracy

B. Accuracy Verification

We first show how accurately our model reflects the training

set. That is, we verify the estimation performance of CM when

the test set is equal to the training set. After constructing CM,

estimation is done per-packet basis, by taking SINR of one

packet at a receiver and probabilistically guessing if reception

on the other receiver is a success or failure. Specifically, this

is done in two steps: (i) Given a SINR sample, a receiver

first finds the corresponding PRR of the correlated receiver via

CM. (ii) Then, we estimate the reception to be a success when

PRR≥0.5 and failure otherwise. In other words, the logistic

regression (i.e., CM) is used as a linear classifier, based on

a simple rationale where a reception is more likely to be a

success when PRR is above 0.5. For a fair comparison, CR

is evaluated similarly to CM, where the reception is estimated

to be a success when CR≥0.5.

Figure. 12 shows the result with respect to different training

set sizes. Error bars indicate 95% confidence intervals. The

figure offers two observations: (i) The accuracy of CM is

stable across various set sizes. This demonstrates the fast

convergence of CM which only requires a small training

set, cutting down the cost for model construction. More-

over, performance enhancement with large training set size

indicate the model’s robustness to link dynamics. (ii) There

exist consistent gaps between the accuracies of CM and CR.

This is especially notable knowing that CM does not require

additional transmission overhead compared to CR.

Fig. 13. Estimation Performance

C. Estimation Performance

We now move on to the estimation performance when CM

and CR are examined on the test set which is different from

the training set. Specifically, we set test set to be a record of

3,600 samples (i.e., 1 hr) immediately following the training

set. Simply put, this evaluation shows whether the model built

on the past history (training set) can be applied to well estimate

the future (test set) for an hour. Note that this test is directly

related to the performance of CM and CR when applied to

real networks, where they most likely face temporal variance

in links. In other words, the relationship between correlated

receivers dynamically changes over time.

Figure 13 presents the result. It shows that, with a very

small training set of 30 samples, the accuracy of CM and CR

is approximately equivalent. Performance is enhanced on both

techniques as the size grows, where CM improves at a faster

rate than CR. The figure exposes two interesting observations.

First, the performance of CM reaches the peak at training set

size of 2,400 and is kept stable until 3,600. We call 2,400

samples training set as the saturation point, as obtaining addi-

tional samples does not help to improve performance beyond

this point. In practice, the saturation point can be regarded as

the maximum number of samples to be obtained. Moreover,

this point also indicates the size of the buffer required to fully

utilize our model to its maximum. We note that 2,400 samples

only take 9.6KB of memory. This indicates that our model can

easily fit into sensor networks; Off-the shelf sensor platforms,

for instance MICAz and TelosB, are equipped with 512KB

and 1MB flash storage. Another interesting observation is that

CM’s performance starts to degrade at the size of 5,400. This is

an effect of time-varying property of links. As 5,400 samples

indicate 90 minutes, samples obtained obtained earlier start

to be outdated and force CM to make false decisions. The

effect of time-varying link dynamics is further evaluated in

the following subsection.

Fig. 14. Effect of Temporal Link Dynamics

D. Impact of Temporal Link Dynamics

Knowing that the saturation point indicates the most effec-

tive training set size, we explore the effect of temporal link

dynamics on the performance of CM with the corresponding

training set size. Figure 14 shows the trend of the accuracy for

every 15 minute duration, beginning an hour after the model

is initially constructed, until two hours and 15 minutes. The

figure clearly shows that the performance slowly degrades

as the model gets outdated, agreeing with our previous ob-

servation. From practical standpoint, this figure suggests an

optimal sampling frequency to maintain the performance to
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the maximum; if 2,400 samples can be collected during 90

minutes, CM with the maximum performance can be continu-

ously rebuilt, without allowing performance degradation. This

yields a moderate sampling rate of a sample (i.e., a packet

reception) every 2.25 seconds.

VII. APPLICATIONS

Our model can be used to efficiently predict the nodes’ all

outgoing links’ status, which provides us great opportunities

to help a wide range of upper layer protocols obtain better

performance. To illustrate its versatility, we show two appli-

cations on (i) opportunistic routing, and (ii) network coding.
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Fig. 15. Illustration examples

A. Application Examples

1) Opportunistic Routing: Opportunistic routing protocols,

such as ExOR [4], defer the selection of the next hop for a

packet until these protocols have knowledge about the set of

nodes that have actually received that packet. By doing so, op-

portunistic routing could utilize links that become temporarily

available. We use the example in Figure 15(a) to illustrate

how opportunistic routing works. In this figure, three nodes

form a two-hop network and the best shortest ETX path is

“S → R1 → R2”. With opportunistic routing, we can obtain

a better results than ETX if node R2 overhears the packets

(e.g., P2) from S.

An issue here is how does the source node, S, finds out if

the link “SR2” is available or not. In opportunistic routing,

node R2 explicitly or implicitly sends back an ACK when

it overhears packets from S. In reality, when opportunistic

routing applies, the link quality of “SR2”, i.e., Pr(SR2) is

not high (otherwise ETX will choose path “S → R2” instead

of “S → R1 → R2”). Note that the reversed link is not

symmetric especially when the link quality of the outgoing

link is low [25], opportunistic routing loses many opportunities

even if R2 does overhear the packets from S. With our

model, source node S can tell the reception status of the long

distance link, e.g., SR2 from a close node, e.g., R1’s reception

information.

2) Network Coding: Network coding allows the nodes of

a network to take several packets and combine them into one

transmission, thus improving the throughput. For example, in

COPE [10], as shown in Figure 15(b), the source node S

broadcasts three packets, i.e., P1, P2, and P3, to the three

receivers. The first receiver R1 loses packet P3, the second

receiver R2 loses packet P1, and the third receiver R3 loses

packet P2. Instead of transmitting all the three lost packets,

COPE sends an XORed packet P1⊕P2⊕P3. Despite the fact

that they lost different packets, all three receivers can retrieve

the three original packets using the XORed packet.

Now the question is: how does the source node know

what packets its neighbors have? In COPE, it estimates the

probability that a particular neighbor has a packet as the link

quality. Here, our model can help COPE obtain more precise

information on neighbor’s possessed packets, thus offering

more coding opportunities. In detail, one receiver will send

back an ACK with its SINR value. Then, the source node

computes all its neighbors’ packet reception information with

our model.
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Fig. 16. Evaluation results

B. Performance Evaluation

To further confirm the analysis, we conduct two experiments

with fifteen MICAz nodes which form a two-hop network. The

testbed size is 8m by 2.5m. In the experiments, a control node

is used to remotely configure the channel and transmission

power. The default channel is 16 and the default power is -

25dBm. Based on these radio settings, each node sends 104

packets in turn. Each packet is sent with a time interval of

0.3 second. The received packets’s information, e.g., RSSI,

is recorded in MICAz nodes flash memory. When the nodes

finish sending packets, they report their packet reception

information to a sink node which is connected to a PC. We

thus obtain the information required by our model. Then, the

corresponding nodes in the testbed are selected as forwarders

for opportunistic routing or network coding.

In the opportunistic routing experiment, we compare

the performance of ETX [5], ExOR [4], ExOR CR, and

ExOR CM. In ExOR CR, we use conditional probability to

estimate whether node R2 received a packet from S or not,

given R1’s reception status. In our method, i.e., ExOR CM,

node R1 will send back an ACK including its SINR informa-

tion to estimate the nearby links’ receiving status. In the net-

work coding experiment, we compare our design COPE CM,

with a traditional broadcast protocol, namely, RBP [19], and

two network coding protocols, COPE [10] and COPE CR.

1) Results on Opportunistic Routing: Figure 16(a) plots the

number of transmissions for the source node to send a single

packet to the destined receiver using different algorithms. On

the average, the source node needs 3.0, 2.5, 2.7, and 2.1

transmissions for ETX, ExOR, ExOR CR, and ExOR CM,

respectively, to deliver one packet to the destination. The three

opportunistic routings perform better than ETX because the
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source node learns that the destination overhears the packets

and sends the packets without passing through the relay node.

ExOR CM obtains a 30% improvement compared to ETX,

which is better than ExOR and ExOR CR. That is because our

model provides a more precise information compared to ExOR

and ExOR CR in predicting the availability of the temporarily

unstable links.

2) Results on Network Coding: Figure 16(b) shows

the experiment results with RBP, COPE, COPE CR, and

COPE CM. From the figure, the average number of trans-

missions for RBP to reliably broadcast one packet to the 14

receivers are 12.7, while COPE, COPE CR, and COPE CM

is 11.2, 11.4, and 10.0 respectively. Our model helps network

coding obtain more benefits. Besides, we find that the gain

of COPE is not very high in this scenario. The trace records

show that this is because the broadcast packet loss is highly

correlated; that is, the receivers lose the same packet and

COPE has few opportunity to save transmissions.

VIII. RELATED WORK

This paper is related to link correlation and link quality

estimation. Link correlation has been recently enlightened

in the networking community. Previous work experimentally

revealed the phenomenon and presented protocols that can

effectively utilize it to achieve high efficiency in flooding [8],

[24], opportunistic routing [3], reliable broadcast [21], and

code dissemination [23]. Another pioneering work on link

correlation proposed a quantitative index to indicate the degree

of the correlation [17]. Our work is fundamentally different

from the existing studies for the following three reasons: It

is the first to (i) observe the phenomenon using PHY layer

information and (ii) explore the two causes of link correlation.

Lastly, (iii) instead of proposing a protocol, we focus on

accurate capturing and modeling that can benefit a wide range

of protocols.

Among a large body of works on link quality estimation,

our work is most related to the recent studies that adopt

logistic regression for their modeling. In [12], authors model

link estimator taking PRR and PHY information including

RSSI, LQI, and SNR. This work was improved in [13], where

instantaneous prediction was made possible to avoid the need

for off-line training. However, our work is inherently different

from these studies as our paper makes estimation across links,

rather than within the same link.

IX. CONCLUSION

To further improve network performance, this paper aims to

provide a framework that precisely captures the phenomenon

of link correlation in reality, under both CTI and correlated

shadowing. The framework utilizes SINR that is capable of

capturing link correlation in full, while conventional metrics,

RSSI and LQI, fail to do so. Using SINR we successfully

model link correlation, where its estimation performance is

consistently better than the conditional reception, which is the

metric introduced in the in the state-of-the-art works [21], [24]

as a means to measure correlation. Moreover, we show that

our model can be built and maintained with a moderate cost in

the face of temporal dynamics of links. Lastly, our model was

applied to opportunistic routing and network coding protocols

for an average energy savings of 25% and 15%.
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