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s.umn.eduAbstra
t�In road networks, sensors are deployed sparsely (hun-dreds of meters apart) to save 
osts. This makes the existinglo
alization solutions based on the ranging be ineffe
tive. To addressthis issue, this paper introdu
es an autonomous passive lo
alizations
heme, 
alled APL. Our work is inspired by the fa
t that vehi
lesmove along routes with a known map. Using binary vehi
le-dete
tiontimestamps, we 
an obtain distan
e estimates between any pair ofsensors on roadways to 
onstru
t a virtual graph 
omposed of sensoridenti�
ations (i.e., verti
es) and distan
e estimates (i.e., edges). Thevirtual graph is then mat
hed with the topology of road map, in orderto identify where sensors are lo
ated in roadways. We evaluate ourdesign outdoor in Minnesota roadways and show that our distan
eestimate method works well despite of traf�
 noises. In addition, weshow that our lo
alization s
heme is effe
tive in a road network witheighteen interse
tions, where we found no lo
ation mat
hing error,even with a maximum sensor time syn
hronization error of 0.3 se
and the vehi
le speed deviation of 10 km/h.I. INTRODUCTIONLo
alization of sensors is a prerequisite step to �nd targetpositions for most military appli
ations, in
luding surveillan
e andtarget tra
king. In these appli
ations, it has been envisioned thatfor the fast, safe deployment, unmanned aerial vehi
les drop alarge number of wireless sensors into road networks around atarget area. Many lo
alization approa
hes have been proposed inthe 
ontext of su
h a s
enario. They use either pre
ise rangemeasurements (e.g., TOA [1℄, TDOA [2℄, and AOA [3℄) or
onne
tivity information (e.g., Centroid [4℄, APIT [5℄, SeRLo
[6℄, and Gradient [7℄), between sensors to lo
ate nodes' lo
ations.Unfortunately, all of them ignore an important fa
t: To 
overa large area, sensors have to be deployed sparsely (hundredsof meters apart) to save 
osts. In this sparse deployment, sin
esensors 
annot rea
h ea
h other either through ranging devi
es(e.g., Ultrasound signals 
an only propagate 20∼30 feet) norsingle-hop RF 
onne
tivity, previous solutions be
ome ineffe
tive.To address this issue, we propose an Autonomous PassiveLo
alization (APL) algorithm for extremely-sparse wireless sensornetworks. This algorithm is built upon an observation: Militarytargets normally use roadways for maneuver, therefore, only thesensors near the road are a
tually useful for surveillan
e. Thesensors away from the roadway 
an only be used for 
ommuni
a-tion, sin
e targets are out of their sensing range. In other words,it is not important to lo
alize them. Under su
h a s
enario, theresear
h question is how sensors on/near a road 
an identify theirpositions in a sparse deployment without any pair-wise rangingor 
onne
tivity information.

The high-level idea of our solution is to use vehi
les onroadways as natural events for lo
alization. The solution wouldbe trivial if all nodes are equipped with sophisti
ated vehi
leidenti�
ation sensor, be
ause it is relatively easy to measure thedistan
e between two sensors by multiplying vehi
les' averagespeed by Time Differen
e on Dete
tion (TDOD) between twosensors 
orresponding to the same vehi
le. Obviously vehi
leidenti�
ation sensors would be 
ostly in terms of hardware, energyand 
omputation. Therefore, the 
hallenging resear
h question ishow to obtain lo
ations of the sensors, using only binary dete
tionresults without the vehi
le identi�
ation 
apability in sensors.Our main idea is as follows. Through statisti
al analysis ofvehi
le-dete
tion timestamps, we 
an obtain distan
e estimatesbetween any pair of sensors on roadways to 
onstru
t a virtualgraph 
omposed of sensor identi�
ations (i.e., verti
es) and dis-tan
e estimates (i.e., edges). The virtual graph is then mat
hedwith the topology of the known road map. A unique mappingallows us to identify where sensors are lo
ated in roadways.Spe
i�
ally, our lo
alization s
heme 
onsists of three phases:(a) the estimation of the distan
e between two arbitrary sensorsin the same road segment; (b) the 
onstru
tion of the 
onne
tivityof sensors on roadways; (
) the identi�
ation of sensor lo
ationsthrough mat
hing the 
onstru
ted 
onne
tivity of sensors with thegraph model for the road map. Our key 
ontributions in this paperare as follows:
• A new ar
hite
ture for autonomous passive lo
alization usingonly binary dete
tion of vehi
les on the road networks. Un-like previous approa
hes, APL is designed spe
ially for sparsesensor networks where long distan
e ranging is dif�
ult, ifnot impossible.
• A statisti
al method to estimate road-segment distan
e be-tween two arbitrary sensors, based on the 
on
ept of TimeDifferen
e on Dete
tion (TDOD).
• A pre�ltering algorithm for sele
ting only robust edge dis-tan
e estimates between two arbitrary sensors in the sameroad segment. Unreliable path distan
e estimates are �lteredout for better a

ura
y.
• A graph-mat
hing algorithm for mat
hing the sensor's iden-ti�
ation with a position at the road map of the target area.The rest of this paper is organized as follows. Se
tion II des
ribesthe problem formulation. Se
tion III explains the system design.Se
tion IV evaluates our algorithm. We summarize related workin Se
tionV and 
on
lude our work in Se
tionVI.
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(b) Virtual Topology of WirelessSensors: Hv = (Vv , Mv)
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(e) Redu
ed Virtual Subgraph 
on-sisting of Interse
tion Nodes of Vir-tual Graph: G̃v = (Ṽv , Ẽv)
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(f) Real Graph 
orresponding toRoad Map: Gr = (Vr , Er)Fig. 1. Wireless Sensor Network deployed in Road NetworkII. PROBLEM FORMULATIONWe 
onsider a network model where sensors are pla
ed at bothinterse
tion points and non-interse
tion points on road networks.The obje
tive is to lo
alize wireless sensors deployed in roadnetworks only with a road map and binary vehi
le-dete
tiontimestamps taken by sensors as shown in Figure 1(a). We de�neeight terms as follows:1. Interse
tion Nodes Sensors pla
ed at an interse
tion and hav-ing more than two neighboring sensors (i.e., degree ≥ 3). InFigure 1(a), sensors a and c are interse
tion nodes.2. Non-interse
tion Nodes Sensors pla
ed at a non-interse
tionand having one or two neighboring sensors. In Figure 1(a), sensors
b and d are non-interse
tion nodes.3. Virtual Topology Let Virtual Topology be Hv = (Vv, Mv),where Vv = {s1, s2, ..., sn} is a set of sensors in the road network,and Mv = [vij ] is a matrix of path length vij for sensors si and
sj . Figure 1(b) shows a virtual topology of sensors to the roadnetwork, shown in Figure 1(a). Mv is a 
omplete simple graph,sin
e there is an edge between two arbitrary sensors. We de�ne theedge of the virtual topology as virtual edge. In Figure 1(b), amongthe virtual edges, a solid bla
k line represents an edge estimatebetween two sensors, whi
h means that they are adja
ent on theroad network. The dotted gray line represents a path estimatebetween two sensors, whi
h means that they are not adja
ent onthe road network.4. Virtual Graph Let Virtual Graph be Gv = (Vv, Ev), where
Vv = {s1, s2, ..., sn} is a set of sensors in the road network,and Ev = [vij ] is a matrix of road segment length vij between

sensors si and sj . Figure 1(
) shows a virtual graph of the sensornetwork deployed on the road network shown in Figure 1(a), wherethe bla
k node represents an interse
tion node and the gray noderepresents a non-interse
tion node.5. Redu
ed Virtual Subgraph Let Redu
ed Virtual Subgraph be
G̃v = (Ṽv , Ẽv), where Ṽv = {s1, s2, ..., sm} is a set of sensorspla
ed only at interse
tions in the road network, and Ẽv = [vij ] isa matrix of road segment length vij between interse
tion nodes siand sj . The redu
ed virtual subgraph G̃v is obtained by deletingnon-interse
tion nodes and their edges from the virtual graph Gvthrough the degree information in Gv . Refer to Se
tion III-D1. Forexample, Figure 1(e) shows a redu
ed virtual subgraph 
onsistingof only interse
tion nodes of virtual graph in Figure 1(
).6. Real Graph Let Real Graph be Gr = (Vr, Er), where Vr =
{p1, p2, ..., pn} is a set of interse
tions in the road network aroundthe target area, and Er = [rij ] is a matrix of road segment length
rij for interse
tions pi and pj . Real Graph 
an be obtained throughmap servi
es, su
h as Google Earth and Yahoo Maps. Figure 1(f)shows a real graph 
orresponding to the road network that 
onsistsof only interse
tion points, shown in Figure 1(d). The real graphis isomorphi
 to the redu
ed virtual subgraph graph G̃v shown inFigure 1(e) [8℄.7. Shortest Path Matrix Let Shortest Path Matrix for G =
(V, E) be M su
h that M = [mij ] is a matrix of the shortest pathlength between two arbitrary nodes i and j in G. M is 
omputedfrom E by the All-Pairs Shortest Paths algorithm, su
h as theFloyd-Warshall algorithm [9℄. We de�ne Mr as the shortest pathmatrix for the real graph Gr = (Vr, Er), and de�ne Mv as theshortest path matrix for the virtual graph Gv = (Vv, Ev).
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 Fig. 2. APL System Ar
hite
ture8. APL Server A 
omputer that performs the lo
alization algo-rithm with binary vehi
le-dete
tion timestamps 
olle
ted from thesensor network.The lo
alization design of APL is based on the followingassumptions:

• Sensors have simple sensing devi
es for binary vehi
le de-te
tion without any 
ostly ranging or GPS devi
es [10℄. Ea
hdete
tion is a tuple (si, tj), 
onsisting of a sensor ID si andtimestamp tj .
• Sensors are time-syn
hronized at the millise
ond level. This
an be a
hieved easily be
ause many state-of-art solu-tions [11℄, [12℄ 
an a
hieve mi
rose
ond level a

urate.
• The APL server has road map information for the target areaunder surveillan
e and 
an 
onstru
t a real graph 
onsistingof interse
tions in the road network.
• There is an ad-ho
 network or a delay tolerant network forwireless sensors to deliver vehi
le-dete
tion timestamps tothe APL server.
• Vehi
les pass through all road segments on the target roadnetworks. The vehi
le mean speed is 
lose (but not identi-
al) to the speed limit assigned to roadways. The standarddeviation of vehi
le speed is assumed to be a reasonablevalue, based on real road traf�
 statisti
s obtained fromtransportation resear
h [13℄.III. APL SYSTEM DESIGNA. System Ar
hite
tureWe use an asymmetri
 ar
hite
ture for lo
alization as in Fig-ure 2 in order to simplify the fun
tionality of sensors for lo
al-ization. As simple devi
es, sensors only monitor road traf�
 andregister vehi
le-dete
tion timestamps into their lo
al repositories.A server 
alled the APL server pro
esses the 
omplex 
omputationfor lo
alization. Spe
i�
ally, the lo
alization pro
edure 
onsists ofthe following steps as shown in Figure 2:
• Step 1: After road traf�
 measurement, sensor si sends theAPL server its vehi
le-dete
tion timestamps along with itssensor ID, i.e., (si, Ti), where si is sensor ID and Ti istimestamps.
• Step 2: The traf�
 analysis module estimates the road seg-ment length between two arbitrary sensors with the timestampinformation, 
onstru
ting a virtual topology Hv = (Vv, Mv),where Vv is the vertex set of sensor IDs, and Mv is the matrix
ontaining the distan
e estimate of every sensor pair.

• Step 3: The pre�ltering module 
onverts the virtual topology
Hv into a virtual graph Gv = (Vv, Ev), where Vv is thevertex set of the sensor IDs, and Ev is the adja
en
y matrixof the estimated road segment lengths.

• Step 4: The graph-mat
hing module 
onstru
ts a redu
edvirtual subgraph G̃v = (Ṽv, Ẽv) from the virtual graph Gv,where Ṽv is a set of interse
tion nodes among Vv , and Ẽvis a set of edges whose endpoints both belong to Ṽv . G̃v isisomorphi
 to the real graph Gr = (Vr , Er). Then the graph-mat
hing module 
omputes a permutation matrix P , makingthe redu
ed virtual subgraph G̃v = (Ṽv , Ẽv) be isomorphi
to the real graph Gr = (Vr , Er).
• Step 5: The lo
ation identi�
ation module determines ea
hsensor's lo
ation on the road map by applying the permu-tation matrix P to both the redu
ed virtual subgraph G̃vand the real graph Gr. Through this mapping, node lo
ationinformation (s, l) is 
onstru
ted su
h that s is the sensorID ve
tor, and l is the 
orresponding lo
ation ve
tor; that is,

li = (xi, yi), where i is the sensor ID, xi is the x-
oordinate,and yi is the y-
oordinate in the road map.
• Step 6: With (s, l), the APL server sends ea
h sensor si itslo
ation with a message (si, li).In the rest of this se
tion, we des
ribe the te
hni
al 
ontent ofea
h step. We start with the se
ond step, be
ause the operationsin step 1 are straightforward.B. Step 2: Traf�
 Analysis for Road Segment Length EstimationIn order to estimate road segment lengths, we found a keyfa
t that vehi
le arrival patterns in one sensor are statisti
allymaintained at neighboring sensors 
lose to the sensor. This meansthat the more 
losely the two sensors are lo
ated, the more
orrelated the vehi
le-dete
tion timestamps are. Consequently,we 
an estimate road segment length with estimated movementtime between two adja
ent sensors using the 
orrelation of thetimestamp sets of these two sensors, along with the vehi
le meanspeed (i.e., speed limit given on the road segment). Through bothoutdoor test and simulation, we found that we 
an estimate thelengths of road segments used by vehi
les during their travels onroadways only with vehi
le-dete
tion timestamps.1) Time Differen
e on Dete
tion (TDOD) Operation: The TimeDifferen
e on Dete
tion (TDOD) for timestamp sets Ti and Tjfrom two sensors si and sj is de�ned as follows:

dij
hk = |tih − tjk| (1)where tih ∈ Ti for h = 1, ..., |Ti| is the h-th timestamp of sensor

si and tjk ∈ Tk for k = 1, ..., |Tj| is the k-th timestamp of sensor
sj . We de�ne a quantized Time Differen
e on Dete
tion (TDOD)as follows:

d̂ij
hk = g(dij

hk) (2)where g is a quantization fun
tion to map the real value of dij
hk tothe dis
rete value. The interval between two adja
ent quantizationlevels is de�ned a

ording to the granularity of the time differen
e,su
h as 1 se
ond, 0.1 se
ond or 1 millise
ond. The number mof quantization levels (i.e., qk for k = 1, ..., m) is determined
onsidering the expe
ted movement time of vehi
les in the longestroad segment of the relevant road network.
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Fig. 3. Dete
tion Sequen
e for Vehi
les at Sensors s1, s3, and s2
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(a) TDOD between Timestamps t1,1 and t2,i
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(b) TDOD between Timestamps t1,2 and t2,iFig. 4. Time Differen
e On Dete
tion for Sensors s1 and s2
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Fig. 5. Estimation of Movement Time through TDOD OperationWe de�ne frequen
y as the 
ount of a dis
rete time differen
e.After the TDOD operation for two timestamp sets from twosensors, the quantization level with the highest frequen
y (i.e.,
d̂ij ) is regarded as the movement time of vehi
les for the roadwaybetween these two sensors si and sj as follows:

d̂ij ← argmax
qk

f(qk) (3)where f is the frequen
y of quantization level qk for k = 1, ..., m.The movement time on the road segment 
an be 
onverted intoroad segment length using the formula l = vt, where l is the roadsegment's length, v is the vehi
le mean speed, and t is the vehi
lemean movement time on the road segment. For example, Figure 3shows the dete
tion sequen
e for vehi
les at interse
tion nodes
s1, s2, and s3 in Figure 1(e), where s2 is a 
ommon neighborof s1 and s3. Figure 4 shows the TDOD operation for nodes s1and s2 that is a kind of Cartesian produ
t for two timestamp sets.Figure 5 shows the histogram obtained by the TDOD operation for
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Fig. 6. Road Networks for Outdoor TestTABLE IOUTDOOR TEST RESULTSExpe
ted MeasuredRoad Segment Distan
e Movement Time Movement TimeA and B 800 m 45 se
 43 se
C and D 800 m 45 se
 43 se
B and C 900 m 51 se
 54 se
D and A 900 m 51 se
 56 se
two timestamp sets. The time differen
e value (7.3se
) with thehighest frequen
y indi
ates the estimated movement time betweentwo nodes.We performed outdoor test to verify whether our TDOD opera-tion 
ould give good estimates for road segment lengths in terms ofvehi
le movement time. The results of outdoor test indi
ate thatour TDOD 
an give reasonable road segment length indi
ators.Figure 6 shows the road map of lo
al roadways in Minnesota foroutdoor test. The test roadways 
onsist of four interse
tions A,B, C, and D. Speed limit on these road segments is 64 km/h(or 40 mph). We performed vehi
le dete
tion manually for morea

urate observation; Note that it is hard to get a

urate vehi
ledete
tions at interse
tions with the 
urrent motes due to the sensor
apability and mote's physi
al size, so the development of thevehi
le dete
tion algorithm based on motes is our future work.Table I shows the expe
ted movement times and measuredmovement times for these four road segments through TDOD.It 
an be seen that the estimated movement times are 
lose tothe expe
ted movement times. Thus, with the TDOD, a virtualtopology 
an be 
onstru
ted, as shown in Figure 1(b), 
ontainingthe distan
e between two arbitrary nodes, 
alled virtual edge.2) Enhan
ement of the Road Segment Length Estimation:We found that an estimate 
lose to real road segment length
annot always be obtained by the maximum frequen
y throughthe TDOD operation dis
ussed previously. The reason is thatthere are some noisy estimates with higher frequen
ies than anexpe
ted good estimate. In order to resolve this problem, weintrodu
e an aggregation method where the mean of severaladja
ent time differen
es be
omes a new TDOD value, and thesum of frequen
ies of those is the 
orresponding frequen
y. Thisis based on an observation that time differen
es 
lose to a realtime differen
e (i.e., movement time needed by a vehi
le withthe vehi
le mean speed on a road segment) have relatively high
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Fig. 7. Comparison between Non-aggregation Method and Aggregation Methodfrequen
ies by the TDOD operation for two timestamp series, asshown in Figure 4. On the other hand, we observe that a noisyestimate with the highest frequen
y o

urs randomly, and itsneighbor estimates have relatively low frequen
ies. This methodbased on TDOD aggregation is 
alled as the Aggregation Methodand the previous simple TDOD is 
alled as the Non-aggregationMethod. We determine the aggregation window size proportionallyto standard deviation σv of the vehi
le speed, su
h as c · σv for
c > 0.Figure 7 shows the 
omparison between the non-aggregationmethod and aggregation method through simulation. We foundthat for the road segment between sensors s2 and s3 in Figure 1(e)whose real time differen
e is 9.36 se
 with the vehi
le speed
µv=50 km/h, the non-aggregation method makes a wrong estimate(i.e., 26.8 se
), but the aggregation method makes a 
orre
testimate (i.e., 9.3 se
). Thus, this aggregation method is used toobtain good estimates for road segment lengths in virtual topology.
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(
) Virtual Graph after Pre-�ltering based on the Rela-tive Deviation Error
1
s


2
s


3
s


4
s


5
s

19
s


20
s


22
s


(d) Virtual Graph after Pre-�ltering based on the Mini-mum Spanning TreeFig. 8. Pro
edure of Pre�ltering for obtaining Virtual Graph

C. Step 3: Pre�ltering Algorithm for a Virtual GraphThe pre�ltering algorithm is performed to make a virtual graphthat has only edge estimates from the virtual topology obtainedfrom the TDOD operations in Se
tion III-B. We observe that theTDOD operation dis
ussed in Se
tion III-B gives large errors inpath estimates between two arbitrary sensors in virtual topology.The reason is that when two sensors are separated far fromea
h other, the 
orrelation between the two timestamp sets fromthem is reversely proportional to the distan
e between the twosensors. On the other hand, the edge estimates (i.e., estimatesfor road segments) produ
ed by the TDOD operation are mu
hmore a

urate due to the high 
orrelation of the timestamps. Fromthis observation, we �lter out all ina

urate path estimates fromthe virtual topology, ex
ept for edge estimates so that the virtualtopology 
an be 
onverted into a virtual graph. However, therestill remain a

urate path estimates of two sensors separated fromea
h other by approximately two or three road segments. We 
an�lter out the a

urate path estimates using the fa
t that the shortestestimate should usually be an edge estimate, and a path estimate
onsists of su
h edges. Thus, our pre�ltering algorithm 
onsistsof two pre�lterings:1) Pre�ltering based on the Relative Deviation Error and2) Pre�ltering based on the Minimum Spanning Tree.We explain the pre�ltering pro
edure and the effe
t of twopre�lterings on virtual topology using Figure 8. As shown inFigure 8(a), there is a partial road network of the entire one shownin Figure 1(a) 
ontaining sensors {s1, s2, s3, s4, s5, s19, s20, s22}.In the virtual topology, two arbitrary sensors among them have adistan
e estimate, as shown in Figure 8(b). Using the pre�lteringbased on the relative deviation error, we remove the virtualtopology's edges 
orresponding to ina

urate path estimates, andwe then 
onstru
t a virtual graph, shown in Figure 8(
). Next weapply the pre�ltering based on the minimum spanning tree tothe virtual graph, so the virtual graph 
ontaining only the edgeestimates is 
onstru
ted by removing a

urate path estimates, asshown in Figure 8(d). In this se
tion, we explain the idea of thesetwo pre�lterings for obtaining the virtual graph Gv = (Vv, Ev)from virtual topology Hv = (Vv, Mv) in detail.1) Pre�ltering based on the Relative Deviation Error: Largeerrors in path estimates will signi�
antly affe
t our future steps.An example is as follows: We know that the smallest entry in Mvmust be an edge when no large error o

urs, sin
e path lengthsare always the sum of several edge lengths. However, when thereare large errors in Mv, they 
an have any value in Mv, that is,either a large value or a small value. In this 
ase, the smallestentry will be no longer regarded as an edge estimate rather thana path estimate perturbed by a large error. As a result, it is veryimportant to �lter out all the entries having large errors at �rst,regarding them as path estimates.We de�ne Relative Deviation (φ) as the ratio of the standarddeviation (σ) to the mean (µ), that is, φ = σ/µ. To 
ompute boththe mean and the standard deviation of ea
h entry in Mv, We usemultiple estimation matri
es of Mv per measurement time withthe same duration. In order to 
ompute the relative deviations ofthe estimates, we divide the vehi
le-dete
tion timestamps into timewindows (e.g., every one hour) and perform the TDOD operation



for the timestamps of two arbitrary sensors within the same timewindow. We then 
ompute the relative deviations of the virtualedge estimates for ea
h pair of sensors. If the relative deviation isgreater than a 
ertain threshold ε (e.g., ε = 5%), the 
orrespondingentry is regarded as a path estimate, and it is repla
ed with ∞,indi
ating that this entry is a path estimate.2) Pre�ltering based on the Minimum Spanning Tree: Supposethat there are n sensors in the virtual topology. Let Mv be the
n×n adja
en
y matrix of the virtual topology. Pre�ltering basedon the Minimum Spanning Tree 
onsists of two steps: The �rststep identi�es the �rst n − 1 edges of the virtual graph, and these
ond step identi�es the remaining edges of the virtual graph.Step 1: We sele
t n− 1 edges from Mv that make a MinimumSpanning Tree (MST) for the virtual topology by using a Mini-mum Spanning Tree algorithm, su
h as Prim's algorithm [9℄. Wehave proved that the n−1 edges that form the MST are de�nitelyedge estimates in our te
hni
al report [14℄.Step 2: In order to �nd all of the other edges of the virtualgraph Gv = (Vv, Ev), as shown in Figure 1(
), with n− 1 edgesobtained by the previous step, we 
ompute the shortest pathsbetween all pairs of nodes and 
reate a new matrix M ′

v. Weuse the fa
t that M ′

v(i, j) ≥ Mv(i, j). For an arbitrary pair ofnodes i and j, M ′

v(i, j) is the shortest path 
reated only by
n− 1 edges, while Mv(i, j) is the one 
reated from more edges;that is, Mv(i, j) might be shorter than M ′

v(i, j). In our te
hni
alreport [14℄, we prove that Mv(i, j) must be an edge estimate ifit is the smallest one among all of the entries in Mv that satis�es
Mv(i, j) < M ′

v(i, j), sin
e there is no entry with large error afterthe previous �ltering. Consequently, Mv(i, j) is the n-th edgeestimate. We update the set of edges by adding this new edge,and we also update the matrix M ′

v using the new set. We repeatthis pro
ess until M ′

v and Mv are exa
tly the same. In this way,we 
an �nd out all of the other edge estimates of Ev from Mv.D. Step 4: Graph Mat
hingIn this se
tion, we explain how to 
onstru
t a redu
ed virtualsubgraph from the virtual graph 
onstru
ted by the pre�ltering inSe
tion III-C, and then how to mat
h the redu
ed virtual subgraphand the real graph that are isomorphi
 to ea
h other [8℄.1) Constru
tion of the Redu
ed Virtual Subgraph: In orderto perform isomorphi
 graph mat
hing, two graphs should beisomorphi
. Sin
e the virtual graph Gv returned from the pre-�ltering module has more verti
es and edges than the real graph
Gr, we 
annot perform isomorphi
 graph mat
hing dire
tly. Fromthe observation that ea
h interse
tion node has at least threeneighboring sensors, a redu
ed virtual subgraph G̃v is made fromthe virtual graph as follows:Let Gv = (Vv, Ev) be a virtual graph. Let N be a set of non-interse
tion nodes of Gv . Let dGv

(u) be the degree of u in thegraph Gv. Let euv be the edge whose endpoints are u and v for
u, v ∈ Vv . Let l(e) be the length of the edge e ∈ Ev . We performthe following for all u ∈ N :

• If dGv
(u) = 1, then delete u from Gv and delete an edgewhose one endpoint is u from Gv .

• If dGv
(u) = 2, then delete u from Gv , merge the two edges

eux and euy, whose one endpoint is u, into one edge exy.The length of the edge exy is set to l(eux) + l(euy).

2) Weighted Graph Mat
hing: Sin
e the redu
ed virtual sub-graph's Ẽv and the real graph's Er are isomorphi
, our graphmat
hing 
an be de�ned as sear
hing for the n × n permutationmatrix P to satisfy the following, in whi
h P is the row permu-tation matrix, and PT is the 
olumn permutation matrix:
Φ(P ) = ‖Er − PẼvP

T ‖22 (4)
P ← argmin

P̂
Φ(P̂ ) (5)

Êv ← PẼvP
T (6)Let P be an n × n optimal permutation matrix of Eq. 5 interms of the minimum estimation error. The result Êv of Eq. 6is a matrix isomorphi
 to Er where indi
es in both matri
esindi
ate the node identi�
ations; that is, the sensor ID in Ẽv
orresponds to the interse
tion ID in Er for i = 1, ..., n. Thisoptimization problem is 
alled the Weighted Graph Mat
hingProblem (WGMP). In order to get the exa
t solution P , allowingthe global minimum of Φ(P ), all of the possible 
ases shouldbe 
he
ked. Sin
e this is a purely 
ombinatorial problem, thealgorithm based on 
ombination has the time 
omplexity of O(n!)for n nodes. Consequently, this is an unfeasible approa
h inreality. We need to use approximate approa
hes to give an a

uratepermutation matrix P , su
h as an eigende
omposition approa
hto WGMP [15℄, known as an optimal approa
h. For our graphmat
hing purpose, we adopt the eigende
omposition approa
h thathas polynomial time 
omplexity.We investigated the effe
t of the real vehi
le mean speeddifferent from the speed limit on roadways. The 
on
lusion isthat as long as all of the road segments have the same 
onstants
aling fa
tor for their mean speeds, our lo
alization algorithmworks well regardless of the distribution of the vehi
le mean speedduring traf�
 measurement! In other words, our algorithm workseven though the a
tual speeds are unknown. In the 
ase whereea
h road segment has a different s
aling fa
tor a

ording tounbalan
ed 
ongestion 
onditions, our algorithm does not workwell. To address this issue, we suggest to 
ondu
t measurementsunder a light road traf�
 
ondition, su
h as during night. Without
ongestion, we expe
t that all of the road segments tend to havethe same 
onstant s
aling fa
tor for their mean speeds. We havedetailed proof on this subje
t. One 
an refer to our te
hni
alreport [14℄ for detailed information.E. Step 5: Node Lo
ation Identi�
ationIn this se
tion, we explain how to identify the lo
ation of ea
hinterse
tion node with the permutation matrix obtained throughthe graph mat
hing in Se
tion III-D, and then how to identify thelo
ation of ea
h non-interse
tion node.1) Lo
alization of Interse
tion Nodes: We perform the identi-�
ation of ea
h interse
tion node's lo
ation with the permutationmatrix P returned from the graph-mat
hing module. Let the per-mutation fun
tion σ(s) be a map 
orresponding to the permutationmatrix P

σ : s ∈ {1, ..., n} → p ∈ {1, ..., n}, (7)that is, p = σ(s) where s is the sensor ID and p is the interse
tionID. With the permutation fun
tion in Eq. 7, we 
an identify theinterse
tion ID (p) on the road map for ea
h interse
tion node (s).



2) Lo
alization of Non-interse
tion Nodes: In the previousse
tion, we know the positions of the interse
tion nodes. Nowwe lo
alize the positions of the non-interse
tion nodes. Using Evof the virtual graph Gv , we begin from an interse
tion node u,and we 
reate a path from u to another interse
tion node v, that is,
u→ a1 → a2 → · · · → am → v. All ai for i = 1, ..., m are non-interse
tion nodes whose degrees are 2. Sin
e we have alreadylo
alized nodes u and v, and all of these ai must be pla
ed on theedge from u to v on the redu
ed virtual subgraph G̃v , as shownFigure 1(e), we 
an know the positions of these ai by looking atthe length information in Ev of the virtual graph Gv , as shown inFigure 1(
). We repeat this pro
edure until we lo
alize all of thenon-interse
tion nodes in the virtual graph.IV. PERFORMANCE EVALUATIONAs we explain in the introdu
tion, there is no other solution ap-propriate to our s
enario for lo
alization in road networks. Insteadof 
omparing our s
hemes with other state-of-the-art s
hemes, weinvestigate the effe
t of the following three parameters on ourlo
alization s
heme:

• The time syn
hronization error standard deviation,
• The vehi
le speed standard deviation, and
• The vehi
le interarrival time.We present two kinds of performan
e evaluations as follows:First, we 
ompare the aggregation-based estimation method withthe nonaggregation-based estimation method in terms of theestimation a

ura
y for road segment length. For the estimationa

ura
y, the Matrix Error Ratio is de�ned as the ratio of the sumof the entries of the absolute differen
e of two matri
es (i.e., Erand Ev) to the sum of the entries of referen
e matrix (i.e., Er).Se
ond, we evaluate the performan
e of ea
h lo
alization method
onsisting of a 
ombination of the aggregation-based estimationmethod and pre�ltering types below that use the same graph-mat
hing algorithm spe
i�ed in Se
tionIII-D. The Lo
alizationError Ratio is de�ned as the ratio of the number of in
orre
tlylo
alized sensors to the number of all sensors deployed on theroad network. We just deploy interse
tion nodes for simpli
ity.TABLE IISIMULATION ENVIRONMENTParameter Des
riptionNumber of 18 sensors (from s1 to s18) are deployed in the road network,sensors as shown in Figure 1.Simulation Sensors perform vehi
le dete
tion for 10 hours and store thetime vehi
le-dete
tion timestamps into their repositories.Time syn
h. Sensor time syn
hronization error 
onforms to a uniform distributionerror with the interval [−ǫmax, ǫmax] where ǫmax=0.01 se
.Vehi
le Vehi
le speed 
onforms to a Gaussian distribution of N(µv, σ2

v)speed where µv = 50 km/h and σv = 5 km/h. Vehi
le's maximumdistribution speed is 80 km/h and vehi
le's minimum speed is 20 km/h.Interarrival Every vehi
le arrives at road network a

ording to an exponentialtime distribution with mean interarrival time 1/λ = 120 se
.Vehi
le Let du,v be the shortest path distan
e from sour
e interse
tion utravel and destination interse
tion v in road network. Vehi
le's travellength path length from u and v 
onforms a Gaussian distribution ofdistribution N(µd, σ2

d) where µd = du,v m and σd = 500 m.The simulation environment based on SMPL [16℄ is des
ribedin Table II. From road traf�
 measurement, we 
reate a matrix Mvfor the virtual topology as the average of 10 matri
es Mvs that are

adja
en
y matri
es of the virtual topology 
reated from the samemeasurement time, su
h as one hour; that is, Mv is the all-pairsshortest path estimation matrix for the virtual topology.A. Performan
e Comparison between Road Segment EstimationMethodsWe 
ompare the performan
e of lo
alization s
hemes a

ordingto the following two road segment estimation methods:1) The aggregation-based road segment estimation and2) The nonaggregation-based road segment estimation.After the estimation, we perform the pre�ltering algorithm de-s
ribed in Se
tion III-C and the graph mat
hing algorithm de-s
ribed in Se
tion III-D in order to evaluate the Matrix Error Ratioand Lo
alization Error Ratio.For the maximum time syn
hronization error, Figure 9 showsthe performan
e 
omparison between the aggregation and non-aggregation methods. For the aggregation method, the MatrixError Ratio is less than 0.03, whi
h indi
ates that Ẽv of theredu
ed virtual subgraph G̃v is very 
lose to the Er of the realgraph Gr, as shown in Figure 1, where G̃v is a subgraph ofthe virtual topology Hv . It 
an be seen that most Matrix ErrorRatios of the aggregation method are less than the Matrix ErrorRatios of the nonaggregation method. That is why the aggregationmethod gives better lo
alization than the nonaggregation method.From Figure 9(b), we 
an see that our lo
alization works wellin the 
ase in whi
h the maximum time syn
hronization erroris less than 0.4 se
onds. We 
an 
laim that our lo
alizations
heme 
an work in the real environment, sin
e the state-of-the-art time syn
hronization proto
ols 
an give the a

ura
y at themi
rose
ond level [11℄, [12℄.
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(b) Lo
alization Error Ratio a

ord-ing to Maximum Time Syn
hroniza-tion ErrorFig. 9. Performan
e Comparison between Aggregation and NonaggregationMethods for Maximum Time Syn
hronization Error (ǫmax)For the vehi
le speed deviation, as shown Figure 10, theaggregation method outperforms the nonaggregation method inthat the Matrix Error Ratio of the aggregation method is lessthat that of the nonaggregation method. Also, that is why theaggregation method 
an give more a

urate lo
alization than thenon-aggregation method, ex
ept for the vehi
le speed deviationof 15 km/h. This speed deviation of 15 km/h is the value outof the operational region for our lo
alization s
heme, so the
orresponding lo
alization error ratio is always a random value
lose to 1. However, 
onsidering the real statisti
s [13℄ that thevehi
le speed deviation in four-lane roadways is 9.98 km/h, andthe vehi
le speed deviation in two-lane roadways is 8.69 km/h,



it 
an be 
laimed that our lo
alization 
an work in the realenvironment, sin
e our lo
alization s
heme works with the vehi
lespeed deviation less than 10 km/h.
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(b) Lo
alization Error Ratio a

ord-ing to Vehi
le Speed DeviationFig. 10. Performan
e Comparison between Aggregation and NonaggregationMethods for Vehi
le Speed Deviation (σv)For the vehi
le interarrival time, as shown Figure 11, we see thatit does not affe
t the performan
e of our lo
alization s
heme. Thereason is that our TDOD operation 
an give a

urate estimatesfor road segment lengths, as long as the vehi
le interarrival timeis larger than 1 se
ond and it allows enough road traf�
 to 
overall of the road segments. In fa
t, most people drive their vehi
leswith the interarrival time longer than 1 se
ond for their safety,so we 
an 
laim that our lo
alization works under normal driving
ondition. For the aggregation method, the Matrix Error Ratio isless than 0.015, whi
h indi
ates that Ẽv of the redu
ed virtualsubgraph G̃v is very 
lose to the Er of the real graph Gr. This iswhy the aggregation method gives 100% lo
alization, ex
ept for1-se
ond vehi
le interarrival time. Also, we 
an see that all of theMatrix Error Ratios of the aggregation method are less than thoseof the nonaggregation method.
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(b) Lo
alization Error Ratio a

ord-ing to Vehi
le Interarrival TimeFig. 11. Performan
e Comparison between Aggregation and NonaggregationMethods for Vehi
le Interarrival Time (1/λ)B. Performan
e Comparison among Pre�ltering TypesWe 
ompare the performan
e of lo
alization s
hemes, a

ordingto the following three pre�ltering types:1) Pre�lter 1: Pre�ltering based on the minimum spanning treedes
ribed in Se
tion III-C2,2) Pre�lter 2: Pre�ltering based on the relative deviation errordes
ribed in Se
tion III-C1, and3) APL Pre�lter: Pre�ltering based on both the relative devia-tion error and the minimum spanning tree.Ea
h pre�ltering type uses a matrix Mv 
reated by theaggregation-based road segment method. After the pre�ltering

step and the 
onstru
tion step of a redu
ed virtual subgraph
G̃v = (Ṽv, Ẽv), the same graph-mat
hing algorithm des
ribed inSe
tion III-D is applied to the output matrix Ẽv in order to evaluatethe Lo
alization Error Ratio. From Figure 12, our lo
alization withAPL Pre�lter works well under reasonable, real environment inwhi
h the maximum time syn
hronization error is less than 0.4se
, and the vehi
le speed deviation is less than 12.5 km/h. Aswe 
an see in Figure 12, one missing of the minimum-spanning-tree-based pre�lter (i.e., Pre�lter 1) and the relative-deviation-error-based pre�lter (i.e., Pre�lter 2) 
annot allow the a

uratelo
alization under the reasonable, real environment. This is whywe use the 
ombination of two pre�lters.
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(b) Lo
alization Error Ratio a

ord-ing to Vehi
le Speed DeviationFig. 12. Performan
e Comparison among Pre�ltering TypesC. APL Operational RegionWe evaluate APL to see what range of time syn
hronization andvehi
le speed deviation it works well in. Figure 13 shows the APLoperational region that 
ontains the range of the maximum timesyn
hronization error and the vehi
le standard deviation to allowa perfe
t lo
alization under the simulation environment given inTable II. Our lo
alization s
heme works well in the 
ase in whi
hthe vehi
le standard deviation is less than 10 km/h, regardless ofthe maximum time syn
hronization error from 0.01 to 0.1 se
.This threshold for the vehi
le standard deviation is 
lose to thereal statisti
s of the vehi
le speed deviation (e.g., 9.98 km/h forfour-lane roadways) [13℄. For the vehi
le interarrival time, ourlo
alization works well as long as the interarrival time is greaterthan 1 se
ond. Thus, the vehi
le speed deviation is the dominantfa
tor of the performan
e in our lo
alization s
heme.
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Fig. 13. APL Operational Region for Maximum Time Syn
hronization Error andVehi
le Speed DeviationAlso, we investigated what effe
ts the dete
tion missing and thedupli
ate dete
tion have for the whole lo
alization a

ura
y by



modeling the dete
tion missing event and the dupli
ate dete
tionevent as Bernoulli trial. The result is that our lo
alization s
hemehas no lo
alization error under the simulation setting in Table IIwith the dete
tion missing probability from 0 to 0.2 at ea
h sensorand with the dupli
ate dete
tion probability from 0.1 to 1 at ea
hsensor, respe
tively. Thus, it 
an be 
laimed that our lo
alizations
heme 
an work in the real road networks with noises.We have 
onsidered several pra
ti
al issues in our extendedte
hni
al report [14℄ for the deployment of our lo
alization s
hemein real road networks: (a) graph mat
hing under interse
tion nodemissing and (b) mat
hing ambiguity due to topology symmetri
ity.Due to spa
e 
onstraints, we 
annot explain them in detail.V. RELATED WORKMany lo
alization s
hemes have been proposed so far, and they
an be 
ategorized into three 
lasses: (a) Range-based lo
alizations
hemes, (b) Range-free lo
alization s
hemes, and (
) Event-driven lo
alization s
hemes. Range-based s
hemes require 
ostlyhardware devi
es to estimate the distan
e between nodes, alongwith the additional energy 
onsumption for them. The Time ofArrival (TOA) (e.g., GPS [1℄) and Time Differen
e of Arrival(TDOA) s
hemes (e.g., Cri
ket [2℄ and AHLoS [17℄) measure thepropagation time of the signal, and estimate the distan
e based onthe propagation speed. Sin
e ultrasound signals usually propagateonly 20∼30 feet. TDOA is not quite suitable for sparse networks.The Angle of Arrival (AOA) s
hemes [3℄ estimate the positions ofthe nodes by sensing the dire
tion from whi
h a signal is re
eived.The Re
eived Signal Strength Indi
ator (RSSI) s
hemes [18℄ useeither theoreti
al or empiri
al models to estimate the distan
ebased on the loss of power during signal propagation. Both AOAand RSSI are also 
onstrained by their effe
tive distan
e.The range-free lo
alization s
hemes try to lo
alize sensorswithout 
ostly ranging devi
es. One of the most popular range-free s
hemes is based on an
hor-based s
heme. The main ideais that the non-an
hors 
an determine their lo
ations using theoverlapped region of 
ommuni
ation areas for the an
hors [4℄,[5℄, [19℄, [20℄. However, sin
e these s
hemes require a densedeployment of an
hors to give bea
on signals, these solutions arenot appli
able for the lo
alization in sparse road networks.Re
ently, a series of event-driven lo
alization s
hemes havebeen proposed to simplify the fun
tionality of sensors for lo
al-ization, and to provide high-quality lo
alization. The main ideaof these s
hemes is to use arti�
ial events for sensor lo
alizationthat are generated from the event s
heduler [21℄�[24℄. Althoughtheir effe
tive range 
an rea
h hundreds of meters, it needsadditional external devi
es and manual operations to generatearti�
ial events. On the other hand, our lo
alization s
heme isa new bran
h of event-driven lo
alization s
hemes. Be
ause ourlo
alization s
heme is based on natural events of moving vehi
les,there is no su
h problem of the event delivery.VI. CONCLUSIONIn sparse sensor networks, sensors 
annot effe
tively obtainpair-wise ranging distan
e or 
onne
tivity information for thepurpose of lo
alization. To address this issue, this work introdu
esan autonomous passive lo
alization s
heme, 
alled APL, usingonly binary sensors. Our APL system performs the lo
alization

using vehi
le-dete
tion timestamps along with the road map oftarget area. As next step, we will perform the test of our APLsystem in real road networks with Motes su
h as XSM and Mi
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