
APL: Autonomous Passive Loalization for WirelessSensors Deployed in Road NetworksJaehoon Jeong, Shuo Guo, Tian He and David DuDepartment of Computer Siene & Engineering, University of MinnesotaEmail: {jjeong,sguo,tianhe,du}�s.umn.eduAbstrat�In road networks, sensors are deployed sparsely (hun-dreds of meters apart) to save osts. This makes the existingloalization solutions based on the ranging be ineffetive. To addressthis issue, this paper introdues an autonomous passive loalizationsheme, alled APL. Our work is inspired by the fat that vehilesmove along routes with a known map. Using binary vehile-detetiontimestamps, we an obtain distane estimates between any pair ofsensors on roadways to onstrut a virtual graph omposed of sensoridenti�ations (i.e., verties) and distane estimates (i.e., edges). Thevirtual graph is then mathed with the topology of road map, in orderto identify where sensors are loated in roadways. We evaluate ourdesign outdoor in Minnesota roadways and show that our distaneestimate method works well despite of traf� noises. In addition, weshow that our loalization sheme is effetive in a road network witheighteen intersetions, where we found no loation mathing error,even with a maximum sensor time synhronization error of 0.3 seand the vehile speed deviation of 10 km/h.I. INTRODUCTIONLoalization of sensors is a prerequisite step to �nd targetpositions for most military appliations, inluding surveillane andtarget traking. In these appliations, it has been envisioned thatfor the fast, safe deployment, unmanned aerial vehiles drop alarge number of wireless sensors into road networks around atarget area. Many loalization approahes have been proposed inthe ontext of suh a senario. They use either preise rangemeasurements (e.g., TOA [1℄, TDOA [2℄, and AOA [3℄) oronnetivity information (e.g., Centroid [4℄, APIT [5℄, SeRLo[6℄, and Gradient [7℄), between sensors to loate nodes' loations.Unfortunately, all of them ignore an important fat: To overa large area, sensors have to be deployed sparsely (hundredsof meters apart) to save osts. In this sparse deployment, sinesensors annot reah eah other either through ranging devies(e.g., Ultrasound signals an only propagate 20∼30 feet) norsingle-hop RF onnetivity, previous solutions beome ineffetive.To address this issue, we propose an Autonomous PassiveLoalization (APL) algorithm for extremely-sparse wireless sensornetworks. This algorithm is built upon an observation: Militarytargets normally use roadways for maneuver, therefore, only thesensors near the road are atually useful for surveillane. Thesensors away from the roadway an only be used for ommunia-tion, sine targets are out of their sensing range. In other words,it is not important to loalize them. Under suh a senario, theresearh question is how sensors on/near a road an identify theirpositions in a sparse deployment without any pair-wise rangingor onnetivity information.

The high-level idea of our solution is to use vehiles onroadways as natural events for loalization. The solution wouldbe trivial if all nodes are equipped with sophistiated vehileidenti�ation sensor, beause it is relatively easy to measure thedistane between two sensors by multiplying vehiles' averagespeed by Time Differene on Detetion (TDOD) between twosensors orresponding to the same vehile. Obviously vehileidenti�ation sensors would be ostly in terms of hardware, energyand omputation. Therefore, the hallenging researh question ishow to obtain loations of the sensors, using only binary detetionresults without the vehile identi�ation apability in sensors.Our main idea is as follows. Through statistial analysis ofvehile-detetion timestamps, we an obtain distane estimatesbetween any pair of sensors on roadways to onstrut a virtualgraph omposed of sensor identi�ations (i.e., verties) and dis-tane estimates (i.e., edges). The virtual graph is then mathedwith the topology of the known road map. A unique mappingallows us to identify where sensors are loated in roadways.Spei�ally, our loalization sheme onsists of three phases:(a) the estimation of the distane between two arbitrary sensorsin the same road segment; (b) the onstrution of the onnetivityof sensors on roadways; () the identi�ation of sensor loationsthrough mathing the onstruted onnetivity of sensors with thegraph model for the road map. Our key ontributions in this paperare as follows:
• A new arhiteture for autonomous passive loalization usingonly binary detetion of vehiles on the road networks. Un-like previous approahes, APL is designed speially for sparsesensor networks where long distane ranging is dif�ult, ifnot impossible.
• A statistial method to estimate road-segment distane be-tween two arbitrary sensors, based on the onept of TimeDifferene on Detetion (TDOD).
• A pre�ltering algorithm for seleting only robust edge dis-tane estimates between two arbitrary sensors in the sameroad segment. Unreliable path distane estimates are �lteredout for better auray.
• A graph-mathing algorithm for mathing the sensor's iden-ti�ation with a position at the road map of the target area.The rest of this paper is organized as follows. Setion II desribesthe problem formulation. Setion III explains the system design.Setion IV evaluates our algorithm. We summarize related workin SetionV and onlude our work in SetionVI.
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(f) Real Graph orresponding toRoad Map: Gr = (Vr , Er)Fig. 1. Wireless Sensor Network deployed in Road NetworkII. PROBLEM FORMULATIONWe onsider a network model where sensors are plaed at bothintersetion points and non-intersetion points on road networks.The objetive is to loalize wireless sensors deployed in roadnetworks only with a road map and binary vehile-detetiontimestamps taken by sensors as shown in Figure 1(a). We de�neeight terms as follows:1. Intersetion Nodes Sensors plaed at an intersetion and hav-ing more than two neighboring sensors (i.e., degree ≥ 3). InFigure 1(a), sensors a and c are intersetion nodes.2. Non-intersetion Nodes Sensors plaed at a non-intersetionand having one or two neighboring sensors. In Figure 1(a), sensors
b and d are non-intersetion nodes.3. Virtual Topology Let Virtual Topology be Hv = (Vv, Mv),where Vv = {s1, s2, ..., sn} is a set of sensors in the road network,and Mv = [vij ] is a matrix of path length vij for sensors si and
sj . Figure 1(b) shows a virtual topology of sensors to the roadnetwork, shown in Figure 1(a). Mv is a omplete simple graph,sine there is an edge between two arbitrary sensors. We de�ne theedge of the virtual topology as virtual edge. In Figure 1(b), amongthe virtual edges, a solid blak line represents an edge estimatebetween two sensors, whih means that they are adjaent on theroad network. The dotted gray line represents a path estimatebetween two sensors, whih means that they are not adjaent onthe road network.4. Virtual Graph Let Virtual Graph be Gv = (Vv, Ev), where
Vv = {s1, s2, ..., sn} is a set of sensors in the road network,and Ev = [vij ] is a matrix of road segment length vij between

sensors si and sj . Figure 1() shows a virtual graph of the sensornetwork deployed on the road network shown in Figure 1(a), wherethe blak node represents an intersetion node and the gray noderepresents a non-intersetion node.5. Redued Virtual Subgraph Let Redued Virtual Subgraph be
G̃v = (Ṽv , Ẽv), where Ṽv = {s1, s2, ..., sm} is a set of sensorsplaed only at intersetions in the road network, and Ẽv = [vij ] isa matrix of road segment length vij between intersetion nodes siand sj . The redued virtual subgraph G̃v is obtained by deletingnon-intersetion nodes and their edges from the virtual graph Gvthrough the degree information in Gv . Refer to Setion III-D1. Forexample, Figure 1(e) shows a redued virtual subgraph onsistingof only intersetion nodes of virtual graph in Figure 1().6. Real Graph Let Real Graph be Gr = (Vr, Er), where Vr =
{p1, p2, ..., pn} is a set of intersetions in the road network aroundthe target area, and Er = [rij ] is a matrix of road segment length
rij for intersetions pi and pj . Real Graph an be obtained throughmap servies, suh as Google Earth and Yahoo Maps. Figure 1(f)shows a real graph orresponding to the road network that onsistsof only intersetion points, shown in Figure 1(d). The real graphis isomorphi to the redued virtual subgraph graph G̃v shown inFigure 1(e) [8℄.7. Shortest Path Matrix Let Shortest Path Matrix for G =
(V, E) be M suh that M = [mij ] is a matrix of the shortest pathlength between two arbitrary nodes i and j in G. M is omputedfrom E by the All-Pairs Shortest Paths algorithm, suh as theFloyd-Warshall algorithm [9℄. We de�ne Mr as the shortest pathmatrix for the real graph Gr = (Vr, Er), and de�ne Mv as theshortest path matrix for the virtual graph Gv = (Vv, Ev).
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~ Fig. 2. APL System Arhiteture8. APL Server A omputer that performs the loalization algo-rithm with binary vehile-detetion timestamps olleted from thesensor network.The loalization design of APL is based on the followingassumptions:

• Sensors have simple sensing devies for binary vehile de-tetion without any ostly ranging or GPS devies [10℄. Eahdetetion is a tuple (si, tj), onsisting of a sensor ID si andtimestamp tj .
• Sensors are time-synhronized at the milliseond level. Thisan be ahieved easily beause many state-of-art solu-tions [11℄, [12℄ an ahieve miroseond level aurate.
• The APL server has road map information for the target areaunder surveillane and an onstrut a real graph onsistingof intersetions in the road network.
• There is an ad-ho network or a delay tolerant network forwireless sensors to deliver vehile-detetion timestamps tothe APL server.
• Vehiles pass through all road segments on the target roadnetworks. The vehile mean speed is lose (but not identi-al) to the speed limit assigned to roadways. The standarddeviation of vehile speed is assumed to be a reasonablevalue, based on real road traf� statistis obtained fromtransportation researh [13℄.III. APL SYSTEM DESIGNA. System ArhitetureWe use an asymmetri arhiteture for loalization as in Fig-ure 2 in order to simplify the funtionality of sensors for loal-ization. As simple devies, sensors only monitor road traf� andregister vehile-detetion timestamps into their loal repositories.A server alled the APL server proesses the omplex omputationfor loalization. Spei�ally, the loalization proedure onsists ofthe following steps as shown in Figure 2:
• Step 1: After road traf� measurement, sensor si sends theAPL server its vehile-detetion timestamps along with itssensor ID, i.e., (si, Ti), where si is sensor ID and Ti istimestamps.
• Step 2: The traf� analysis module estimates the road seg-ment length between two arbitrary sensors with the timestampinformation, onstruting a virtual topology Hv = (Vv, Mv),where Vv is the vertex set of sensor IDs, and Mv is the matrixontaining the distane estimate of every sensor pair.

• Step 3: The pre�ltering module onverts the virtual topology
Hv into a virtual graph Gv = (Vv, Ev), where Vv is thevertex set of the sensor IDs, and Ev is the adjaeny matrixof the estimated road segment lengths.

• Step 4: The graph-mathing module onstruts a reduedvirtual subgraph G̃v = (Ṽv, Ẽv) from the virtual graph Gv,where Ṽv is a set of intersetion nodes among Vv , and Ẽvis a set of edges whose endpoints both belong to Ṽv . G̃v isisomorphi to the real graph Gr = (Vr , Er). Then the graph-mathing module omputes a permutation matrix P , makingthe redued virtual subgraph G̃v = (Ṽv , Ẽv) be isomorphito the real graph Gr = (Vr , Er).
• Step 5: The loation identi�ation module determines eahsensor's loation on the road map by applying the permu-tation matrix P to both the redued virtual subgraph G̃vand the real graph Gr. Through this mapping, node loationinformation (s, l) is onstruted suh that s is the sensorID vetor, and l is the orresponding loation vetor; that is,

li = (xi, yi), where i is the sensor ID, xi is the x-oordinate,and yi is the y-oordinate in the road map.
• Step 6: With (s, l), the APL server sends eah sensor si itsloation with a message (si, li).In the rest of this setion, we desribe the tehnial ontent ofeah step. We start with the seond step, beause the operationsin step 1 are straightforward.B. Step 2: Traf� Analysis for Road Segment Length EstimationIn order to estimate road segment lengths, we found a keyfat that vehile arrival patterns in one sensor are statistiallymaintained at neighboring sensors lose to the sensor. This meansthat the more losely the two sensors are loated, the moreorrelated the vehile-detetion timestamps are. Consequently,we an estimate road segment length with estimated movementtime between two adjaent sensors using the orrelation of thetimestamp sets of these two sensors, along with the vehile meanspeed (i.e., speed limit given on the road segment). Through bothoutdoor test and simulation, we found that we an estimate thelengths of road segments used by vehiles during their travels onroadways only with vehile-detetion timestamps.1) Time Differene on Detetion (TDOD) Operation: The TimeDifferene on Detetion (TDOD) for timestamp sets Ti and Tjfrom two sensors si and sj is de�ned as follows:

dij
hk = |tih − tjk| (1)where tih ∈ Ti for h = 1, ..., |Ti| is the h-th timestamp of sensor

si and tjk ∈ Tk for k = 1, ..., |Tj| is the k-th timestamp of sensor
sj . We de�ne a quantized Time Differene on Detetion (TDOD)as follows:

d̂ij
hk = g(dij

hk) (2)where g is a quantization funtion to map the real value of dij
hk tothe disrete value. The interval between two adjaent quantizationlevels is de�ned aording to the granularity of the time differene,suh as 1 seond, 0.1 seond or 1 milliseond. The number mof quantization levels (i.e., qk for k = 1, ..., m) is determinedonsidering the expeted movement time of vehiles in the longestroad segment of the relevant road network.
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Fig. 5. Estimation of Movement Time through TDOD OperationWe de�ne frequeny as the ount of a disrete time differene.After the TDOD operation for two timestamp sets from twosensors, the quantization level with the highest frequeny (i.e.,
d̂ij ) is regarded as the movement time of vehiles for the roadwaybetween these two sensors si and sj as follows:

d̂ij ← argmax
qk

f(qk) (3)where f is the frequeny of quantization level qk for k = 1, ..., m.The movement time on the road segment an be onverted intoroad segment length using the formula l = vt, where l is the roadsegment's length, v is the vehile mean speed, and t is the vehilemean movement time on the road segment. For example, Figure 3shows the detetion sequene for vehiles at intersetion nodes
s1, s2, and s3 in Figure 1(e), where s2 is a ommon neighborof s1 and s3. Figure 4 shows the TDOD operation for nodes s1and s2 that is a kind of Cartesian produt for two timestamp sets.Figure 5 shows the histogram obtained by the TDOD operation for
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Fig. 6. Road Networks for Outdoor TestTABLE IOUTDOOR TEST RESULTSExpeted MeasuredRoad Segment Distane Movement Time Movement TimeA and B 800 m 45 se 43 seC and D 800 m 45 se 43 seB and C 900 m 51 se 54 seD and A 900 m 51 se 56 setwo timestamp sets. The time differene value (7.3se) with thehighest frequeny indiates the estimated movement time betweentwo nodes.We performed outdoor test to verify whether our TDOD opera-tion ould give good estimates for road segment lengths in terms ofvehile movement time. The results of outdoor test indiate thatour TDOD an give reasonable road segment length indiators.Figure 6 shows the road map of loal roadways in Minnesota foroutdoor test. The test roadways onsist of four intersetions A,B, C, and D. Speed limit on these road segments is 64 km/h(or 40 mph). We performed vehile detetion manually for moreaurate observation; Note that it is hard to get aurate vehiledetetions at intersetions with the urrent motes due to the sensorapability and mote's physial size, so the development of thevehile detetion algorithm based on motes is our future work.Table I shows the expeted movement times and measuredmovement times for these four road segments through TDOD.It an be seen that the estimated movement times are lose tothe expeted movement times. Thus, with the TDOD, a virtualtopology an be onstruted, as shown in Figure 1(b), ontainingthe distane between two arbitrary nodes, alled virtual edge.2) Enhanement of the Road Segment Length Estimation:We found that an estimate lose to real road segment lengthannot always be obtained by the maximum frequeny throughthe TDOD operation disussed previously. The reason is thatthere are some noisy estimates with higher frequenies than anexpeted good estimate. In order to resolve this problem, weintrodue an aggregation method where the mean of severaladjaent time differenes beomes a new TDOD value, and thesum of frequenies of those is the orresponding frequeny. Thisis based on an observation that time differenes lose to a realtime differene (i.e., movement time needed by a vehile withthe vehile mean speed on a road segment) have relatively high
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Fig. 7. Comparison between Non-aggregation Method and Aggregation Methodfrequenies by the TDOD operation for two timestamp series, asshown in Figure 4. On the other hand, we observe that a noisyestimate with the highest frequeny ours randomly, and itsneighbor estimates have relatively low frequenies. This methodbased on TDOD aggregation is alled as the Aggregation Methodand the previous simple TDOD is alled as the Non-aggregationMethod. We determine the aggregation window size proportionallyto standard deviation σv of the vehile speed, suh as c · σv for
c > 0.Figure 7 shows the omparison between the non-aggregationmethod and aggregation method through simulation. We foundthat for the road segment between sensors s2 and s3 in Figure 1(e)whose real time differene is 9.36 se with the vehile speed
µv=50 km/h, the non-aggregation method makes a wrong estimate(i.e., 26.8 se), but the aggregation method makes a orretestimate (i.e., 9.3 se). Thus, this aggregation method is used toobtain good estimates for road segment lengths in virtual topology.
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C. Step 3: Pre�ltering Algorithm for a Virtual GraphThe pre�ltering algorithm is performed to make a virtual graphthat has only edge estimates from the virtual topology obtainedfrom the TDOD operations in Setion III-B. We observe that theTDOD operation disussed in Setion III-B gives large errors inpath estimates between two arbitrary sensors in virtual topology.The reason is that when two sensors are separated far fromeah other, the orrelation between the two timestamp sets fromthem is reversely proportional to the distane between the twosensors. On the other hand, the edge estimates (i.e., estimatesfor road segments) produed by the TDOD operation are muhmore aurate due to the high orrelation of the timestamps. Fromthis observation, we �lter out all inaurate path estimates fromthe virtual topology, exept for edge estimates so that the virtualtopology an be onverted into a virtual graph. However, therestill remain aurate path estimates of two sensors separated fromeah other by approximately two or three road segments. We an�lter out the aurate path estimates using the fat that the shortestestimate should usually be an edge estimate, and a path estimateonsists of suh edges. Thus, our pre�ltering algorithm onsistsof two pre�lterings:1) Pre�ltering based on the Relative Deviation Error and2) Pre�ltering based on the Minimum Spanning Tree.We explain the pre�ltering proedure and the effet of twopre�lterings on virtual topology using Figure 8. As shown inFigure 8(a), there is a partial road network of the entire one shownin Figure 1(a) ontaining sensors {s1, s2, s3, s4, s5, s19, s20, s22}.In the virtual topology, two arbitrary sensors among them have adistane estimate, as shown in Figure 8(b). Using the pre�lteringbased on the relative deviation error, we remove the virtualtopology's edges orresponding to inaurate path estimates, andwe then onstrut a virtual graph, shown in Figure 8(). Next weapply the pre�ltering based on the minimum spanning tree tothe virtual graph, so the virtual graph ontaining only the edgeestimates is onstruted by removing aurate path estimates, asshown in Figure 8(d). In this setion, we explain the idea of thesetwo pre�lterings for obtaining the virtual graph Gv = (Vv, Ev)from virtual topology Hv = (Vv, Mv) in detail.1) Pre�ltering based on the Relative Deviation Error: Largeerrors in path estimates will signi�antly affet our future steps.An example is as follows: We know that the smallest entry in Mvmust be an edge when no large error ours, sine path lengthsare always the sum of several edge lengths. However, when thereare large errors in Mv, they an have any value in Mv, that is,either a large value or a small value. In this ase, the smallestentry will be no longer regarded as an edge estimate rather thana path estimate perturbed by a large error. As a result, it is veryimportant to �lter out all the entries having large errors at �rst,regarding them as path estimates.We de�ne Relative Deviation (φ) as the ratio of the standarddeviation (σ) to the mean (µ), that is, φ = σ/µ. To ompute boththe mean and the standard deviation of eah entry in Mv, We usemultiple estimation matries of Mv per measurement time withthe same duration. In order to ompute the relative deviations ofthe estimates, we divide the vehile-detetion timestamps into timewindows (e.g., every one hour) and perform the TDOD operation



for the timestamps of two arbitrary sensors within the same timewindow. We then ompute the relative deviations of the virtualedge estimates for eah pair of sensors. If the relative deviation isgreater than a ertain threshold ε (e.g., ε = 5%), the orrespondingentry is regarded as a path estimate, and it is replaed with ∞,indiating that this entry is a path estimate.2) Pre�ltering based on the Minimum Spanning Tree: Supposethat there are n sensors in the virtual topology. Let Mv be the
n×n adjaeny matrix of the virtual topology. Pre�ltering basedon the Minimum Spanning Tree onsists of two steps: The �rststep identi�es the �rst n − 1 edges of the virtual graph, and theseond step identi�es the remaining edges of the virtual graph.Step 1: We selet n− 1 edges from Mv that make a MinimumSpanning Tree (MST) for the virtual topology by using a Mini-mum Spanning Tree algorithm, suh as Prim's algorithm [9℄. Wehave proved that the n−1 edges that form the MST are de�nitelyedge estimates in our tehnial report [14℄.Step 2: In order to �nd all of the other edges of the virtualgraph Gv = (Vv, Ev), as shown in Figure 1(), with n− 1 edgesobtained by the previous step, we ompute the shortest pathsbetween all pairs of nodes and reate a new matrix M ′

v. Weuse the fat that M ′

v(i, j) ≥ Mv(i, j). For an arbitrary pair ofnodes i and j, M ′

v(i, j) is the shortest path reated only by
n− 1 edges, while Mv(i, j) is the one reated from more edges;that is, Mv(i, j) might be shorter than M ′

v(i, j). In our tehnialreport [14℄, we prove that Mv(i, j) must be an edge estimate ifit is the smallest one among all of the entries in Mv that satis�es
Mv(i, j) < M ′

v(i, j), sine there is no entry with large error afterthe previous �ltering. Consequently, Mv(i, j) is the n-th edgeestimate. We update the set of edges by adding this new edge,and we also update the matrix M ′

v using the new set. We repeatthis proess until M ′

v and Mv are exatly the same. In this way,we an �nd out all of the other edge estimates of Ev from Mv.D. Step 4: Graph MathingIn this setion, we explain how to onstrut a redued virtualsubgraph from the virtual graph onstruted by the pre�ltering inSetion III-C, and then how to math the redued virtual subgraphand the real graph that are isomorphi to eah other [8℄.1) Constrution of the Redued Virtual Subgraph: In orderto perform isomorphi graph mathing, two graphs should beisomorphi. Sine the virtual graph Gv returned from the pre-�ltering module has more verties and edges than the real graph
Gr, we annot perform isomorphi graph mathing diretly. Fromthe observation that eah intersetion node has at least threeneighboring sensors, a redued virtual subgraph G̃v is made fromthe virtual graph as follows:Let Gv = (Vv, Ev) be a virtual graph. Let N be a set of non-intersetion nodes of Gv . Let dGv

(u) be the degree of u in thegraph Gv. Let euv be the edge whose endpoints are u and v for
u, v ∈ Vv . Let l(e) be the length of the edge e ∈ Ev . We performthe following for all u ∈ N :

• If dGv
(u) = 1, then delete u from Gv and delete an edgewhose one endpoint is u from Gv .

• If dGv
(u) = 2, then delete u from Gv , merge the two edges

eux and euy, whose one endpoint is u, into one edge exy.The length of the edge exy is set to l(eux) + l(euy).

2) Weighted Graph Mathing: Sine the redued virtual sub-graph's Ẽv and the real graph's Er are isomorphi, our graphmathing an be de�ned as searhing for the n × n permutationmatrix P to satisfy the following, in whih P is the row permu-tation matrix, and PT is the olumn permutation matrix:
Φ(P ) = ‖Er − PẼvP

T ‖22 (4)
P ← argmin

P̂
Φ(P̂ ) (5)

Êv ← PẼvP
T (6)Let P be an n × n optimal permutation matrix of Eq. 5 interms of the minimum estimation error. The result Êv of Eq. 6is a matrix isomorphi to Er where indies in both matriesindiate the node identi�ations; that is, the sensor ID in Ẽvorresponds to the intersetion ID in Er for i = 1, ..., n. Thisoptimization problem is alled the Weighted Graph MathingProblem (WGMP). In order to get the exat solution P , allowingthe global minimum of Φ(P ), all of the possible ases shouldbe heked. Sine this is a purely ombinatorial problem, thealgorithm based on ombination has the time omplexity of O(n!)for n nodes. Consequently, this is an unfeasible approah inreality. We need to use approximate approahes to give an auratepermutation matrix P , suh as an eigendeomposition approahto WGMP [15℄, known as an optimal approah. For our graphmathing purpose, we adopt the eigendeomposition approah thathas polynomial time omplexity.We investigated the effet of the real vehile mean speeddifferent from the speed limit on roadways. The onlusion isthat as long as all of the road segments have the same onstantsaling fator for their mean speeds, our loalization algorithmworks well regardless of the distribution of the vehile mean speedduring traf� measurement! In other words, our algorithm workseven though the atual speeds are unknown. In the ase whereeah road segment has a different saling fator aording tounbalaned ongestion onditions, our algorithm does not workwell. To address this issue, we suggest to ondut measurementsunder a light road traf� ondition, suh as during night. Withoutongestion, we expet that all of the road segments tend to havethe same onstant saling fator for their mean speeds. We havedetailed proof on this subjet. One an refer to our tehnialreport [14℄ for detailed information.E. Step 5: Node Loation Identi�ationIn this setion, we explain how to identify the loation of eahintersetion node with the permutation matrix obtained throughthe graph mathing in Setion III-D, and then how to identify theloation of eah non-intersetion node.1) Loalization of Intersetion Nodes: We perform the identi-�ation of eah intersetion node's loation with the permutationmatrix P returned from the graph-mathing module. Let the per-mutation funtion σ(s) be a map orresponding to the permutationmatrix P

σ : s ∈ {1, ..., n} → p ∈ {1, ..., n}, (7)that is, p = σ(s) where s is the sensor ID and p is the intersetionID. With the permutation funtion in Eq. 7, we an identify theintersetion ID (p) on the road map for eah intersetion node (s).



2) Loalization of Non-intersetion Nodes: In the previoussetion, we know the positions of the intersetion nodes. Nowwe loalize the positions of the non-intersetion nodes. Using Evof the virtual graph Gv , we begin from an intersetion node u,and we reate a path from u to another intersetion node v, that is,
u→ a1 → a2 → · · · → am → v. All ai for i = 1, ..., m are non-intersetion nodes whose degrees are 2. Sine we have alreadyloalized nodes u and v, and all of these ai must be plaed on theedge from u to v on the redued virtual subgraph G̃v , as shownFigure 1(e), we an know the positions of these ai by looking atthe length information in Ev of the virtual graph Gv , as shown inFigure 1(). We repeat this proedure until we loalize all of thenon-intersetion nodes in the virtual graph.IV. PERFORMANCE EVALUATIONAs we explain in the introdution, there is no other solution ap-propriate to our senario for loalization in road networks. Insteadof omparing our shemes with other state-of-the-art shemes, weinvestigate the effet of the following three parameters on ourloalization sheme:

• The time synhronization error standard deviation,
• The vehile speed standard deviation, and
• The vehile interarrival time.We present two kinds of performane evaluations as follows:First, we ompare the aggregation-based estimation method withthe nonaggregation-based estimation method in terms of theestimation auray for road segment length. For the estimationauray, the Matrix Error Ratio is de�ned as the ratio of the sumof the entries of the absolute differene of two matries (i.e., Erand Ev) to the sum of the entries of referene matrix (i.e., Er).Seond, we evaluate the performane of eah loalization methodonsisting of a ombination of the aggregation-based estimationmethod and pre�ltering types below that use the same graph-mathing algorithm spei�ed in SetionIII-D. The LoalizationError Ratio is de�ned as the ratio of the number of inorretlyloalized sensors to the number of all sensors deployed on theroad network. We just deploy intersetion nodes for simpliity.TABLE IISIMULATION ENVIRONMENTParameter DesriptionNumber of 18 sensors (from s1 to s18) are deployed in the road network,sensors as shown in Figure 1.Simulation Sensors perform vehile detetion for 10 hours and store thetime vehile-detetion timestamps into their repositories.Time synh. Sensor time synhronization error onforms to a uniform distributionerror with the interval [−ǫmax, ǫmax] where ǫmax=0.01 se.Vehile Vehile speed onforms to a Gaussian distribution of N(µv, σ2

v)speed where µv = 50 km/h and σv = 5 km/h. Vehile's maximumdistribution speed is 80 km/h and vehile's minimum speed is 20 km/h.Interarrival Every vehile arrives at road network aording to an exponentialtime distribution with mean interarrival time 1/λ = 120 se.Vehile Let du,v be the shortest path distane from soure intersetion utravel and destination intersetion v in road network. Vehile's travellength path length from u and v onforms a Gaussian distribution ofdistribution N(µd, σ2

d) where µd = du,v m and σd = 500 m.The simulation environment based on SMPL [16℄ is desribedin Table II. From road traf� measurement, we reate a matrix Mvfor the virtual topology as the average of 10 matries Mvs that are

adjaeny matries of the virtual topology reated from the samemeasurement time, suh as one hour; that is, Mv is the all-pairsshortest path estimation matrix for the virtual topology.A. Performane Comparison between Road Segment EstimationMethodsWe ompare the performane of loalization shemes aordingto the following two road segment estimation methods:1) The aggregation-based road segment estimation and2) The nonaggregation-based road segment estimation.After the estimation, we perform the pre�ltering algorithm de-sribed in Setion III-C and the graph mathing algorithm de-sribed in Setion III-D in order to evaluate the Matrix Error Ratioand Loalization Error Ratio.For the maximum time synhronization error, Figure 9 showsthe performane omparison between the aggregation and non-aggregation methods. For the aggregation method, the MatrixError Ratio is less than 0.03, whih indiates that Ẽv of theredued virtual subgraph G̃v is very lose to the Er of the realgraph Gr, as shown in Figure 1, where G̃v is a subgraph ofthe virtual topology Hv . It an be seen that most Matrix ErrorRatios of the aggregation method are less than the Matrix ErrorRatios of the nonaggregation method. That is why the aggregationmethod gives better loalization than the nonaggregation method.From Figure 9(b), we an see that our loalization works wellin the ase in whih the maximum time synhronization erroris less than 0.4 seonds. We an laim that our loalizationsheme an work in the real environment, sine the state-of-the-art time synhronization protools an give the auray at themiroseond level [11℄, [12℄.
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(b) Loalization Error Ratio aord-ing to Maximum Time Synhroniza-tion ErrorFig. 9. Performane Comparison between Aggregation and NonaggregationMethods for Maximum Time Synhronization Error (ǫmax)For the vehile speed deviation, as shown Figure 10, theaggregation method outperforms the nonaggregation method inthat the Matrix Error Ratio of the aggregation method is lessthat that of the nonaggregation method. Also, that is why theaggregation method an give more aurate loalization than thenon-aggregation method, exept for the vehile speed deviationof 15 km/h. This speed deviation of 15 km/h is the value outof the operational region for our loalization sheme, so theorresponding loalization error ratio is always a random valuelose to 1. However, onsidering the real statistis [13℄ that thevehile speed deviation in four-lane roadways is 9.98 km/h, andthe vehile speed deviation in two-lane roadways is 8.69 km/h,



it an be laimed that our loalization an work in the realenvironment, sine our loalization sheme works with the vehilespeed deviation less than 10 km/h.
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(b) Loalization Error Ratio aord-ing to Vehile Speed DeviationFig. 10. Performane Comparison between Aggregation and NonaggregationMethods for Vehile Speed Deviation (σv)For the vehile interarrival time, as shown Figure 11, we see thatit does not affet the performane of our loalization sheme. Thereason is that our TDOD operation an give aurate estimatesfor road segment lengths, as long as the vehile interarrival timeis larger than 1 seond and it allows enough road traf� to overall of the road segments. In fat, most people drive their vehileswith the interarrival time longer than 1 seond for their safety,so we an laim that our loalization works under normal drivingondition. For the aggregation method, the Matrix Error Ratio isless than 0.015, whih indiates that Ẽv of the redued virtualsubgraph G̃v is very lose to the Er of the real graph Gr. This iswhy the aggregation method gives 100% loalization, exept for1-seond vehile interarrival time. Also, we an see that all of theMatrix Error Ratios of the aggregation method are less than thoseof the nonaggregation method.
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(b) Loalization Error Ratio aord-ing to Vehile Interarrival TimeFig. 11. Performane Comparison between Aggregation and NonaggregationMethods for Vehile Interarrival Time (1/λ)B. Performane Comparison among Pre�ltering TypesWe ompare the performane of loalization shemes, aordingto the following three pre�ltering types:1) Pre�lter 1: Pre�ltering based on the minimum spanning treedesribed in Setion III-C2,2) Pre�lter 2: Pre�ltering based on the relative deviation errordesribed in Setion III-C1, and3) APL Pre�lter: Pre�ltering based on both the relative devia-tion error and the minimum spanning tree.Eah pre�ltering type uses a matrix Mv reated by theaggregation-based road segment method. After the pre�ltering

step and the onstrution step of a redued virtual subgraph
G̃v = (Ṽv, Ẽv), the same graph-mathing algorithm desribed inSetion III-D is applied to the output matrix Ẽv in order to evaluatethe Loalization Error Ratio. From Figure 12, our loalization withAPL Pre�lter works well under reasonable, real environment inwhih the maximum time synhronization error is less than 0.4se, and the vehile speed deviation is less than 12.5 km/h. Aswe an see in Figure 12, one missing of the minimum-spanning-tree-based pre�lter (i.e., Pre�lter 1) and the relative-deviation-error-based pre�lter (i.e., Pre�lter 2) annot allow the aurateloalization under the reasonable, real environment. This is whywe use the ombination of two pre�lters.
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(b) Loalization Error Ratio aord-ing to Vehile Speed DeviationFig. 12. Performane Comparison among Pre�ltering TypesC. APL Operational RegionWe evaluate APL to see what range of time synhronization andvehile speed deviation it works well in. Figure 13 shows the APLoperational region that ontains the range of the maximum timesynhronization error and the vehile standard deviation to allowa perfet loalization under the simulation environment given inTable II. Our loalization sheme works well in the ase in whihthe vehile standard deviation is less than 10 km/h, regardless ofthe maximum time synhronization error from 0.01 to 0.1 se.This threshold for the vehile standard deviation is lose to thereal statistis of the vehile speed deviation (e.g., 9.98 km/h forfour-lane roadways) [13℄. For the vehile interarrival time, ourloalization works well as long as the interarrival time is greaterthan 1 seond. Thus, the vehile speed deviation is the dominantfator of the performane in our loalization sheme.
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Fig. 13. APL Operational Region for Maximum Time Synhronization Error andVehile Speed DeviationAlso, we investigated what effets the detetion missing and thedupliate detetion have for the whole loalization auray by



modeling the detetion missing event and the dupliate detetionevent as Bernoulli trial. The result is that our loalization shemehas no loalization error under the simulation setting in Table IIwith the detetion missing probability from 0 to 0.2 at eah sensorand with the dupliate detetion probability from 0.1 to 1 at eahsensor, respetively. Thus, it an be laimed that our loalizationsheme an work in the real road networks with noises.We have onsidered several pratial issues in our extendedtehnial report [14℄ for the deployment of our loalization shemein real road networks: (a) graph mathing under intersetion nodemissing and (b) mathing ambiguity due to topology symmetriity.Due to spae onstraints, we annot explain them in detail.V. RELATED WORKMany loalization shemes have been proposed so far, and theyan be ategorized into three lasses: (a) Range-based loalizationshemes, (b) Range-free loalization shemes, and () Event-driven loalization shemes. Range-based shemes require ostlyhardware devies to estimate the distane between nodes, alongwith the additional energy onsumption for them. The Time ofArrival (TOA) (e.g., GPS [1℄) and Time Differene of Arrival(TDOA) shemes (e.g., Criket [2℄ and AHLoS [17℄) measure thepropagation time of the signal, and estimate the distane based onthe propagation speed. Sine ultrasound signals usually propagateonly 20∼30 feet. TDOA is not quite suitable for sparse networks.The Angle of Arrival (AOA) shemes [3℄ estimate the positions ofthe nodes by sensing the diretion from whih a signal is reeived.The Reeived Signal Strength Indiator (RSSI) shemes [18℄ useeither theoretial or empirial models to estimate the distanebased on the loss of power during signal propagation. Both AOAand RSSI are also onstrained by their effetive distane.The range-free loalization shemes try to loalize sensorswithout ostly ranging devies. One of the most popular range-free shemes is based on anhor-based sheme. The main ideais that the non-anhors an determine their loations using theoverlapped region of ommuniation areas for the anhors [4℄,[5℄, [19℄, [20℄. However, sine these shemes require a densedeployment of anhors to give beaon signals, these solutions arenot appliable for the loalization in sparse road networks.Reently, a series of event-driven loalization shemes havebeen proposed to simplify the funtionality of sensors for loal-ization, and to provide high-quality loalization. The main ideaof these shemes is to use arti�ial events for sensor loalizationthat are generated from the event sheduler [21℄�[24℄. Althoughtheir effetive range an reah hundreds of meters, it needsadditional external devies and manual operations to generatearti�ial events. On the other hand, our loalization sheme isa new branh of event-driven loalization shemes. Beause ourloalization sheme is based on natural events of moving vehiles,there is no suh problem of the event delivery.VI. CONCLUSIONIn sparse sensor networks, sensors annot effetively obtainpair-wise ranging distane or onnetivity information for thepurpose of loalization. To address this issue, this work introduesan autonomous passive loalization sheme, alled APL, usingonly binary sensors. Our APL system performs the loalization
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