
Collaborative Scheduling in Highly Dynamic

Environments Using Error Inference

Qingquan Zhang†, Yu Gu¶, Lin Gu‡, Qing Cao§ and Tian He∗

†Lemko Corporation, Illinois, USA
∗Department of Computer Science and Engineering, University of Minnesota Twin Cities

‡Department of Computer Science and Engineering, Hong Kong University of Science and Technology
¶Information Systems Technology and Design Pillar, Singapore University of Technology and Design

§Department of Electrical Engineering and Computer Science, University of Tennessee Knoxville

Abstract—Energy constraint is a critical hurdle hindering
the practical deployment of long-term wireless sensor network
applications. Turning off (i.e., duty cycling) sensors could reduce
energy consumption, however at the cost of low sensing fidelity
due to sensing gaps introduced. Existing techniques have studied
how to collaboratively reduce the sensing gap in space and
time, however none of them provides a rigorous approach to
confine sensing error within desirable bounds. In this work,
we propose a collaborative scheme called CIES, based on the
novel concept of error inference between collaborative sensor
pairs. Within a node, we use a sensing probability bound to
control tolerable sensing error. Within a neighborhood, nodes can
trigger additional sensing activities of other nodes when inferred
sensing error has aggregately exceed the tolerance. We conducted
simulations to investigate system performance using historical soil
temperature data in Wisconsin-Minnesota area. The simulation
results demonstrate that the system error is confined within the
specified error tolerance bounds and that a maximum of 60

percent of the energy savings can be achieved, when the CIES
is compared to several fixed probability sensing schemes such
as eSense. We further validated the simulation and algorithms
by constructing a lab test-bench to emulate actual environment
monitoring applications. The results show that our approach is
effective and efficient in tracking the dramatic temperature shift
in highly dynamic environments.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been used in many

monitoring applications. Due to the small form factor and low

cost of sensor nodes (e.g. the Mica series), they are normally

equipped with limited power sources. If working continuously,

a sensor node can typically sustain only a few days. On the

other hand, long-term applications [1] are normally required

to last for weeks or even months. The discrepancy between

limited resources and stringent requirements makes it neces-

sary to develop scheduling protocols to turn on and off (i.e.,

duty cycle) sensors to conserve energy.

Research on collaborative sensing is nothing new [2], [3],

[4], [5], [6]. Most of projects focus on how to efficiently

select or deploy a minimum set of sensor nodes to provide

a full/partial spatiotemporal coverage. We note these work

determines sensing activities of nodes based on coverage

requirements in space and/or time. None of them focuses on

how to schedule sensing activities based on sensing error and

hence failed to provide a rigorous approach to confine data

accuracy within desirable bounds.

In this work, we take a completely different approach. We

schedule sensing activities based on two types of information:

(i) local estimated error and (ii) inferred error from neighboring

nodes. A node turns on its sensors when either error type ex-

ceeds a user specified tolerance. Our design has several major

advantages over existing single-node scheduling methods [7]:

(i) nodes can share sensing error information and process

them with limited resources, (ii) nodes can collectively control

sensing errors through neighborhood coordination, and (iii) a

network can respond to dramatic environmental changes more

quickly, a property that is desirable in environment monitoring

applications.

Specifically, our design exploits neighbor node coordination

to reduce possible violations against sensing fidelity require-

ments. The driving idea of our work is error inference, where

the term error is defined as the difference, in percentage,

between the ground truth environmental data and the corre-

sponding value generated by the predictor of sensor nodes,

which is a direct performance indicator of the sensor system.

Not only is the error information used by the local sensing

scheduler, but it is also shared among neighbors. Nodes can

trigger additional sensing activities of other neighboring nodes

when the inferred error has aggregately exceed the tolerance.

We refer to our proposed approach as Collaborative Inferred

Error Sensing (CIES).

The main contributions of this work are:

• The design of a local error control algorithm to guarantee

a specified error bound;

• The introduction of a distributed inference model of

prediction error for neighboring sensors

• The integration of both local and neighbor error control

into a unified architecture to adjust duty cycles of sensor

nodes.

• The simulated study and test-bed implementation of the

proposed design that conserves as much as 60% of energy

compared to other solutions, while confining sensing error

within specified error tolerance.

The rest of this paper is organized as follows. We present

the overview for our design in Section II. Section III and

IV describe the details of the error control mechanisms. The

performance evaluation is presented in Section V. Section VI

describes the motivation behind our work from an application

perspective. Section VII concludes the paper.

II. OVERVIEW AND OBJECTIVES

This section presents an overview of our Collaborative

Inferred Error System (CIES). We first present the network

model and assumptions of the work, then describe the overall

system design.

A. Network Model

Assume a wireless sensor network is composed of N sensor

nodes. Each sensor node has two states: an active state and a

dormant state. An active node performs all the functionalities,

such as sensing events, transmitting packets, and receiving

packets. A dormant node turns off most functional modules

except the radio for listening to incoming traffic. All nodes

have their own schedules that are controlled by the duty cycle

controller on the nodes. A dormant node wakes up when (i) it is

scheduled to switch to active state, or (ii) it receives triggering

packets from neighbors and decides to change into the active

state.

B. Assumptions

We assume that we use off-the-shelf sensor node prod-

ucts [8]. Without loss of generality, in our design and im-

plementation, sensor nodes are homogeneous and can be

distributed as a random process. We also assume that in our

target sensing platforms, sensing is much more expensive

than communication, so that it is necessary to coordinate

sensing activities among neighboring nodes for better energy

efficiency. Certainly, this assumption does not hold for all

platforms, but it does apply to a few existing ones. For

example, the magnetometers used in the MICA sensor boards

and XSM nodes draw about 90 mA of current, as compared

to 6mA for the ATmega128L micro-controller and 12 mA for

the transceiver [9]. This assumption also holds well in plat-

forms where expensive sensors (e.g. camera and micro-power-

impulse radar (MIR)) and low-power-listening techniques [10]

are used.

C. A Walk-through of the Basic Operating Procedures

In this section, we overview the collaborative scheme of our

design using a walk-through example. The key concept in CIES

is to exploit the neighbors’ resource to infer the conditions of

inactive/sleep sensor nodes. A brief description as illustrated

in Figure 1 presents the collaborative error control process.

Figure 1(a), Stage I: Each sensor node executes its local

error control procedure (IES) independently. Meanwhile, the

network error control starts to build the neighbor library using

a neighborhood discovery service [11], [12]. In our example,

node 8 detects node 1 to 6 as its neighbors. The local error

control will handle local node error control and duty cycle

management.

Figure 1(b), Stage II: The network error control generates

node-pair weighted graphs to represent the correlation among

sensors. Figure 1(b) lists the edge weight w(i, j) of several

nodes. The higher a weight is, the stronger correlation these

E<8,6>=33%

Dormant

Trigger

Trigger

E<8,2>=40%
E<8,2>=40%

<(4,8),5>

<(6,8),7>
<(5,8),7>

<(2,8),10>

<(1,5),7>

W=<(1,2),6>

1

2

8

4

5

6

1

2

8

3

4

5

6

7

E<8,4>=20%
E<8,5>=20%

2

8

4

5

6 E<8,6>=33%

2

8

4

5

6

888 Neighbors

(a)
(b)

(c)

Active

(d)

W=<(node i, node j),value>

Error Tollerance (30%)

3

7

Fig. 1. Initial phase of the design

two sensor nodes will have. Previous literature has pointed out

that it is reasonable to assume that this correlation is relatively

stable for a period of time [13].

Figure 1(c), Stage III: Sensor nodes are controlled not only

by the local error control, but also are sharing their resource to

assist the neighbors, a process enabled through the utilization

of the neighbors sensing error inference. For example, a sensor

node (e.g. node 8 in this case) is active in a certain cycle, and

detects an unexplained difference between the real sensing data

and the output of prediction model. Then it calls the network

error control to generate inferred error of adjacent nodes using

the weighted graph shown in Figure 1(c).

Figure 1(d), Stage IV: If the inferred reading of any neighbor

node is larger than a specified bound (e.g. the tolerance

threshold of errors), the network error control will send out

a trigger message to those nodes. In this example, because

the error tolerance configured by the system is 30%, node 8
will send trigger messages to nodes 2 and 6 . After a sensor

node receives such a message, it will process and analyze the

information in the network control. After then, the node can

either remain turned off if the inferred error from network error

control is not large enough to trigger the duty cycle control

process, or be switched on if otherwise.

As illustrated by this walk-through, CIES exploits neigh-

bors collaboration of sensor networks in event detection, thus

showing a unique potential for reducing errors in environment

monitoring applications. Compared to other local error control

schemes [7], CIES extends the error control from local node

level to the network level, setting the foundation for more

complicated applications.

In the following, we describe the design in more detail. One

key objective of this work is to develop a generic error control

mechanism through which collaborative sensors can achieve

error-bounded scheduling control in applications.

III. LOCAL ERROR CONTROL

The design of the local error control is motivated by the

observation that a sensor node should be able to run programs

Local Error Control Layer

Prediction Local Error Data

Library

Hardware Layer

Sensing and Data Storage

Input Data
Adjust Sensing
Frequency

Local Error Predictor Duty Cycle Controller

Error Analyzer

Adaptor

Fig. 2. The local error control layer illustration

independently even in isolation. Therefore, the data detected

and stored locally should also be fault-tolerant, a goal that is

achieved by the local error control

For convenience, we refer to the local error control as Non-

collaborative IES, which supports routine applications that

include the duty cycle control and local error predictor as

shown in Figure 2. A sensor uses its local error predictor

to predict the environment status without performing actual

sensing operation. When data is obtained through actual

sensing, a node compares predicted sensing values with the

actual sensing values, and then store the prediction errors

into the local error data library. Based on the accuracy of

the local error predictors, the duty cycle controller adjusts the

sensing frequency through error bound control, which serves

to confine the system prediction error within a user specified

bound.

A. Local Error Predictor

The basic mechanism of local error predictor works as

follows. In order to conserve their limited power supply,

sensors do not continuously sense data. Instead, they operate at

some selective cycles as long as the data quality is acceptable.

The data in the remaining cycles are reconstructed through

appropriate prediction models. If the environment exhibits

cyclic patterns, an empirical model will be used to establish

strong correlations in the data and to organize them in a certain

way so that future data can be extracted from the empirical or

historical ones.

Depending on system lifetime the data fidelity requirement

of an application, the empirical model can be constructed

in different ways. Similar to [14], we developed a cycle-

based empirical model [15], which has been proven to be

efficient for environment monitoring applications. The error

predictor is mainly responsible for generating prediction errors,

defined as ei, for each node i. Our preliminary experiments

of temperature measurements, as shown in Figure 3 and

Figure 4, demonstrate that the error predictor can adapt to

the environmental changes sufficiently well.

Since the energy resource on individual sensor nodes is lim-

ited, empirical model in this application domain can simplify

data processing, and thus extend the lifetime of sensor nodes.

However, the model selection can be flexible, and the duty

cycle controller can adapt the system to the relative error

induced by different prediction models. Moreover, the local

Fig. 3. The preliminary temperature measurement experiments

840 850 860 870 880 890 900
−400

−350

−300

−250

−200

−150

−100

−50

0

50

100

Real Data

Prediction Data

Fig. 4. An example of output from predictor (error tolerance 10%, x-axis is
the time-stamp)

error predictor provides a reliable reference for duty cycle

controller to perform further analysis.

B. Duty Cycle Controller

The duty cycle controller receives and analyzes the predic-

tion errors from the local error predictor. The first step in de-

signing the duty cycle controller is modeling sensing behavior

of the system mathematically to derive the relationships among

the local prediction error, the current duty cycle, and system

requirements. In this design, we separate the controller into

the error analyzer and duty cycle adaptor, two processes that

can run collaboratively.

1) Error Analyzer: We determine the error analyzer theoret-

ically as follows. We assume that the sensing baseline consists

of N data cycles, in which k warm-up cycles will be used for

building controller models. In each cycle, the probability that

a sensor node performs actual sensing operation is defined

as sensing probability pi. To simplify the description, without

loss of generality, instead of considering energy cost spent on

different components, (e.g., sensing and processing), we use

average energy consumption to represent the total energy cost

of a node to sense, process and communicate in each sensing

period. Let the average energy consumption for sensing be Ea.

When a sensor is inactive, it does not sample the environment,

instead it uses the local predictor to estimate sensing readings,

which introduces prediction errors. Let the potential prediction

error at each cycle be ei. And let the maximum prediction

error tolerance specified by a user be et . Therefore, the goal

of our design is to minimize the energy consumption during

each baseline period:

E =

k
∑

i=1

Ea · ti +

N−k
∑

i=1

pi · Ea · ti (1)

under the constraint that

N
∑

i=1

(1 − pi) · ei

N
=

N
∑

i=k

(1 − pi) · ei

N
≤ et (2)

where ti is the unit cycle length, k is the length of cycles used

to stabilize the scheduling system and N represents the total

length of operational cycles . The constraint will enforce that

the potential statistical error caused by the prediction will be

smaller than the error tolerance. The range of possible values

of pi will be bounded to satisfy the constraint equation.

The minimization of energy consumption deals with several

key issues, e.g. the length of the training cycle and the

prediction model used. Now the problem is to determine the

appropriate pi for a given error range ei obtained from past

data values. To solve for sensing probability pi at a specific ei

requires a joint distribution of a process for ei at specific time

instance or period. This would require a heavy computation

and storage overhead on the limited resource of the sensor

node. Obtaining a solution for sensing probability pi will be

extremely difficult to calculate during transitions. Instead, we

introduce a lightweight method for computation that allows the

sensor to choose the value within a range. We first determine

the bound for sensing probability pi, and the algorithm will

choose one value within that bound.

It should be clear that the higher the value of sensing

probability pi, the larger the expected energy consumption.

The lower the value of sensing probability pi, the higher the

probability for the error because that prediction will be greater

than the tolerance. Therefore, we need to analyze the bound

of sensing probability pi to optimize this trade-off.

2) Determining the Sensing Probability Bound: We use a

bottom-up approach to set a bound for the sensing probability.

That is, if we do not violate the error constraint in every cycle

instance, we are certain that the inequality holds. As noted,

this sets a stricter requirement than the constraint equation

over all sampling instances. By doing so, our probability

constraint problem can be simplified into choosing the pi at

each scheduling cycle to satisfy the constraint on (1 − pi) · ei,

which can be solved as

plb
i =







0 0 ≤ ei ≤ et

1 − et

ei

et ≤ ei ≤ 1
(3)

The plb
i is the lower bound of pi that guarantees data quality

requirement at each sensing cycle instance. Only values higher

than this will assure that the constraint requirement won’t be

violated under any circumstances. We should also be careful

in the selection of pi, as a higher pi implies more energy

consumption by the sensor node.

We also note in Equation 3 that the lower bound plb
i is

affected by the prediction error ei. A large prediction error ei

imposes a higher bound, leading to high energy consumption.

Network Error Control Layer

Neighbor Error ControlNeighbor Error Predictor

Neighbor Table

Weigh Graph

Local Error Control Layer

Local Error Data

Library

Hardware Layer

Sensing and Data Storage

Input Sensing Data
Adjust Sensing

Frequency

Inferred Error

Adjust Duty Cycle

Neighbor Inferred Error

Communication

Prediction

Local Error Predictor Duty Cycle Controller

Error Analyzer

Adaptor

Fig. 5. The network error control layer illustration

The critical issue is to reduce this prediction error ei. Clearly it

can be achieved with a better prediction model, however when

environment changes quickly and unpredictably, a prediction

model based on historical data is not effective. Therefore we

need online method to improve error control, which is achieved

through the Network Error Control described in next section.

IV. NETWORK ERROR CONTROL

In this section, we present the design of network error

control as shown in Figure 5. Recall in our analysis in

section III-B2, it is essential to predict the neighbors’ model

prediction error accurately and share such information among

them effectively. To ensure the accuracy of such prediction

and information sharing, we assign tasks to two processes:

1) neighbor error predictor, 2) neighbor error controller. The

process running on this network control layer is named col-

laborative IES, which aims to maximize the energy saving and

minimize the prediction error of sensor system.

Before further discussion, we define several terms used to

describe the processes.

Definition 1 (Inferred Error eij): Given a node i and its

neighboring node j, the node-pair inferred error eij is defined

as the inference error at neighbor j from the point view of

node i.
Definition 2 (Node-pair Weight wij): The weight is de-

fined as the extent of a node-pair’s data correlation and

indicates how similar the sensing observation is between two

neighboring sensor nodes i and j.

Definition 3 (Error Probability Density Function ρ (e)):

The error PDF is a collection of distributions of detection

errors in which the past detection errors for sensors are

stored and processed so that the detection errors can be

directly linked to corresponding occurrence probability. The

neighboring nodes will exchange the error PDF locally. We

can easily derive its statistical accrual error probability mass

function(PMF) once the PDF is given.

A. Design of Neighbor Error Predictor

Since the neighbors can change dynamically, we need to

iteratively estimate the neighbors’ prediction error, given a

certain relationship among neighbors.

Fig. 6. The process of Correlation Calculation

Step 1: Neighbor Recognition

The control process starts with neighborhood discovery.

During this phase, the sensors will acquire the knowledge

that which close sensors around them can build up a “trust”

relationship, which can be characterized as node-pair weights.

The formation of neighborhood may be based on different

requirements such as vicinity, link quality or the displacement

along the routing path of the sensing data. In this stage,

each node recognizes its neighboring nodes and assigns a

table for each neighbor to build the weight graph. Note that

the neighborhood formation is a dynamic stage which will

be refreshed after a defined period. By the end of this sub-

process, sensors will recognize their neighbors and data storage

structures created for neighbors will also be initialized.

Step 2: Weight Graph Construction As pointed in our

earlier assumptions, nodes are synchronized with each other,

and Ttrain, the time for initialization, is divided into equal time

durations Tbuild, as in Figure 6. Each time duration includes

m equal duration intervals, where an interval is a unit sample

time period set by the user.

For each round, each node Ni stores its observation vec-

tor {oi
1, o

i
2, ..., o

i
m} obtained through discrete sampling at

Ti = {ti1, t
i
2, ..., t

i
m}. At the end of each round, each node

exchanges the observation vector, which is used to calculate the

correlation between nodes. This process is repeated until the

end of Ttrain, so that the average sensing correlation between

nodes can be estimated.

Specifically, we use the following approach to calculate data

correlation between two observation vectors C(i, j) by node

Ni and node Nj .

C(i, j) =

m
∑

oi
koj

k −
∑

oi
k

∑

oj
k

√

m
∑

(oi
k)2 − (

∑

oi
k)2

√

m
∑

(oj
k)2 − (

∑

oj
k)2

(4)

After getting the data correlation C(i, j), we derive w(i, j)
as abs(C(i, j) × R) in which R is a unified constant.

The weight value among nodes, once evaluated, remains

constant throughout each short operation period, and is sub-

jected to subsequent modifications to guarantees the accuracy.

The sensors propagate the information to neighboring sen-

sors while receiving similar information, forming a graph

through a one-to-one linear mapping. Eventually, based on the

outcome from this sub-process, each sensor obtains essential

node-pair weights which set the foundation to differentiate the

status information in the error estimation.

1) Costs and Complexity on Weight Graph Construction:

Here we will study the extra computation cost used for weight

graph construction. With a maximum of N sensor nodes within

a group, there are a maximum of N − 1 neighbors for each

node. The total weight edges between two nodes will be

C2
N =

N(N − 1)

2
However, this value can be reduced after neighbor groups

are formed because the total number of weight vectors will

decrease as the nodes out of one-hop communication range are

excluded. This can be expressed as: C2
N − C2

m = N(N−1)
2 −

m(m−1)
2 , in which m is the number of nodes that are not

in one-hop range. Therefore the computation costs for weight

graph will be O(N2).
Step 3: Achieving the inferred error eij for neighbors

The control of sensing errors in the network is further

guaranteed by the collaboration of neighboring nodes. The

observations that sensor nodes demonstrate spatial correlations

found in [16], [17], [18] are also supported by our pre-

liminary experiments described in Section III. Motivated by

such observations, we can predict error of neighboring nodes

using local prediction error. That is, an active sensing node,

by comparing its real-time sensing values with corresponding

predicted values, can infer the prediction errors of correlated

neighboring nodes. In this way, our neighbor-error inference

scheme ensures real-time tracking and quick response to the

error status change within a sensing group. The process can

be summarized as follows:

• At a sampling cycle m, assuming sensor i is active in

sensing and computation, we can easily calculate the

observation error em
i at source node i based on the

difference between actual sensing data and prediction

values that are generated by our prediction model.

• From its error Probability Density Function ρ (x), node i
evaluates the cumulative distribution function PMFi(e

m
i)

as in Equation 5. From this result, we can infer the

statistical confidence level of the worst error occurrence

at node i as.

PMFi (em
i) =

∫ em

i

−em

i

ρ (x) dx (5)

• Upon obtaining the PMFi, the active sensor node i
calculates the inferred error of a neighboring sensor j,

based on PDF information of sensor node j. Given the

neighbors error models, an iterative step is performed:

eij = PMFj
−1 (PMFi (t [k])) (6)

and the variable t [k] is expressed as:

t [k] =







2 · t [k − 1] PMFj (t [k − 1]) < PMFi (em
i)

t[k−1]+t[k−2]
2 PMFj (t [k − 1]) > PMFi (em

i)
(7)

in which PMF−1() is the inverse function of PMF and

t [0] = 0, t [1] = em
i . The iterative process will not stop

until PMFj (t [k − 1]) = PMFi (em
i).

Error

t[1]=0.2

t[0]=0

PMF(0.2)=48%

t[0]=0

Error

t[1]=0.2

PMF(0.4)=88%

t[2]=0.4

t[1]=0.2

t[0]=0

PMF(0.3)=65%

t[2]=0.4

t[3]=0.3

Error

PMFj(0.2)<65%

PMFj(0.4)>65%

PMFj(0.3)>65%

t[2]=2*t[1]

t[3]=½*(t[2]+t[1])

1

2

3

Fig. 7. The iterative inferred error computation

Figure 7 shows an example of the inferred error computation

process where neighbor control layer computes PMFj for

node j by using its own PMF value PMFi = 65%. The

t[1] = 0.2 will be used as the first element in the iterative

sequence. At step 1, the implied PMFj(t[1]) becomes 48%,

which is smaller than PMFi. Then the computation point t[2]
will be 2 × 0.2 = 0.4. However, at step 2, the PMFj(t[2]) is

88%, a number that is greater than 65%. Therefore, the next

iterative point t[3] will become 1/2× (0.2 + 0.4) = 0.3. After

step 3, the calculated PMFj(0.3) = 65% and is the same as

the PMFi. The inferred error eij is found and the computation

process stops.

Because the different sensing characteristics between sensor

pair have been incorporated into the weight value, then we can

assume sensor i and sensor j share the same confidence level

within the same sampling cycle. To further illustrate the above

process, Figure 8 shows a simple example on error inference

among neighboring nodes. In the figure, nodes 1 and 3 are

neighbors which are closely related. At a given sampling time

instance m, node 1 is active and starts sensing while sensor

3 is in dormant state. Based on the real sensing data and its

predicted values from the predication model, sensor 1 decides

the current detection error is 60%. Given this value, by looking

at the PDF of sensor 1, we can know the desired accumulated

probability or confidence level of sensor 1 is 0.58. Mapping

this value onto sensor 3’s error PDF, sensor 1 hence can

estimate the inferred error of sensor 3 is 42%. Then if this 42%

is larger than the error threshold, sensor 1 will send a wake-

up message with this error information to sensor 3. Otherwise,

there is no further actions performed by sensor 1.

B. Neighbor Error Control

After estimating the error value for neighboring sensor j,

sensor i sends the inferred error eij to neighbor error control

process where those error information is sent and received. The

neighbor error control process monitors the channel through

�� e

e

e

1

2

3

e

����e
1

m
=
6
0
%

e

e
1

m

P
M
F
(
6
0
%
)
=
P
(
m
)

(
b
)

S
i
g
n
i
f
i
c
a
n
c
e

l
e
v
e
l

c
o
m
p
u
t
a
t
i
o
n

P
M
F
3
(
e
3

m
)
=

P
(
m
)

e

e
1
3
(
m
)
=
e
3

m
=
4
2
%

1

3

S
e
n
s
o
r

3

e
r
r
o
r

f
u
n
c
t
i
o
n

1

2

3

4

(
e
1
3
(
m
)
,
w
1
3
)

(
e
2
3
(
m
)
,
w
2
3
)

(
e
4
3
(
m
)
,
w
4
3
)

(
a
)

P
D
F

c
o
m
p
u
t
a
t
i
o
n

(
c
)

I
n
f
e
r
r
e
d

e
r
r
o
r

c
o
m
p
u
t
a
t
i
o
n
 (
d
)

W
e
i
g
h
t
e
d

e
r
r
o
r

c
o
m
p
u
t
a
t
i
o
n

4
2
%

e
3

m
=
4
2
%

Fig. 8. The inferred error computation

which its neighbors send error information. To minimize the

false positive risk, a weighted average approach is adopted in

this design.

Definition 4 (weighted average inferred error): Given a

neighborhood G(V, E), a sensor j’s weighted average inferred

error ej is the weighted average of all node-pair inferred errors,

i.e, edj , where d and j are a neighborhood pair.

The weighted average error ej is obtained according to

the following rationale. Node-pairs provide different inferred

errors due to correlation relationships or other influences. Pair

inferred errors have a specific weight value based on their

degree of similarity. A higher weight value means a higher

probability for data similarity. Therefore, the sensor platform

must take this into account when determining whether the

sensor needs to adjust its current operating status. Based on

our observation, the inferred error can be expressed as:

ej =
∑

k

ekj · wkj

/

∑

wkj
, k ∈ N(j) (8)

where k is size of the neighborhood of the node j , w is the

node-pair weight and N(j) is the neighborhood list of node

j. As shown in Figure 8 (d), sensor node j receives several

isolated error estimations from neighboring sensors i, l and

q. The ej should be viewed as a total effective contribution

from all the neighboring inferred errors on a weighted basis.

Apparently if one sensor detects that the estimation error

currently violates the error threshold, its neighboring nodes

having a high weight value are expected to experience a high

risk of violating the data accuracy as well.

V. EVALUATION

To evaluate, we develop a simulation program that uses

historical soil temperature data. The temperature data were

collected from the Wisconsin-Minnesota Cooperative Exten-

sion Agricultural Weather Page [19] where soil temperature

260

280

300

320

340

360

0

10

20

30

40

50

0
5

10

Reading

Sample Time Instance

S
e
n
si

n
g
 D

e
ci

si
o
n

Sensing Decision

Soil Temperature

Sensing
On

Fig. 9. The sample of sensor activities

is monitored continuously, sampled twice per hour, 24 hours

per day, for over 10 years. This data set is large enough

to reduce sampling randomness, allowing us to verify our

algorithm and investigate the impact of different configurations

on the performance of energy conservation and error control.

In our experiments, we use randomly deployed sensors in a

square area of 200 m × 200 m. We define a pair of nodes as

neighbors when their distance is less than 20 m. Moreover, we

use a diffusive model to fill up the simulation environment, in

which we consider the environment as a homogeneous semi-

infinite medium. Various benchmark approaches such as the

fixed probability sensing scheme are simulated to generate the

metric data.

A. Metrics and baseline

In order to evaluate the scheduling quality of a sensor

network, we define metrics as follows:

• Error Rate. This metric is defined as the error rate that the

prediction system produces during the same observation

window.

• Miss Ratio: This metric is defined as the ratio that the

sensor system fails to respond to an event, e.g., a rapid

change in environment.

• Energy Consumption: This metric is defined as the total

energy consumed by the network during the operation

period.

The sensing schemes proposed will be assessed using the

above metrics with respect to different system parameters,

e.g. the error tolerance. Through these examples, comparison

between different benchmarks and our proposed CIES will be

used to demonstrate the performance of our design.

B. The mechanism of our error bounded approach

One of the benefits of this adaptive and collaborative ap-

proach is that it will try to reduce the average error for

the entire operation period. The stricter guarantee is that it

will limit the error at each sampling instance, which will

enhance the system performance. The difficulty in limiting

the errors is to determine when to switch on the sensors

whenever there is a dramatic change in the environment. Our

approach achieves this by relying upon both local and network

error control mechanisms. Local error control can guarantee

the error bound when model-based prediction works well.

However, when environments experience dramatic changes,

model-based prediction no longer works. In such scenario,

the network error control mechanism relies on active nodes to

trigger inactive nodes, when the inferred error of the inactive

nodes exceed the bounds.

As shown in Figure 9, when environment temperature ex-

periences corner-like change, sensing activities becomes more

intensive than other sampling periods. This is because that the

network error control trigger more nodes to start sensing in

order to avoid violation of the error bound.

C. The detailed analysis of neighbor error control

In the first example, there are only two sensors adjacent to

each other. This shows the performance of the simplest case

of CIES.

Figure 10 illustrates the error performance of non-

collaborative and collaborative CIES. Over error tolerances,

we can see that both approaches can satisfy the error perfor-

mance requirement. However, under the collaborative CIES
scheme, the error rate is at least 20% less than with stand-alone

IES.

Figure 11 demonstrates the metric of miss ratio for stand-

alone IES and CIES. In the extreme region, (i.e., the error

tolerance is 10%), the miss ratio is about 25% less with the

collaborative information. The purpose is well demonstrated

here.

Figure 12 demonstrates the energy consumption for both

schemes. Compared to the 25% error rate improvement in

CIES, the additional energy consumption is small as the

maximum difference between the two schemes is only 5%.

From the above three figures, we can conclude that the

CIES method is superior to the stand-alone IES scheme with

slightly more energy consumption. This cost can be traded

for the reduction in miss ratio, which has been considered

important in certain monitoring applications [1].

D. The impact of node density

In the second example, we raise the node density to 20

and study the effect of node density to performance metrics.

Figure 13, 14, and 15 show the error rates associated with

each approach. Compared to the results in Figure 10, the

error rates are dramatically reduced while the gap between the

two schemes is increased. This is expected because there is a

greater chance for the sensor to be awakened by neighboring

nodes.

From the miss ratio performance result, we can draw a

similar conclusion. The miss ratio is reduced almost by 45%

for different levels of error tolerance. This shows the validity

of collaborative IES.

However, as shown in Figure 15, the energy consumption

is slightly higher but still acceptable considering the improve-

ment in miss ratio. It is the application’s choice to balance the

trade-off between energy consumption and other performance

metrics.

We also compare the performance of our approaches to the

state-of-the-art eSense approach [7] (eSense has only local

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Error Rate of Both Schemes

Error Tolerance

E
rr

o
r

R
a
te

Non−Collaborative IES

Collaborative CIES

Fig. 10. The error performance with different
error tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125
Miss Ratio for Both Schemes

Error Tolerance

M
is

s
 R

a
ti

o

Non Collaborative IES

Collaborative CIES

Fig. 11. The Miss Ratio with different error
tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85
Energy Consumption for Both Schemes

Error Tolerance

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Non−Collaborative IES

Collaborative CIES

Fig. 12. The energy consumption with different
error tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Error Rate of Both Schemes

Non−Collaborative IES

Collaborative IES

Fig. 13. The error performance with different
error tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.08

0.09

0.1

0.11

0.12

0.13
Miss Ratio for Both Schemes(d=20)

Error Tolerance

M
is

s
 R

a
ti

o

Non−Collaborative IES

Collaborative IES

Fig. 14. The Miss Ratio with different error
tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Energy Consumption for Both Schemes(d=20)

Error Tolerance

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Non−Collaborative IES

Collaborative IES

Fig. 15. The energy consumption with different
error tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Error Rate of All Schemes

Error Tolerance

E
rr

o
r

R
a
te

Stand alone IES

Collaborative CIES

Fixed 50% probability

eSense

Fig. 16. The error performance with different
error tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Miss Ratio for All Schemes

Error Tolerance

M
is

s
 R

a
ti

o

Stand alone IES

Collaborative CIES

Fixed 50% Probability

eSense

Fig. 17. The Miss Ratio with different error
tolerance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Energy Consumption of All Schemes

Error Tolerance

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Local IES

Collaborative IES

Fixed 50% Probability

eSense

Fig. 18. The energy consumption with different
error tolerance

error control) and an additional benchmark. The benchmark is

to set with a random 50% probability rate for Pm for each time

instance m. We implement the principle of eSense to control

the probability for miss ratio performance into our simulation

system. The performance of all approaches are demonstrated

below,

• The error rate comparison. The error performance is

demonstrated in Figure 16. As we will see, the benchmark

will not be affected too much by the setting of error

tolerance. Although the error rate for eSense does not

increase too much due to the increase of error tolerance,

its error rate is much higher than both IES and CIES
approaches. Note that the error rate determined by eSense

can not satisfy the error rate boundaries while both stand-

alone IES and collaborative CIES approaches meet the

requirement.

• The miss ratio comparison. The miss ratio, as shown

in Figure 17, for eSense continues to increase with the

increase of error tolerance, while our methods seem to

be stable. The hike in eSense is due to the reduction

in sensitivity to the change when the threshold or risk

tolerance increases. The higher the risk tolerance, the

less sensitive eSense is to the data change, leading to a

higher miss ratio. Our system can guarantee the absolute

error rate, which will keep tracking the past error and

adjust accordingly. Therefore, our approaches will not

experience a similar hinderance.

• The energy consumption comparison. The energy con-

sumption shown in Figure 18 indicates that eSense con-

sumes slightly less than 15% of that of our CIES.

However, the stability of our system is much better than

Algorithms MR(et = 10%) EC(et = 10%) MR(et = 20%) EC(et = 20%) MR(et = 30%) EC(et = 30%)

eSense(dynamic) 0.09 0.71 0.14 0.67 0.18 0.62
IES 0.09 0.82 0.098 0.76 0.101 s 0.72
CIES 0.075 0.85 0.077 0.80 0.081 s 0.76

TABLE I
THE PERFORMANCE COMPARISON WITH ESENSE

eSense as the maximum variance of energy consumption

is just 12% compared to almost 100% in eSense. These

achievements only cost 20% more energy consumption

than eSense, which is acceptable in most applications. In

some situations, rare event detection is as important as

the lifetime management.

To see compare the performance more directly, we list the

performance metrics of our design with those reported in

eSense [7]. The results are shown in Table I.

Based on comparisons, we conclude that CIES can out-

perform the eSense with respect to the miss ratio and total

error rates. The results also confirm that the error-bounded

scheduling limitation, which is missing in eSense, is achieved

in our approach.

Fig. 19. Testbed and snapshot of experimental data event a) shows the testbed
b) shows the operation setup

E. System Implementation

The architecture has been implemented on our newly con-

structed test-bed, shown in Figure 19. This test-bed is com-

posed of six 4-foot by 8-foot boards. Each board in the

system can be used as an individual sub-system, which is

separately powered, controlled and metered separately. Three

Hitachi CP-X1250 projectors, connected through a Matorx

Triplehead2go graphics expansion box, are used to create an

ultra-wide integrated display on those six boards. The design

has been implemented on Berkeley TinyOS/Micaz platform,

with compiled image occupies 17,076 bytes of code memory

and 549 bytes of data memory. Sensor nodes are divided

into several groups according to space proximity as planned.

Both random and controlled scanning light patterns are created

to emulate the light intensity change in environment and

then projected onto test-bed with three projectors switched

on simultaneously. Those sensing data are broadcasted back

to a powerful base-station where complex and high-power

consumption computation especially whole network level data

reduction is performed. The experimental results of Non-

collaborative IES and CIES collected allow further analysis

to optimize the overall system.

The data of our energy consumption to error tolerance

sensitivity can be viewed in Figure 20. As presented, different

from the fixed probability baselines, the IES method can

leverage its energy conservation with different error tolerances.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Tolerance

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Random Sensing with 50% Probability

Random Sensing with 90% Probability

Local Error Control (IES)

Fig. 20. The measured energy consumption of IES and its comparisons

VI. RELATED WORK

Scheduling control has been an effective method in wireless

sensor platforms to improve energy efficiency. It allows net-

worked nodes to reduce their transmitting and sensing power

while preserving sensing quality. A common technique to

reduce power is local data control, e.g., reducing the duty cycle

(the active duration) of sensors by turning them off while using

a prediction model to estimate the actual data at each sensor

node [20], [21]. In general, a higher duty cycle leads to a better

prediction accuracy, but consumes more energy. In contrast,

a reduced duty cycle is preferred due to its lower energy

consumption and reduced data traffic within the network, but

this may decrease the prediction accuracy.

Traditionally, complex and dedicated models have been used

in local data control, aiming to determine if the model is

accurate enough to ensure high precision [22], [23], [24],

[25]. In [23], empirical analysis results are used to reveal

the relationship between the configuration parameters and the

quality of the tracking application. It shows that empirical

models [14], [26] can be effectively applied without sacrificing

the data prediction accuracy. One useful insight from an

empirical modeling approach is that data correlation can be

utilized for other purposes [27], [28], such as monitoring

applications. In eSense [7], a stochastic sensing algorithm that

computes the sensor switching probability at each sampling

cycle is introduced. It determines the lower and upper bounds

of sensing probability to satisfy missing ratio constraints, a

metric to determine the percentages that the prediction model

output will violate the data performance requirement. In actual

situations, however, this kind of approach cannot necessarily

characterize the volatile nature of the environment, caused by

the insensitivity of prediction model to sharp changes in natural

environment [29], thus leading to inefficient data prediction.

Another category of data control is the implementation

of a distributed data management scheme. Data aggregation

approaches have been widely acclaimed as useful techniques

to reduce communication overhead in sensor networks [21],

[30]. However, there has been little cooperation between sensor

nodes. Although those approaches offer data management

mechanisms which reduce the error and energy cost of sensing

activities, they fail to improve the system performance through

network coordination. A mechanism of node cooperations,

together with local data management, can provide the opportu-

nity to accurately associate networking nodes for higher data

accuracy and increased network capability, e.g. detection of

the rapid environmental change.

VII. CONCLUSIONS

In this paper, we have presented a stochastic sensing algo-

rithm to reduce energy consumption. Our approach uses the

data correlation between nodes to reduce the error rate for

prediction model performance. Observed correlations between

nodes have been used to estimate the neighboring nodes’

errors, and to adjust their operation accordingly. The measure-

ment and simulation results show that system prediction error

remains within the specified error tolerance while saving up to

60 percent of the required energy. For our future work, we will

evaluate the energy performance of individual sensor network

components so that the algorithm can be further optimized.

ACKNOWLEDGMENT

The authors acknowledge the support under Grant: US Na-

tional Science Foundation (NSF) grants CNS-0845994, CNS-

0917097, Singapore-MIT IDC Grant IDD61000102, HKUST

grant DAG08/09.EG11 and IBM OCR fund.

REFERENCES

[1] T. He, S. Krishnamurthy, L. Luo, T. Yan, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh,
“VigilNet: An Integrated Sensor Network System for Energy-Efficient
Surveillance,” ACM Transaction on Sensor Networks, To appear.

[2] H. Luo, J. Wang, Y. Sun, H. Ma, and X.-Y. Li, “Adaptive sampling
and diversity reception in multi-hop wireless audio sensor networks,” in
Distributed Computing Systems (ICDCS), 2010 IEEE 30th International

Conference on, 2010, pp. 378 –387.
[3] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated

Coverage and Connectivity Configuration in Wireless Sensor Networks,”
in First ACM Conference on Embedded Networked Sensor Systems

(SenSys 2003), November 2003.
[4] X. Bai, C. Zhang, D. Xuan, and W. Jia, “Full-coverage and k-connectivity

(k=14, 6) three dimensional networks,” in INFOCOM 2009.
[5] Z. Yun, X. Bai, D. Xuan, T. H. Lai, and W. Jia, “Optimal deployment

patterns for full coverage and k-connectivity (k leq 6) wireless sensor
networks,” in INFOCOM 2009.

[6] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage Problems in Wireless Ad-Hoc Sensor Networks,” in Proc. of

INFOCOM, 2001.
[7] A. S. J. Liu, H.; Chandra, “esense: energy efficient stochastic sensing

framework for wireless sensor platforms,” in IPSN 2006.
[8] C. yee Chong, Ieee, S. P. Kumar, and S. Member, “Sensor networks:

evolution, opportunities, and challenges,” in Proceedings of the IEEE,
2003, pp. 1247–1256.

[9] “Atmega128l datasheet,” in http://www.atmel.com/dyn/resources/, USA,
2008.

[10] J. Polastre and D. Culler, “Versatile Low Power Media Access for
Wireless Sensor Networks,” in Second ACM Conference on Embedded

Networked Sensor Systems (SenSys 2004), November 2004.
[11] W. Gu, X. Bai, S. Chellappan, D. Xuan, and W. Jia, “Network de-

coupling: a methodology for secure communications in wireless sensor
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 12, pp. 1784 – 96, 2007/12/.

[12] B. Matt and M. Mundy, “Designing efficient and resilient tactical sensor
network neighborhood keying algorithms,” Nassau Inn, Princeton, NJ,
USA, 2007//, pp. 1 – 7.

[13] A. Jindal and K. Psounis, “Modeling spatially correlated data in sensor
networks,” ACM Trans. Sen. Netw., vol. 2, no. 4, pp. 466–499, 2006.

[14] C. L. Y.-X. H. N. Xiong, “An energy-efficient dynamic power man-
agement in wireless sensor networks,” in Parallel and Distributed

Computing, 2006. ISPDC06.
[15] Q. Zhang, Y. Gu, T. He, and G. Sobelman, “Cscan: A correlation-based

scheduling algorithm for wireless sensor networks,” Networking, Sensing

and Control, 2008. ICNSC 2008. IEEE International Conference on, pp.
1025–1030, April 2008.

[16] V. Rajamani and C. Julien, “Blurring snapshots: Temporal inference of
missing and uncertain data,” in PerCom, 2010, pp. 40–50.

[17] R. Olfati-Saber, “Distributed tracking for mobile sensor networks with
information-driven mobility,” in American Control Conference, 2007.

ACC ’07, 2007, pp. 4606 –4612.
[18] R. Graham and J. Cortes, “Spatial statistics and distributed estimation

by robotic sensor networks,” in American Control Conference (ACC),

2010, 30 2010.
[19] “Wisconsin-minnesota cooperative extension agricultural weather page,”

in http://www.soils.wisc.edu/wimnext/, University of Minnesota,Twin
Cities, MN, United States, 2008.

[20] A. Mainwaring, J. Polastre, R. Szewczyk, D. E. Culler, and J. Anderson,
“Wireless Sensor Networks for Habitat Monitoring,” in Proc. of the ACM

Workshop on Sensor Networks and Application (WSNA), September
2002.

[21] I. Solis and K. Obraczka, “in-network aggregation trade-offs for data
collection in wireless sensor networks,” International Journal of Sensor

Networks, 2006.
[22] R. Mangharam, R. Rajkumar, S. Pollin, F. Catthoor, B. Bougard,

L. Van der Perre, and I. Moeman, “Optimal fixed and scalable energy
management for wireless networks,” in INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, vol. 1, march 2005, pp. 114 – 125 vol. 1.
[23] Q. Qiu, Q. Wu, D. Burns, and D. Holzhauer, “Lifetime aware resource

management for sensor network using distributed genetic algorithm,”
Tegernsee, Germany, 2006//, pp. 191 – 6.

[24] Y. Zhang, L. Zhang, and X. Shan, “Robust Distributed Localization with
Data Inference for Wireless Sensor Networks,” in ICC’08, 2008.

[25] S. Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic Flooding in Low-
Duty-Cycle Wireless Sensor Networks with Unreliable Links ,” in
MobiCom’09, 2009.

[26] C. L. A. M. R. Passos, R.M.; Coelho, “Dynamic power management in
wireless sensor networks: An application-driven approach,” in Wireless

On-demand Network Systems and Services, 2005. WONS 2005.
[27] S. Pattem, B. Krishnmachari, and R. Govindan, “The impact of spatial

correlation on routing with compression in wireless sensor networks,”
in IPSN, 2004.

[28] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network corre-
lated data gathering,” 2004.

[29] S. Goel and T. Imielinski, “Prediction-based Monitoring in Sensor Net-
works: Taking Lessons from MPEG,” ACM Computer Communication

Review, vol. 31, no. 5, October 2001.
[30] A. Sinha, A.; Chandrakasan, “Toward optimal data aggregation in

random wireless sensor networks,” in INFOCOM 2007.

