IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

1741

Dynamic Switching-Based Data Forwarding for

Low-Duty-Cycle Wireless Sensor Networks

Yu Gu, Member, IEEE, and Tian He, Member, IEEE

Abstract—In this work, we introduce the concept of Dynamic Switch-based Forwarding (DSF) that optimizes the 1) expected data
delivery ratio, 2) expected communication delay, or 3) expected energy consumption for low-duty-cycle wireless sensor networks
under unreliable communication links. DSF is designed for networks with possibly unreliable communication links and predetermined
node communication schedules. To our knowledge, these are the most encouraging results to date in this new research direction. In
this paper, DSF is evaluated with a theoretical analysis, extensive simulation, and physical testbed consisting of 20 MicaZ motes.
Results reveal the remarkable advantage of DSF in extremely low-duty-cycle sensor networks in comparison to three well-known
solutions (ETX [1], PRR x D [2], and DESS [3]). We also demonstrate our solution defaults into ETX in always-awake networks and

DESS in perfect-link networks.

Index Terms—Wireless sensor networks, low-duty-cycle networks, dynamic data forwarding.

1 INTRODUCTION

IRELESS Sensor Networks (WSNs) have been proposed

for use in many long-term applications such as
military surveillance, assisted living, infrastructure mon-
itoring, and scientific exploration, which require a network
lifespan that can range from a few months to several years.
On the other hand, sensor devices (e.g., MicaZ and Telos) are
normally equipped with limited power sources due to their
small form factor and low-cost requirements. To resolve the
conflict between limited energy and application lifetime
requirements, it is necessary to reduce node communication
and sensing duty cycles. With the growing gap between
application requirements and the slow progress in battery
capacity [5], there are an increasing number of extremely
low-duty-cycle sensor networks designed and deployed.
Together with lossy radio links, these new networks impose
new challenges for data forwarding protocols.

In this work, we focus on low-duty-cycle sensor networks
with unreliable communication links, in which energy manage-
ment protocols [6], [7], [8] schedule sensing and commu-
nication at each individual sensor device to enable a duty
cycle of 10 percent or less. Essentially, during the operation
of sensor applications, sensor nodes activate very briefly
and stay in a dormant state for a very long period of time.
Due to the devices’ extremely limited energy budget,
maintaining an always-awake communication backbone
becomes infeasible. Consequently to forward a packet, a
sender may experience sleep latency—the time spent waiting
for the receiver to wake up.

In this paper, we attempt to design a new data delivery
method to optimize source-to-sink data delivery ratio,

o Y. Gu is with the Singapore University of Technology and Design, 287
Ghim Moh Road #04-00, Singapore 279623. E-mail: jasongu@sutd.edu.sg.
o T. He is with the University of Minnesota, Twin Cities, 4-205 Keller Hall,
200 Union Street SE, Minneapolis, MN 55455.
E-mail: tianhe@cs.umn.edu.

Manuscript received 17 May 2010; revised 17 Oct. 2010; accepted 25 Oct.
2010; published online 21 Dec. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-05-0231.
Digital Object Identifier no. 10.1109/TMC.2010.266.

1536-1233/11/$26.00 © 2011 IEEE

end-to-end (E2E) delay, or energy consumption under
unreliable and intermittent connectivity within scheduled
networks. The major intellectual contributions of this work
are as follows:

e To the best of our knowledge, this is the first work to
investigate the combined effect of sleep latency and
unreliable communication links, which dramatically
reduces the effectiveness of the existing solutions. A
novel dynamic switch-based forwarding technique
over time-dependent networks is proposed to
achieve optimal expected delivery ratio (EDR),
expected E2E delay (EED), or expected energy
consumption (EEC), respectively. This technique is
generic enough to allow flexible trade-offs among
these three key metrics.

e We extensively evaluate our solutions with 20 MicaZ
motes experiments and 250-node simulation. The
results from experiments and simulations show
significantly better source-to-sink communication
than several state-of-the-art solutions.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 describes the need for a
new data forwarding technique in extremely low-duty-cycle
sensor networks. Section 4 articulates the network model
and related assumptions. Section 5 introduces the detailed
design of DSF and discusses related issues. Section 7
describes our system implementation and provides an
evaluation on the TinyOS/Mote platform. Simulation results
are presented in Section 8. Section 9 concludes the paper.

2 RELATED WORK

The contribution of our work lies in the intersection of two
important cutting-edge research topics. We demonstrate
that the intriguing interaction between unreliable links
and low-power duty-cycling necessitates a fundamentally
new approach.

Link-quality-based forwarding. Many recent works [9],
[10] reveal that wireless communication links, especially for

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

1742

the low-power sensor devices, are extremely unreliable and
have a significant impact on data delivery. In response to the
reality of unreliable wireless links, several notable works
have been done. Couto et al. introduce the expected
transmission count metric (ETX) to find high-throughput
paths on multihop wireless networks [1]. Woo et al. show
that cost-based routing using a minimum expected transmis-
sion metric obtains good performance in wireless sensor
networks [11]. Seada and colleagues study the distance-hop
trade-off for geographic routing in wireless sensor networks
and show that the product of the packet reception rate (PRR)
and the distance traversed toward the destination (D) is an
optimal metric (PRR x D) for selecting a next-hop forwarder
[12]. Lee et al. present SOFA, an on-demand solicitation-
based forwarding protocol and show that SOFA outperforms
the commonly used link estimation-based routing schemes
implemented in TinyOS [13]. In ETF [14], Sang et al. exploit
asymmetric wireless links and observe significant improve-
ment of convergecast routing in sensor networks. In these
works, the authors assume the constant availability of
connectivity with no sleep latency, which may not be true
in extremely low-duty-cycle sensor networks.

Sleep-latency-based forwarding. In the research direc-
tion of low-duty-cycle networks, Dousse et al. provide a
solid analysis of bounds of the delay for sending data from a
node to a sink in the networks with completely uncoordi-
nated node working schedules [15]. Lu et al. introduce
various techniques for minimizing communication latency
while providing energy-efficient periodic sleep cycles for
nodes in wireless sensor networks [3]. Keshavarzian et al.
introduce a multiparent forwarding technique and propose
a heuristic algorithm for assigning parents to the nodes in
the network [16]. Lai and Paschalidis propose a minimal
energy routing with latency guarantees in duty-cycled
sensor networks [17]. Su et al. propose both on-demand
and proactive algorithms for routing packets in intermit-
tently connected sensor networks [18]. Several recent works
studied multicast and flooding in low-duty-cycle sensor
networks [19], [20]. More recently, Gu et al. study the delay
control for low-duty-cycle sensor networks [21]. We note,
however, that all these approaches in low-duty-cycle
networking assume perfect communication links.

We note that many MAC protocols, such as B-MAC [22],
S-MAC [23], and RI-MAC [24], effectively deal with the
issues of lossy radio links through FEC/ARQ and reduce
duty-cycle through the Low-Power-Listening (LPL) [22].
More recently, Suriyachai et al. introduces a novel MAC
protocol that incorporates topology control mechanisms to
ensure timely data delivery and reliability control mechan-
isms to deal with inherently fluctuating wireless links [25].
These intelligent layer 2 protocols use implicit network
information, such as packet transmissions, in order to
optimize their underlying schedules or energy use. In this
paper, we consider the dual of this problem by using
information from layer 2 at the network layer to make better
link selections.

In addition, there are many other related works on timely
and reliable data forwarding in sensor networks. MMSPEED
introduces a multipath and multispeed routing protocol for
probabilistic QoS guarantee [26]. Dwarf achieves energy-
efficient, robust and dependable forwarding by unicast-
based partial flooding and delay-aware node selection [27].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12,

DECEMBER 2011

3000 ETX —m—

2500
2000 350m * 350m square field
1500 1000 nodes

1000

Avg. E2E Delay (unit)

500

1 0.1 0.01
Network Duty Cycle (Percentage)

Fig. 1. E2E delay versus network duty cycle.

WirelessHART with TSMP [28] is a deployed industry
standard aiming to achieve timely and reliable transmission
while reducing energy consumption. Munir et al. propose a
scheduling algorithm that produces latency bounds of the
real-time periodic stream sand accounts for both link bursts
and interference [29].

To the best of our knowledge, no prior work has
thoroughly studied the impact of both lossy radio links and
sleep latency at the network layer. In this work, we reveal
that these two issues are intrinsically correlated and that a
new forwarding protocol can benefit from considering both.

3 MOTIVATION

Our work is motivated by the interesting intersection
between sleep latency and unreliable communication links
in wireless sensor networks.

First, the state-of-the-art link-quality-based forwarding
strategies such as ETX [1] and PRR x D [2] have demon-
strated their superiority at improving network throughput
and communication delay in traditional ad hoc and sensor
networks. For both ETX and PRR x D, during a certain
period of time each node usually has one fixed forwarding
node for a destination. However, in extremely low duty-cycle
scheduled sensor networks, metrics such as the expected
transmission count (ETX) would suffer excessive delivery
delays when waiting for the fixed receiver to wake up again if
the ongoing packet transmission fails. Fig. 1 shows the E2E
delays from a randomly chosen source node to the sink node
using ETX forwarding metrics under different network duty
cycles in a randomly generated network topology. The
simulation setup is the same as in Section 8 and key
simulation parameters are shown on the figure. The
simulation was repeated 1,000 times and the average value
is reported in Fig. 1 (in log-scale), which shows that as
network duty cycle decreases, the E2E delay grows sig-
nificantly. For example, at the duty cycle of 100 percent, the
E2E delay of ETX is only 37.6 units of time. In contrast, when
the duty cycle drops to 1 percent, the E2E delay increases to
2,955.5 units of time, which is approximately an 80-fold
performance degradation in end-to-end delay!

Second, sleep-latency-based forwarding [30], [3] ignores
the reality that wireless radio quality is highly unreliable
and that thus the optimality of their approaches holds only
when the link quality in the network is perfect. Fig. 2 shows
the E2E delay from a randomly chosen source node to the
sink node using delivery methods proposed in [3] under
different average link quality in a random generated
network topology. As shown in the figure, the E2E delay
increases from 380.0 to 6,851.4 units of time while the
average link quality decreases from 100 to 10 percent, which
is approximate a 20-fold performance degradation, even
though global scheduling information is available.

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

7000

DESS —&—
6000

5000

350m * 350m square field
1000 nodes

4000
3000
2000

Avg. E2E Delay (unit)

1000

1 0.9 08 07 06 05 04 03 02 0.1
Avg. Link Quality (Percentage)

Fig. 2. E2E delay versus average link quality.

The main observation from our initial studies is that both
the link quality and the duty cycle of sensor nodes can
significantly impact end-to-end communication. Although
link-quality-based forwarding [1], [2] and sleep-latency-
based forwarding [30], [3] have demonstrated their effec-
tiveness in their own contexts, they fail to deal with the
combined effect exhibited in many real-world sensor
network applications. This limitation motivates us to design
a new data forwarding technique, which we discuss in the
rest of the paper.

4 MODELS AND ASSUMPTIONS

Before presenting DSF in detail, we present the network
model and assumptions used in this work. To simplify our
description, we introduce DSF’s design in a synchronized
mode with discrete time. Later on, we explain why DSF
works without time slots and only requires local synchroni-
zation. In other words, DSF works in CSMA networks where
nodes are duty-cycled by upper-layer protocols such as
sensing coverage [31] and power management [16], [32], [33].

4.1 Network Model

We assume a network with N sensor nodes. At a given
point of time ¢t a sensor node is in either an active or a
dormant state. When a node is in the active state, it can
sense and receive packets transmitted from neighboring
nodes. When a node is in the dormant state, it turns off all
function modules except a timer (for the purpose of waking
itself up). In other words, a node can wake up to transmit a
packet at any time, but can receive packets only when it is in
its active state. Formally, we denote the network status at
time ¢t as G(t) = (V,E(t)), where V is a complete set of
N nodes within the network, and E(t) is a set of directed
edges at time ¢. An edge e(i, j) belongs to E(t) if and only if
1) node n; is a neighboring node of n;, and 2) n; is active
and hence able to receive data at time ¢. Essentially, G(t)
represents the potential traffic flow within the network at
time ¢. Obviously the connectivity of G(t) varies with time.
In other words, G(¢) is a time-dependent network.

We represent the states of each node n; with a working
schedule I'; = (w;, 7).

e wj; is an infinite binary string, in which 1 denotes the
active state and 0 denotes the dormant state. Clearly,
the duty cycle of a node is the percentage of 1’s in
the binary string. Since the working schedules of the
sensor nodes are normally periodic (for sensing
purposes), the infinite binary string w; can be
described using a regular expression.

e The state transitions between active and inactive
states are time-driven. We use 7 to denote the time
span a bit in the binary string w;.

1743

(100)*

\1\—H2 3 4

(oo1)* (010)* (111)*

Fig. 3. A linear network.

We note that the simple 2-tuple (w;, 7) is generic enough to
represent arbitrary sensor nodes working schedules. Theo-
retically, when 7 — 0, w; can precisely characterize any on/
off behavior of node n;. For clarity of presentation, we begin
our design with a simplified assumption that it takes time 7
to transmit one packet and receive acknowledgment from a
receiver. The assumption on the round-trip transmission
time bound 7 holds well when traffic/congestion is low,
which is the case in extremely low-duty-cycle sensor
networks. In addition, B-MAC [22] has already used link-
level implicit acknowledgment to support fixed round-trip
transmission time.

4.2 Time-Expanded Network

To visualize the data delivery process in a time-dependent
network G(t) = (V, E(t)), we replicate G(t) with regular
graphs G = (V, E) along with the time dimension. We call
this is a time-expanded network. In this section, for a given
sensor network topology and node working schedules, we
describe how we can build a corresponding time-expanded
network. The resulting time-expanded network can help us
better understand the data delivery method introduced in
the rest of the paper.

Given a network G(t) = (V, E(t)) with n nodes and node
working schedules T'; = (w;,7), where i € V, we use the
following rules to construct its corresponding time-ex-
panded network.

e For any node i € V at time ¢, we build a distinct
node Nj.

e For each newly built node Nj, if node j is a
neighboring node of the node i and p is the position
of first active bit in w; after time ¢, we build a directed
edge from N;; to N, with a length of (p —t)7.

e At the destination node d, we connect all its time-
expanded nodes to a null node with edge lengths
of zero.

To illustrate the above network mapping rules, we provide
a walk-through of time-expanded network construction
from a time dependent graph. Fig. 4 shows how to
construct a time-expanded network from the linear time-
dependent network shown in Fig. 3. As shown in Fig. 3,
for node 1 at time 1, the only node that is within its
communication range is node 2, and its first active state
after time 1 appears at time 3, so in Fig. 4, we build a
directed edge from node 1 at time 1 to node 2 at time 3
with an edge length of 27. Similarly, we construct other
edges in Fig. 4. Finally, for the destination node 4, we
connect all its time-expanded nodes from time 1 to time 6
to a null node with edge lengths of zero.

4.3 EZ2E Delay in Time-Expanded Network

Obviously, if all the nodes are in active states, end-to-end
delay in the above network model equals Hr, where H is
the minimum number of hops between a source and a
destination. However, if nodes in a network have certain

1744

Time Node 1 Node 2 Node 3 Node 4
1: 1 0 0 1
\ g
2: 0 2 0 41 |
l\ 1
3 0 1 1

4 Null

o o o o o o

Fig. 4. Time-expanded network.

working schedules I' = {T'1,T's,..., 'y}, transmission at
each hop could be delayed by waiting for the intermediate
receivers to wake up.

To further illustrate the data delivery process in the
extremely low-duty-cycle network, Fig. 4 demonstrates the
process of delivering a packet from node 1 to node 4 when
the packet is ready to be sent at time 1. For the sake of
simplicity, in this example we assume all links are perfect
with no packet loss and will discuss cases when the link
quality is not perfect in detail in the following sections. At
the first two time intervals, node 2 (the only neighbor of
node 1) is in the dormant state, and thus no packets could
be transmitted. At the third time interval, node 2 becomes
active, which allows node 1 to transmit a packet to it, so the
packet is delivered from node 1 to node 2. At the second
hop, node 2 waits one time interval for node 3 to wake up,
and the packet arrives at node 3 at time 5. Finally, since
node 4 is active all the time, without any additional waiting,
node 3 delivers the packet to node 4 at time 6. The total end-
to-end delay therefore is 5 units of time.

5 MaAIN DESIGN

As shown in Section 4.3, when the link quality is perfect,
the end-to-end delay is the sum of two types of delays:
1) the total transmission delay, which is the product of
number of hops and 7, and 2) The sleep latency, which is
the time spent on waiting for the receivers to wake up at
each hop. However, the unreliable radio links between
low-power sensor devices suggests that the packet trans-
mission between a sender and a receiver would not always
be 100 percent successful. As a result, the waiting time at
each hop is highly impacted not only by the node working
schedule but also by the link quality, which inspires us to
design a dynamic switch-based data forwarding protocol.

Since every operation within an extremely low-duty-cycle
sensor network is time-dependent, for the sake of clarity we
use the terms node and time-expand node interchangeably in
the rest of the paper. We have organized this design section
into five components. Section 5.1 describes the basic design
of Dynamic Switch-based Forwarding (DSF). Section 5.2
analyzes the expected delivery ratio, E2E delay, and energy
consumption, assuming the forwarding action is known a
priori. Section 6 optimizes the forwarding action to achieve
maximum delivery ratio, minimal delay, and energy
efficiency, respectively.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

Fig. 5. Example of dynamic switching.

5.1 The Basic Design of DSF

Differently than traditional data forwarding techniques such
as ETX and PRR x D, we allow multiple potential forwarding
nodes at each hop. For a given sink, each node maintains a
sequence of forwarding nodes sorted in the order of the
wake-up time associated with them. To start sending a
packet, a node looks up the time associated with the first node
in the sequence, wakes up at that time interval, and tries to
send the packet. If the transmission is successful, forwarding
is done. Otherwise, the node fetches the next wake-up time
from the sequence and tries to send the packet again. This
retransmission process over a single hop continues until the
sending node confirms that the packet has been successfully
received by one of forwarding nodes or the sending node
reaches the end of the sequence and drops the packet.

Formally, we define the sequence of forwarding nodes at
anode e as: S

Definition 1 (Forwarding Sequence S¢). S; is a sequence of
n nodes that can forward packets from node e to the sink. This
sequence is sorted based on the wake-up time of the nodes.
Formally, S¢ = (s5,s5,...,s%). Let t(s¢) be the wake-up time

of node s¢, Forwarding sequence S°¢ satisfies t(e) < t(s7) <

t(sg) < - < t(sh).

Fig. 5 demonstrates the packet transmission process
between one sender and n nodes in its forwarding
sequence. In Fig. 5, node A has a packet to be sent and its
forwarding sequence is S4 = (By, Bs, ..., B,). First, node A
wakes up at time ¢; and tries to transmit the packet to the
node B;. If the data delivery is successful, node A ends the
current packet forwarding session. However, if the trans-
mission fails, the node A wakes up again at time ¢; and tries
to send the packet to the node B,. This retransmission
process continues with node A repeatedly trying to send the
packet to the node in the sequence S7. If the transmission
fails at the last node B,, node A drops the packet.

From the above example, we can see that the major
advantage of dynamic switching is the use of a forwarding
sequence to reduce the time spent on transmitting a packet
successfully at each hop rather than waiting for a particular
forwarding node to wake up again after failure, as in such
solutions as ETX, PRR x D, and DESS.

5.2 The Modeling of EDR, EED, and EEC

Given a known forwarding sequence S, at a node e, we can
model the expected delivery ratio, the expected E2E delay,
and the expected energy consumption for the node. Here,
for the sake of clarity, we describe a scenario with a single
sink node, that can be extended easily for scenarios with
multiple sink nodes.

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

Formally, these three metrics are defined as:

Definition 2 (Expected Delivery Ratio EDR.(S¢)). The
expected delivery ratio at node e for a given forwarding
sequence S¢, denoted by EDR.(S!), is the expected packet
delivery ratio from node e to the sink node (over multihop path).

Definition 3 (Expected E2E Delay EED.(S¢)). The expected
E2E Delay at node e for a given forwarding sequence S,
denoted by EED,(S), is the expected data delivery delay for
the packets sent by node e and received by the sink node (over
multihop path).

Definition 4 (Expected Energy Consumption EEC,(S)).
The expected energy consumption at node e for a given
forwarding sequence S, denoted by EEC.(S¢,), is the expected
energy consumption to deliver a packet from node e to the sink
node (over multihop path). We note that since receiving (idle)
energy is fixed for a given working schedule, we include only
senders’ transmission energy in EEC.

Our model for computing EDR, EED, and EEC values is
distributed and can be executed at individual sensor nodes
independently. At the sink node (b), obviously, its forward-
ing sequence is empty, the EDR;(()) value is 100 percent
(i-e., no packet loss), while EED, () and EEC),(()) values are
both zeros (i.e., no delay and no energy consumption).
Consequently, we can obtain following initial equations:

EDR,(0) =1, EED,(0) =0, EEC,®)=0. (1)

Let the bidirectional link quality p.; denotes the success
ratio of a round-trip transmission (DATA and ACK)
between node e and the ith forwarder in S¢. The link
quality p.; can be influenced by multiple factors such as
transmission power and the distance between a sender and
a receiver. We note that in extremely low-duty-cycle sensor
networks, traffic congestion is rare and hence has little
effect on link quality.

The overall probability P¢(i) that a packet transmission
by node e is successful at the ith forwarder (after i —1
failures) can be represented as

i—1

Pe(i) = {H (1= pej)

j=1

Dei- (2)

Expected delivery ratio. Obviously, EDR value for node e is
the sum of the product of the probability that the
transmission is successful at a particular forwarder and its
corresponding EDR value for all nodes in S¢. Assuming
node e has n nodes in its forwarding sequence and letting
EDR; be the EDR value for the ith forwarder (sf) in 5S¢, we

have the following recursive equation for EDR,(S,Z)

EDR,(Z P°(i)EDR;. (3)

i=1
Expected E2E delay. The EED value of node e represents
the expected delay for the packets sent by node e that reach
the sink node b. Consequently, the probability that the
packet transmission is successful at a certain forwarder is
under the condition that the packet is delivered by one of

the forwarders in S¢. Therefore, the conditional probability

is Pe(i) = IEDREDR‘ Lettmg EED; be the EED value for the

1745

ith forwarder in node e’s forwarding sequence and d; be the
delay for node e to wait node s¢ in S¢ to wake up, EED,(S¢)
can be represented as

EED,(Z Pe(i
Expected energy consumption. Similarly, let EEC; be the
EEC value for the ith forwarder in S and that the expected
energy consumption for successful packet transmission at
node s is the sum of EEC; and i units of energy
consumption (note that energy wasted in i —1 failed
transmission should be included as well). The probability
that the retransmission of a packet reaches the ith forwarder
P¢(i)’ at node e is conditional on the data delivery ratio

di + EED;). (4)

EDR,(S%). Therefore, P°(i) = #ng%, and we can for-
mulate the EEC,(S¢) as
EEC,(5¢) pr’ (i + EEC)). (5)

The recursive calculation of EDR, EED, and EEC can be
implemented at individual nodes distributively. The main
idea is to radiate known initial conditions (EDR,(0) =1,
EEDy(0) =0, EECy() = 0) from the sink node, so that the
process of calculating EDR, EED, and EEC values propa-
gates outward from the sink nodes to the rest of the
network.

6 OPTIMIZING THE FORWARDING SEQUENCE

In the previous section, we described the model for
calculating EDR, EED, and EEC for a given forwarding
sequence. In this section, we will discuss how we can obtain
a forwarding sequence that is optimal in terms of the
maximum expected data delivery ratio, minimum expected
E2E delay, or minimum expected transmission energy
consumption at individual sensor nodes, respectively.

In practical network settings, especially in low-duty-cycle
sensor networks, a sender should not endlessly retransmit a
packet because it would consume significant energy at the
sending nodes. Therefore, we set the maximum time bound
for a sender to retransmit a particular packet as 7.
Consequently, at node e, with known neighboring nodes
and their corresponding working schedule I', we can have a
full sequence of potential forwarding nodes that wake up
before 7.

Formally, let s{ be a next-hop node with wake-up time
t(s¢). Node €’s full sequence S¢, under the bound T is

Se=(s7,85,... t(s)

° ,s0) where s € S¢, <> t(e) <
<tle)+1T.

6.1 Optimizing Expected Delivery Ratio

Because the length of the potential forwarding sequence of a
node is finitely subject to the maximum retransmission time
interval 7', under the reality of unreliable link quality
among pairs of wireless sensor devices, packets sent by a
source node may not all arrive the destination sink node.
Therefore, when reliable transmission has the highest
priority for a sensor network application, the optimization
of the expected data delivery ratio is critical.

1746
EDR =10%
A
100%

S
100%
* B

EDR = 100%

Fig. 6. Example for selecting a subset of nodes in potential forwarding
sequence.

Intuitively, in order to maximize the expected data
delivery ratio at node e, we should try to send packets as
long as one of the next-hop nodes is awake. The reasoning
behind this is plausible, as since we want to maximize the
expected data delivery ratio, we should take every
opportunity to move the packet out of the sender.
However, this intuition does not leads us to an optimal
expected data delivery ratio, and Fig. 6 presents a counter-
example. In Fig. 6, suppose the full forwarding sequence of
the node S is S5 = (A, B). If we choose both node A and B
to form S’s forwardmg sequence S5, according to the (3),
EDR.(S5) = 10%. In contrast, if we choose only node B to
be included in S;, the corresponding EDR.(S;) = 100%.
Therefore, in order to optimize the expected data delivery
ratio at a node e, we shall select a subsequence from the full
sequence S¢,. By definition, a subsequence can be obtained
by removing some of the elements from the original
sequence without disturbing the relative positions of the
remaining elements. As an example, (B,E,D,G) is a
subsequence of (4, B, E,C,F,D,H,G).

To select an optimal subsequence S;, from the full
sequence 5S¢, we adopt a dynamic programming approach.
Clearly, the last node sy, in S must be included in S,
since s¢, provides the last chance for node e to retransmit
before the packet is dropped. Starting from this optimal
substructure, we can attempt to include nodes (one by one)
from S;, backwardly into S ,. If the inclusion of a node
from S;’n into S, increases EDR.(S;,), we then add this
node into Sy, permanently Otherwise, we discard the node
and try to add the next node. The above forwarding
sequence selection process continues until we reach the
node s{ in the full sequence Sf,. The optimality of this
dynamic programming algorithm is based on the fact that
the optimal EDR,(S;,) can be constructed efficiently from
its optimal substructures. The decisions made to include or
exclude a later node in the forwarding sequence does not affect the
optimality of decisions made to include or exclude earlier nodes
and vice versa. For each backward augmentation of the
forwarding sequence, we guarantee the maximum data
delivery ratio of the sequence between the newly augmen-
ted node and the last node. This forwarding sequence, then,
serves as an optimal substructure for augmenting addi-
tional forwarders until the process reaches the first node in
the sequence.

Let S5, (k) denote the optimal forwarding subsequence
in terms of maximizing DR metric from the sequence
St = (85— ks1s St_gr2: - - - » Siy)- Obviously, Sy, (m) is the opti-
mal subsequence we want to obtain.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

We have the following initial optimal substructure:

5.0 =)
5,(1) = (52,)

Building upon the previous optimal substructure, when we
attempt to include the next node s§ in S}, into S, (k— 1)
backwardly, there are two possible outcomes:

e According to the model of EDR.(S°), if the
appending of node s} to Sj,(k—1) increases the
expected delivery ratio, we insert node s in front of

the existing sequence Sop,(1) to obtain S, (k).

e If the inclusion of node s into sequence S, (k — 1)
does not increase the data delivery ratio, the optimal
forwarding sequence remains unchanged.

Formally, let s @ S denote inserting node s to the front
of the sequence S, the corresponding recursive equation for

S¢ (k) can be represented as

opt
S:)pt ())

85 GBS(()‘DT(1)?

EDR, (Sapt (k—

1)) >
EDR,(s; & S,

S(opt (k 1))7 (7)
Otherwz se.

opl‘()

6.1.1 Detailed Algorithm for Optimizing EDR

In the previous section, we discussed recursive equations
for optimizing forwarding sequence for EDR. In this
section, we introduce detailed dynamic programming
algorithm that implements earlier mathematical formula-
tions. The complete algorithm is shown in Algorithm 1.
First, according to the known wake-up time of neighboring
nodes, we form a full sequence S —m* as the input of our
optimizing algorithm. Then following 6, we construct an
initial optimal substructure (Line 1 to Line 2). From Line 4
to Line 14, we perform the task of adding forwarding node
backwardly and decide whether a node should be included
in the optimal forwarding sequence or not. Line 5 to Line 9
constructs a temporary forwarding sequence with the
inclusion of a new node from full sequence. According to
rules described in (7), we decide the new optimal
substructure (Line 10 to line 14). This selection process
continues until we have tried every node in the full
sequence. Therefore, the complexity of this algorithm is
proportional to the length of full sequence, and can be
expressed as O(DT'), where D is the density of next-hop
nodes and 7' is the maximum per-hop delay allowed.

Algorithm 1. Forwarding sequence optimization for EDR at
a time expanded node e
Input: Full sequence S, with length m.
Output: The optimal forwarding sequence S°

1 5,(0) — ()

2: §,(1) (s5,)

3: 72

4: for j from (m — 1) downto 1 do

5. if ¢(s$) # (s, (i — 1)) then

6: S si@Sy,(0—1).

7: else
8 S st @ (St (i~ 1) — st (i — 1)),
9: end if

10: if EDR.(S) > EDR,(S.,(i — 1)) then

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

11: Sgpt(i) — S5

12: else

130 86,(6) «— S, — 1)
14: end if

15: ¢+ i+1

16: end for

6.2 Optimizing Expected E2E Delay

In many sensor network applications, such as military
surveillance, target tracking, and infrastructure monitoring,
the delay for the source-to-sink communication is critical to
the performance of the system.

We note that if there is no bound on the expected delivery
ratio for the forwarding sequence, the optimal forwarding
sequence in terms of minimizing delay can be trivially
achieved by including only a single node j which has the
minimum (d; + EED)) value among all nodes in S, (4).
However, with such a quick-and-dirty solution, especially
when the link quality between node e and node j is low,
node e may suffer from an extremely low packet delivery
ratio to the sink node and consequently may cause the whole
network to be unavailable. Therefore, it is important to
minimize the EED metric for the node e under the constraint
that the EDR metric of the forwarding sequence is greater
than a certain bound R. The bound R must be less or equal to
the optimal EDR value that could be achieved at the node e.

Similarly to maximizing EDR, we also adopt a dynamic
programming approach to select a subset of nodes in S¢,
backwardly to optimize EED. But in contrast, the last node in
S¢, is no longer guaranteed to be the optimal initial optimal
substructure, since the inclusion of the node may increase
the expected E2E delay. Instead, to optimize EED, we need
to try every node in the full sequence S;, as the last node in
the optimal subsequence. For example, if we suppose
S¢, = (B, E,D,G), we need to obtain optimal subsequences
from (B, E,D,G), (B,E,D), (B,E),and (B) with G, D, E, B
chosen, respectively.

Suppose node sf,, is selected as the last node and
S (last, k) represents the optimal forwarding subsequence
in terms of EED chosen from the sequence Sf(last) =
(Shust—toi1> Stast—ki2s - - - » Siast), ' Where k <last and last €
{1,2,...,m}.

For each last node, we have the following initial optimal
substructure for S ,(last, k) in terms of minimal EED:

S¢ (last,0) = (),
Zpt()=0) (8)
Sopr(last, 1) = (sj,q)-

Similar to the recursive equations for maximizing EDR,

for each node sf in Si(last), the optimized forwarding

sequence for EED is

Sop(last, k) =
Sep(last, k —1), EED(S;,(last,k — 1)) < (9)
EED,.(s5® S5, (last, k — 1)),
5 @ S (last,k — 1), Otherwise.

1747

After having all Sy, (last, last) where last € {1,2,...,m},
we chose the forwarding sequence with the minimal EED
value, under the constraint that EDR > R.

6.2.1 Detailed Algorithm for Optimizing EED

As shown in Algorithm 2, similar to the forwarding sequence
optimization for EDR, we first build a full sequence of
forwarding nodes as the input of our algorithm. Then as
explained in previous section, while optimizing EED, we
cannot ensure that the last node in the full sequence forms the
initial optimal substructure, therefore we need to try every
node in the full sequence as the last node in the optimal
subsequence (Line 1). With an initial subsequence, we
proceed with our dynamic programming algorithm that is
identical to the optimization of EDR except for applying EED
model in Line 11 when we calculate metric value for a given
forwarding sequence (Line 2 to Line 17). After generating all
forwarding sequences, we select the one that yields minimal
EED value while achieving EDR bound R (Line 20 to Line 24).
Since we repeat forwarding sequence optimization for EDR
m times, the complexity of this algorithm is O(T'm?).

6.3 Reducing Expected Energy Consumption

For applications such as scientific exploration, the difficulty
of entering the sensing field and the corresponding high
cost of system deployment calls for the longevity of the
system, making energy conservation the highest priority for
the system design. Similarly to the optimization of EED, if
we do not have a bound on the expected delivery ratio, the
optimal forwarding sequence for the minimal EEC would
include only one node with the smallest EEC value in S¢,
and may also experience an extremely low source-to-sink
data delivery ratio. Therefore, in this section we reduce EEC
under the constraint that EDR of the forwarding sequence is
above threshold R.

Algorithm 2. Forwarding sequence optimization for EED at
a time expanded node e
Input: Full sequence S, with length m.
Input: Data Delivery Ratio Bound R
Output: The optimal forwarding sequence S*
1: fori=1tom do
20 S,ptc(i,0) «— ()
30 Sopte(i,1) « (s5)
4: j—2
5: for k from ¢ — 1 downto 1 do
6: if 1(s}) # (s, (4,5 — 1)) then
7 S — 55 @ 85,(1,5 - 1).
8
9

else
: S%k@Sgpt(i,j—l)—szpt(i,j—l).
10: end if
11: if EFED.(S) < EEDQ(Sf;pt(z’,j — 1)) then
12: Sept(i,3) < 8
13: else
14: e (i,5) — S&u(iy g — 1)
15: end if
16: je—7Jj+1
17: end for
18: end for

19: MinEED «— oo

1748

20: fori=1to m do

21: if BED.(S.,(i,i)) < MinEED and
EDR.(S;,(i,i)) > R then

22: S «— Sf,pt(i,i)

23: MinEED «— EED,(S°)

24: end if

25: end for

Unlike optimizing EED, in (5), where i represents the
index of forwarding node in the forwarding sequence, the
i value changes for each already selected forwarding node as
we backwardly add early nodes. In other words, the
decisions made to include or exclude an early node in the
forwarding sequence does affect the expected energy of later
nodes. Lacking an optimal substructure, we can only choose
either an exhaustive search (in the case that a forwarding
sequence is small) or a greedy heuristic algorithm. We found
that the greedy case for EEC is actually very effective. The
main idea of the greedy algorithm is that starting with an
empty optimal forwarding sequence, we continuously add
the unselected node in S, that results in a minimal increase in
EEC into the optimal forwarding sequence until the EDR of
the optimal forwarding sequence reaches R. Empirical
results indicate that the greedy algorithm obtains optimal
results 85 percent of the time and the suboptimal results are
within 5 percent of the optimal values.

6.3.1 Detailed Algorithm for Reducing EEC

In Algorithm 3, we first construct a full sequence of
forwarding nodes according to wake-up time of neighbor-
ing nodes for node e. Then starting with an empty
forwarding sequence (Line 1), we select a node from the
full sequence, which yields a minimal EEC value after its
inclusion in the forwarding sequence (Line 3 to Line 13).
Above node selection process continues until the EDR value
of current forwarding sequence reaches bound R. Since in
the worst case we need to add all nodes in the full sequence
to the final forwarding sequence, the complexity of this
greedy algorithm is O(DT).

Algorithm 3. Forwarding sequence optimization for EEC at
a time expanded node e

Input: Full sequence S, with length m.
Input: Data Delivery Ratio Bound R

Output: The optimal forwarding sequence S°

1: 5¢— ()
2: repeat
3: MinEFEC «—
4: fori=1tomdo
5. if NOT s{ € S° then
6: S —sfuUSe
7: if FEC.(S) < MinEEC then
8: Je—1
9: MinEEC — EEC,(s)
10: end if
11: end if
12: end for

13: 8¢« sj’ use
14: until EDR.(S¢) <R

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

0.995 -

0.99

0.985

Percentage of Optimal Nodes

0.98 L L
0.9 0.92 0.94 0.96 0.98 1

Fig. 7. Percentage of optimality versus EDR.

6.4 The Impact of EDR Constraints on Optimality
We note that the EDR bound R imposes a nonconvex
constraint on the EED and EEC optimization problems. To
optimize the forwarding sequence efficiently, the optimiza-
tion processes described in Sections 6.2 and 6.3 first identify
an optimal forwarding sequence under unconstrained
search space. If the resulting sequence satisfies the EDR
bound R, it is also an optimal solution to the original
constrained problem. However, it is also possible that the
resulting sequence violates the constraint especially when
the EDR bound R is very high. In this case, we select the
optimal EDR forwarding sequence from Sf, where i is the
minimal value leads to EDR.(S°) > R to satisfy the
constraints (instead of achieving optimal EED or EEC).
Obviously, if the percentage of constraint violation is
high, our solution is not effective. To evaluate this issue, we
studied the impact of a high EDR bound on the optimality of
our solution. Fig. 7 shows the percentage of optimality under
different EDR bounds. Clearly, our solution is very effective
in identifying optimal solutions. For example, even with a
99 percent delivery ratio, 98.4 percent solutions are optimal.

6.5 Special Cases: ETX and DESS

We note that when nodes in the network are always active
with no sleeping schedules, our EDR, EED, and EEC
metrics and corresponding forwarding sequences default
into those of the ETX solution. In addition, when all radio
links among neighboring nodes are perfect, EDR, EED, and
EEC default into those in the DESS solution. To a certain
degree, we argue that EDR, EED, and EEC metrics are more
generic data forwarding metrics, considering both link
quality and sleep latency. In other words, ETX and DESS
are two special cases of a more generic DSF solution. To
validate this empirically, we will show such a convergence
in the evaluation section later.

6.6 On Link Quality Change

The measurement of link quality plays an important role in
our DSF design. In practice, however, link quality is affected
by many environmental factors and changes over time. To
achieve low-cost and accurate link quality estimation, we can
adopt state-of-the-art solutions such as MultiHopLQI [34]
and Four-bit link estimation [35]. In addition, through many
empirical studies [36], [37], many researchers have revealed
that although link quality changes noticeably over a long
period of time, changing rate is slow. Therefore, measure-
ments of the link quality can be updated at a relatively large
interval (e.g., once every 10 minutes), which further reduce
the system overhead for link quality estimation.

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

15000 [pSF

ETX o
12500
10000

7500

E2E Delay

5000

2500

WM%—W"‘W’“
0 10 20 30 40 50 60 70 80 90 100
Packet Sequence (Sorted with respect to E2E Delay)

Fig. 8. E2E data delivery delay.

1 T

50" & @ @

.aQ
08 | o 4

06]

CDF

04 / +

02t —
L DSF —8—
0 L L L L L L ETX L ©

2 4 6 8 10 12 14 16 18
Energy Consumption (Number of transmissions for a single packet delivery)

Fig. 9. Energy consumption.

7 IMPLEMENTATION AND EVALUATION

We have implemented a complete version of the DSF
forwarding scheme on the TinyOS/Mote platform in nesC
with 20 MicaZ motes. To compare performance, we also
implemented ETX [1] on the motes. The major components
of DSF implementation include neighbor discovery, link
quality measurement, the forwarding sequence optimiza-
tion algorithms discussed in Section 6, and data forwarding
with an optimized forwarding sequence.

We use FTSP [38] for the purpose of time synchronization
among motes and Deluge [39] for the purpose of wireless
reprogramming. The compiled image occupies 27,398 bytes
of code memory and 1,137 bytes of data memory.

This testbed experiment was repeated multiple times
with different node placement and working schedules.
The results show the similar trend that resulted in all the
experiments, and we report one collected data set from
the experiments in the following section.

7.1 Performance Comparison

In this section, we describe and compare the empirical E2E
delay and energy consumption for DSF and ETX. In the
experiment, the source node sends 100 packets to the sink
node with DSF of optimal EED and ETX forwarding
scheme, respectively.

Fig. 8 shows the E2E data delivery delay for DSF and
ETX. The packets in the figure are sorted according to their
E2E delay, making it clear that ETX experiences heavy
penalties when its single-hop transmission has failed, since
it has to wait for the fixed forwarding node to wake up
again. In contrast, when DSF encounters a single-hop
transmission failure, its capability to dynamically switch
the forwarding node significantly reduces the E2E delay.
For instance, among 100 sent packets, the maximal E2E data
delivery delays for DSF and ETX are 4,317 and 15,426 ms,
respectively, while the average delays are 849 and 3,942 ms.

In addition to the E2E delay, we are also interested in the
energy consumption of the two comparing protocols. Fig. 9
demonstrates the energy consumption (number of trans-
missions for a single packet delivery) for DSF and ETX.

1749
1 T T T T T T T T T
DSF O » B
ETX [0} al OO
0.8 g o
o8 o
o
ElEl o
L 08 F o 00
8 ﬁ &
0.4 5 0 o
oo
02t o0 o)
& o°
B o

.
01 02 03 04 05 06 07 08 09
Forwarder Link Quality

Fig. 10. Diversity in forwarder link qualities.

Forwarding Node:
Neighboring Nodes

Number of Nodes
5

0 5 10 15 20
Node Sequence (Nodes are sorted with respect to their distance to sink node)

Fig. 11. Number of forwarding nodes versus number of neighboring
nodes.

From the figure, we can see that ETX incurs a smaller
number of transmissions than DSF. For example, all of the
packet deliveries for ETX finished with a maximum of nine
transmissions, while about 84 percent of the packets for DSF
arrived at the sink node within nine transmissions.
However, the DSF shows a better delay-energy efficiency
than ETX. With the same nine transmissions, the delay for
DSF and ETX is 1,785 and 15,426 ms, respectively.

7.2 System Insights

In this section, we investigate the internal state of each
sensor node and reveal the corresponding statistics for DSF.
Fig. 10 demonstrates the greater diversity of forwarder
link qualities for DSF over those for ETX. While almostall ETX
forwarders have link qualities above 50 percent, the distribu-
tion of forwarder link qualities for DSF is roughly uniform
and ranges from 3 to 97 percent. Such diversity in forwarder
link qualities for DSF, along with its smaller E2E delay, leads
us to conclude that unreliable links are also helpful in
reducing E2E delays in low-duty-cycle sensor networks.

Fig. 11 shows the relationship between the number of
nodes in the forwarding sequence and the number of
available neighboring nodes for each sensor node in the
experiment. The node sequence is ordered by the node’s
distance to the sink node. From this figure, we can see that
most nodes have more than one node in their forwarding
sequence. We also observe that generally, as the node’s
distance to the sink node increases, the number of forwarding
nodes in the forwarding sequence also increases, since in
order to maintain a certain data delivery ratio, the more
distant nodes normally need to select more of their neighbor-
ing nodes. For example, the average number of forwarding
nodes for the first 10 nodes is 1.8 nodes, while the value for
the last 10 nodes is 3.8 nodes.

In addition to studying the distribution of the forward-
ing nodes, we also investigated how fast each node
converges to its optimal forwarding sequence. To track
the convergence speed of the DSF, we recorded the number
of times that each node executed its forwarding sequence
optimization procedure, as shown in Fig. 12. There we can
see that the forwarding sequence optimization process at all

1750

0.8

0.6

CDF

0.4

0.2

.
2 4 6 8 10 12 14 16 18
Convergence Speed (The number of executions of the optimization procedure)

Fig. 12. DSF convergence speed.

nodes converges within 18 executions of the optimization
procedure. Furthermore, the number of executions of the
optimization procedure at individual nodes is proportional
to the number of neighboring nodes. This observation is
also consistent with our complexity analysis for forwarding
sequence optimization procedures.

8 LARGE-SCALE SIMULATION

The results of the following system evaluation indicates
that our proposed approaches can be efficiently implemen-
ted on resource-constrained sensor nodes and demonstrates
their effectiveness in improving source-to-sink wireless
communication between sensing nodes and sink. However,
this evaluation was restricted to a limited design space. In
order to understand the performance of the proposed
scheme under numerous network settings, in this section,
we provide simulation results with 250 nodes. We
compared the performance of DSF with following state-of-
the-art solutions:

e ETX [1] by Douglas S.J. De Couto et al. in
MobiCom 2003.

e PRR x D [2] by Karim Seada et al. in SenSys 2004.

e DESS [3] by Gang Lu et al. in INFOCOM 2005.

8.1 Simulation Setup

In the simulation, we deployed 250 sensor nodes randomly
in a 150 m x 150 m square field. A sink was positioned in
the center of the deployment field, and each sensor node
sent its packet to the sink over multiple hops. The radio
model was implemented according to [40], which considers
both temporal and spatial oscillations of the radio links and
has several adjustable parameters. Except as otherwise
specified, we set these parameters strictly according to the
CC2420 radio hardware specification [41]. These parameters
accurately reflect the performance of MicaZ motes in that
they have the same modulation method, encoding method,
frame length, and path loss exponent.

In all experiments, we set the sender retransmission
time bound T equals 2007, which is also the length of the
node working schedule. Each experiment was repeated
30 times with different random seeds, node deployments,
and node working schedules. Data collected at each node
was obtained by averaging 1,000 source-to-sink commu-
nications. The 95 percent confidence intervals are within 1-
10 percent of the means.

8.2 Performance Evaluation

This section compares the data delivery ratio, E2E delay,
and energy consumption per delivered packet of source-to-
sink communications among DSF, ETX, PRR x D, and
DESS under different link qualities and duty cycles.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

For the simulation of different link qualities, we first
used CC2420 radio specifications to obtain the neighbor
table for each sensor node, then set the pairwise link quality
according to the simulation configurations.

In following three sections, evaluation figures for
optimizing metrics are shaded to highlight their perfor-
mances.

8.2.1 Optimizing Expected Delivery Ratio

In this section, we examine the performance difference
among DSF with optimal EDR, ETX, PRR x D, and DESS
under different link qualities and duty cycles.

Varying link qualities. Fig. 13a shows the data delivery
ratio among the four compared schemes. The figure clearly
shows that under the low link qualities, ETX, PRR x D, and
DESS can deliver only a very small portion of packets, while
DSF with optimal EDR is able to deliver most of the packets
to the sink node. For example, when the link quality is
55 percent, DSF delivers 99.9 percent of packets, while ETX,
PRR x D, and DESS deliver only 61.0, 43.5, and 20.3 percent
of packets, respectively. Therefore, when the data delivery
ratio is the primary design goal of a sensornet application,
DSF would be a good choice for the system.

Figs. 13b and 13c show the corresponding E2E delay
and energy consumption for four schemes. From Fig. 13b,
we observe that DESS has the smallest and most constant
E2E delay at all link qualities because at each hop, DESS
would attempt to transmit its packet to the forwarder only
once on the shortest delay path during one round of the
node working schedule. Therefore, all the packets for DESS
that reach the sink node are those for which every single-
hop transmission is successful with one single attempt, and
that consequently represent the minimal possible delivery
delay, which is a constant value. At the same time,
however, DESS experiences the largest packet loss among
the four compared schemes. DSF, on the contrary, has the
largest data delivery ratio though a smaller E2E delay than
ETX and PRR x D. However, DSF’s high data delivery
ratio also incurs energy penalties.

From Fig. 13c, we can see that DSF has a slightly higher
energy consumption per delivered packet than ETX and
PRR x D since it attempts more transmissions and delivers
more packets than these schemes. DESS ignores the link
quality completely, has a very low data delivery ratio, and
wastes much energy on transmitting packets that do not
arrive at the sink node, therefore having the largest energy
consumption per delivered packet. For instance, at a link
quality of 55 percent, the per-delivered packet energy
consumption for DSF, ETX, PRR x D, and DESS is 891,
6.40, 7.64, and 10.54, respectively.

Varying duty cycles. Fig. 13d reports the data delivery
ratio under different node duty cycles. It shows that under
all node duty cycles, DSF with optimal EDR has a higher
data delivery ratio than ETX and PRR x D. As the node
duty cycle increases, the data delivery ratio for all schemes
increases as well. For example, the delivery ratio for DSF,
ETX, and PRR x D increases from 99.9, 69.3, and 43.8 per-
cent to 100, 99.9, and 98.6 percent, respectively, when duty
cycle increases from 1 to 10 percent. Fig. 13e shows that the
corresponding E2E delay for DSF is smaller than the other

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

1751

1 &=
e 2
e —o—% &
Z e a
S o8 o x 5
> e &)
5] e A]
E e a
2 | e o
s 04% =]
2 o e -
a o EElE =) <
sy 029 ETX —O—
z RR'D &
o DESS —o— 5
55 60 65 70 75 8 8 90 95 100 55 60 65 70

Avg. Energy Consumption

Link Quality (Percentage)

(a)

Avg. Data Delivery Ratio
o o
> ®
N
s
b
b
Avg. E2E Delay

Link Quality (Percentage)

75 80 85 9 95 100 55 60 65 70 75 80 8 90 95 100
Link Quality (Percentage)

(b)

Ave. Energy Consumption

Node Duty Cycle (Percentage)

(d)

Node Duty Cycle (Percentage)

(©) ()

Node Duty Cycle (Percentage)

Fig. 13. Optimizing Expected Delivery Ratio. (a) Delivery Ratio versus Link Quality. (b) E2E Delay versus Link Quality. (c) Energy versus Link
Quality. (d) Delivery Ratio versus Duty Cycle. (e) E2E Delay versus Duty Cycle. (f) Energy versus Duty Cycle.

=) 250 DSF —8— 5
2 - ES :

200 —_— iDitea £
g B = gTﬁf*‘-ﬁ,.\,_,,—@‘,‘.ﬂ DESS —o— :

2

= a 150 S
a I =
g B 400 5
a e M &
= “ s ®
< <

55 60 65 70 75 80 85 90 95
Link Quality (Percentage)

55 60 65 70 75
Link Quality (Percentage)

(b) (©)

55 60 65 70 75 80 85 920 95 100

80 8 90 95 100
Link Quality (Percentage)

Avg. Energy Consumption

(a)

1 -
o e & a =
g e
£ o8 A
2)
2 o6 / A
8 @
= 04 &
a8 3
& 0.2 DSF —&— <
B3 ETX -0

6 PRR'D -t

1 2 3 4 5 6 7 8 9 10 7 5
Avg. Node Duty Cycle (Percentage)

3 4 5 6
Avg. Node Duty Cycle (Percentage)

(e) ()

7 8 9 10

Avg. Node Duty Cycle (Percentage)

Fig. 14. Optimizing Expected E2E Delay. (a) Delivery Ratio versus Link Quality. (b) E2E Delay versus Link Quality. (c) Energy versus Link Quality.
(d) Delivery Ratio versus Duty Cycle. (e) E2E Delay versus Duty Cycle. (f) Energy versus Duty Cycle.

two baseline schemes, even with a higher data delivery
ratio. Fig. 13f shows again that the high data delivery ratio
of DSF results in higher energy consumption.

8.2.2 Optimizing Expected E2E Delay

In this section, we examine the performance difference
among DSF with optimal EED, ETX, PRR x D, and DESS
under different link qualities and duty cycles. For optimal
EED at each node, we set the data delivery ratio bound as
99 percent.

Varying link qualities. Fig. 14b shows the end-to-end
delay for four forwarding schemes under different link
qualities. At link qualities less than 100 percent, the E2E
delay is larger for DSF than for DESS, for the reason
mentioned in the previous section. Meanwhile, the E2E
delay for DSF is much smaller than for ETX and PRR x D.
For example, at a link quality of 90 percent, the E2E delay for
DSF, ETX, and PRR x D is 56.2, 169.4, and 178.3, respec-
tively. When the link quality reaches 100 percent, the results
for DSF with optimal EED converges with those of DESS. In
Fig. 14c, we can see that the energy consumption for DSF is

still higher than that for ETX and PRR x D. However, we
also observe that DSF is more delay-energy efficient than
the other schemes. For example, when the link quality is
80 percent, the per-energy delay for DSF, ETX, PRR x D,
and DESS is 10.07, 47.41, 50.36, and 14.61, respectively.

Varying duty cycles. Fig. 14e shows the end-to-end
communication delay under different node duty cycles.
There we can see that DSF has a smaller delay than the
baseline schemes under all duty cycles while retaining a
high data delivery ratio (Fig. 14d). The overall energy
consumption for DSF is still higher than that for the other
schemes. However, as mentioned before, the per-energy
delay for DSF is much smaller than for ETX and PRR x D.
For example, at a duty cycle of 5 percent, the per-energy
delay for DSF, ETX, and PRR x D is 3.82, 14.08, and 16.33,
respectively.

8.2.3 Reducing Expected Energy Consumption

This section presents the performance differences among
DSF with optimal EEC, ETX, PRR x D, and DESS under
different link qualities and duty cycles. For an optimal EEC

1752

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

° B O_/-Z-fr’—““’f DSF —8— =i
ki o & - PRED e £
S o8 = ; 200 § Qe e 2
& o o B R S s - S s@er DESS o £
g e e] T g =
2 069 ik o 150 ~ £
2 N e m 8
s 04 o 5100 %
g e 5
=] e DSF —8— z | G
s 029 ETX —6— 50 6 .
g PEED T &

5 DESS —o— 8 <

55 60 65 70 75 80 8 90 95 100 55 60 65 70 75 8 8 9 95 100 Ys & & O = & & o &
Link Quality (Percentage) Link Quality (Percentage) Link Quality (Percentage)
(a) (b) ()

1 —5 > ®
g T s
B SIS By =

/ = E}
E 06| / 3 Z 8
a a O g
= 04 A =
g o 5 4
S o2 —a— e 4
El B% —o— @ 2 2% =2
z T S ETX ~—6—
PRRD -
. <, PRR'D o

4 6
Node Duty Cycle (Percentage)

(d

Node Duty Cycle (Percentage)

4 5 6 7
Node Duty Cycle (Percentage)

(f)

8 9 10

()

Fig. 15. Reducing Expected Energy Consumption. (a) Delivery Ratio versus Link Quality. (b) E2E Delay versus Link Quality. (c) Energy versus Link
Quality. (d) Delivery Ratio versus Duty Cycle. (e) E2E Delay versus Duty Cycle. (f) Energy versus Duty Cycle.

at each node, we set the data delivery ratio bound as
99 percent.

Varying link qualities. In Fig. 15¢c, energy consumption
for DSF approaches the ETX at all link qualities while
maintaining high data delivery ratio. For example, when
link quality is 70 percent, the energy consumption for DSF,
ETX, PRR x D, and DESS is 4.21, 421, 459, and 7.04,
respectively. When link quality approaches 100 percent,
DSF converges to the ETX in terms of energy consumption.
In addition, with equivalent energy consumption, the E2E
delay for DSF is smaller than for ETX and PRR x D. At a
link quality of 80 percent, the E2E delay for DSF, ETX, and
PRR x D is 113.95, 182.13, and 197.18, respectively. Inter-
estingly, we notice that under optimal EEC, DSF does not
converge to the DESS when link quality reaches 100 percent,
because when optimizing EEC, DSF would seek the
delivery path with the minimum number of transmissions
instead of the minimum E2E Delay.

Varying duty cycles. Fig. 15f shows the energy con-
sumption under different node duty cycles. From the figure,
we observe that the energy consumption for DSF ap-
proaches that of ETX and is better than that of PRR x D.
With a higher data delivery ratio (Fig. 15d) and comparable
energy consumption, the end-to-end delay for DSF is still
smaller than for the baseline schemes.

8.3 Insights

In the previous section, we saw the significant improvement
of the source-to-sink communication for DSF over ETX,

CDF

0.4
Forwarder Link Quality

05 06 07

Fig. 16. Diversity in forwarder link qualities (average # of neighbors = 6).

PRR x D, and DESS. In this section, we reveal the under-
lying reasons why DSF provides better performance than
those state-of-the-art solutions.

8.3.1 Diversity in Link Quality

Both ETX and PRR x D generally prefer reliable links and
try to avoid highly unstable links. While this intuitive
approach holds well in traditional wireless networks, we
saw that as node duty cycle decreases, the delay of such
schemes becomes excessive since the time spent on waiting
for the forwarder to wake up again is no longer tolerable.
Fig. 16 shows the CDF curve of the forwarder’s link
qualities for 200 randomly sampled senders from DSF, ETX,
and PRR x D. From the figure, we can see that the
distribution of DSF link quality is roughly uniform, with
no obvious range being favored, while ETX and PRR x D
select much more reliable links. This observation strength-
ens our understanding that unreliable links are as useful as
highly reliable links for minimizing the source-to-sink
communication delay in low-duty-cycle networks.

CDF

Forwarder-Sender Hop Difference

Fig. 17. Forwarder-sender hop differences (average # of neighbors = 6).
1

o

o
; .

0.8

0.6

CDF

0.4

0.2

S

PRR*D
DESS

20

<
22

&
[

6 12 14 16 18
Number of Relaying Nodes

24

Fig. 18. Diversity in delivery paths (# of neighbors = 6).

GU AND HE: DYNAMIC SWITCHING-BASED DATA FORWARDING FOR LOW-DUTY-CYCLE WIRELESS SENSOR NETWORKS

160 160

140 140

120 120

100 100

0 20 40 60 80 100 120 140 160 0 20 40 60 80

(a) (b)

100 120 140 160

1753

160 160
140 140
120 120
100 100
80 80
60 60
40 40

20 20

0 20 40 60 80 100 120 140 160 0 20 40 80 80

(©) (d)

100 120 140 160

Fig. 19. Delivery Paths. (a) EED Delivery Path. (b) ETX Delivery Path. (c) PRR x D Delivery Path. (d) DESS Delivery Path.

8.3.2 Implications of Packet Forward Direction

The metric of PRR x D tries to balance the distance
advanced from the sender to a forwarder and the link
quality between them. Similarly, the minimized ETX and
DESS paths also prefer to move the packet forward.
However, this is not the case for EED. Fig. 17 shows the
forwarder-sender hop difference for 200 random sampled
nodes from DSF, ETX, and PRR x D. In contrast to other
schemes, from Fig. 17, we observe that a DSF sender may
transmit its packet to a forwarder with smaller hop, same
hop, or even larger hop. More specifically, for the
200 sampled nodes, only 57.1 percent forwarders have
smaller hop count than the sender, while 36.4 and
6.5 percent forwarders have same and larger hop count,
respectively. In contrast, ETX and PRR x D forward 64.6
and 73.2 percent packets to the smaller hop-count nodes
while almost never send packets to larger hop-count nodes.

Adding the observations from Figs. 16 and 17, we can
conclude that link quality, hop counter, or the combination
of the two have little implications on the selection of
forwarders in order to minimize the E2E delay in the
extremely low-power sensor networks.

8.3.3 Diversity in Delivery Paths

In the previous section, we demonstrated that picking low-
quality links is beneficial in low-duty-cycle sensor networks
for reducing the source-to-sink communication delay. In
this section, we show the greater diversity of delivery paths
for DSF over those for ETX, PRR x D, and DESS. In the
simulation setup, 150 nodes are deployed in a 160 m X
160 m field. Forty source nodes on the edge of the field send
their packets to the sink node located in the center of the
field. In Fig. 18, we show the number of nodes that relay the
packets sent by the source nodes during 100-packet delivery
processes for DSF, ETX, PRR x D, and DESS. Clearly, DSF
explores a much larger neighbor space than the other three
schemes in these 100 packet transmission processes. For
example, the maximum number of relaying nodes for DSF,
ETX, PRR x D, and DESS is 23, 11, 11, and 16, respectively.
Furthermore, in Fig. 19, we also visualize the delivery paths
for DSF, ETX, PRR x D, and DESS for a source node in the
southeast corner of the field. In Fig. 19, we plot the nodes
that relay the packets sent by the source in 10 packet
delivery processes. From the Figure, we can see that DSF
clearly explores a much more larger neighbor space than
other three schemes in these 10 packet transmission
processes. These two sets of figures again demonstrates
DSF’s adaptability to the presence of unreliable radio links
and the low duty-cycle of sensor nodes.

9 CONCLUSION

In this work, we propose a dynamic switch-based forward-
ing scheme for extremely low-duty-cycle sensor networks,
which addresses the combined effect of unreliable radio
links and sleep latency in data forwarding. We derive a
distributed model for data delivery ratio (EDR), E2E delay,
and energy consumption (EEC) at individual nodes and
optimize the forwarding action in terms of these three
metrics. To evaluate the performance of DSF, we have fully
implemented the DSF in a network of 20 MicaZ motes and
performed extensive simulation with various network
configurations. The results demonstrate that DSF signifi-
cantly improves source-to-sink communication over several
state-of-the-art solutions in low-duty-cycle sensor networks
with unreliable radio links.

ACKNOWLEDGMENTS

This work was supported in part by Singapore University
of Technology and Design grant SRG-ISTD-2010-002 and
US National Science Foundation grants CNS-0917097,
CNS-0845994, and CNS-0720465. Partial support was also
received from the InterDigital Company. A conference
paper [4] containing some preliminary results of this paper
appeared at ACM SenSys 2007.

REFERENCES

[1] D.S].D. Couto, D. Aguayo,]J. Bicket, and R. Morris, “A High
Throughput Path Metric for Multi-Hop Wireless Routing,” Proc.
ACM MobiCom, 2003.

[2] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy-
Efficient Forwarding Strategies for Geographic Routing in Lossy
Wireless Sensor Networks,” Proc. Second Int’l Conf. Embedded
Networked Sensor Systems (SenSys '04), 2004.

[3] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay
Efficient Sleep Scheduling in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, 2005.

[4] Y.GuandT. He, “Data Forwarding in Extremely Low Duty-Cycle
Sensor Networks with Unreliable Communication Links,” Proc.
Int’l Conf. Embedded Networked Sensor Systems (SenSys '07), 2007.

[5] H. Kiehne, Battery Technology Handbook. Marcel Dekker, 2003.

[6] J. Jeong, Y. Gu, T. He, and D. Du, “VISA: Virtual Scanning
Algorithm for Dynamic Protection of Road Networks,” Proc. IEEE
INFOCOM, 2009.

[71 X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill,
“Integrated Coverage and Connectivity Configuration in Wireless
Sensor Networks,” Proc. First Int’l Conf. Embedded Networked Sensor
Systems (SenSys "03), 2003.

[8] G.S.Kasbekar, Y. Bejerano, and S. Sarkar, “Lifetime and Coverage
Guarantees through Distributed Coordinate-Free Sensor Activa-
tion,” Proc. ACM MobiCom, 2009.

1754

]

[10]

(1]

[12]

(13]

(14]

[15]

[1o]

(7]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(23]

[26]

(27]

(28]

[29]

(30]

(31]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 12, DECEMBER 2011

J. Zhao and R. Govindan, “Understanding Packet Delivery
Performance in Dense Wireless Sensor Networks,” Proc. First Int’l
Conf. Embedded Networked Sensor Systems (SenSys ‘03), 2003.

G. Zhou, T. He, and J.A. Stankovic, “Impact of Radio Irregularity
on Wireless Sensor Networks,” Proc. Second Int’l Conf. Mobile
Systems, Applications, and Services (MobiSys '04), June 2004.

A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,”
Proc. First Int’l Conf. Embedded Networked Sensor Systems (SenSys '03),
2003.

M. Zamalloa, K. Seada, B. Krishnamachari, and A. Helmy,
“Efficient Geographic Routing over Lossy Links in Wireless
Sensor Networks,” ACM Trans. Sensor Networks, vol. 4, no. 3,
pp- 1-33, 2008.

S. Lee, KJ. Kwak, and A.T. Campbell, “Solicitation-Based
Forwarding for Sensor Networks,” Proc. Third IEEE Ann. Conf.
Sensor, Mesh and Ad Hoc Comm. and Networks (SECON '06), 2006.

L. Sang, A. Arora, and H. Zhang, “On Exploiting Asymmetric
Wireless Links via One-Way Estimation,” Proc. ACM MobiHoc,
2007.

O. Dousse, P. Mannersalo, and P. Thiran, “Latency of Wireless
Sensor Networks with Uncoordinated Power Saving Mechan-
isms,” Proc. ACM MobiHoc, 2004.

A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup
Scheduling in Wireless Sensor Networks,” Proc. ACM MobiHoc,
2006.

W. Lai and L.C. Paschalidis, “Sensor Network Minimal Energy
Routing with Latency Guarantees,” Proc. ACM MobiHoc, 2007.

L. Su, C. Liu, H. Song, and G. Cao, “Routing in Intermittently
Connected Sensor Networks,” Proc. IEEE Int'l Conf. Network
Protocols (ICNP '08), 2008.

L. Su, B. Ding, Y. Yang, T. Abdelzaher, G. Cao, and J. Hou, “oCast:
Optimal Multicast Routing Protocol for Wireless Sensor Net-
works,” Proc. IEEE Int’l Conf. Network Protocols (ICNP 09), 2009.

F. Wang and]. Liu, “Duty-Cycle-Aware Broadcast in Wireless
Sensor Networks,” Proc. IEEE INFOCOM, 2009.

Y. Gu, T. He, M. Lin, and J. Xu, “Spatiotemporal Delay Control for
Low-Duty-Cycle Sensor Networks,” Proc. 30th IEEE Real-Time
Systems Symp. (RTSS '09), 2009.

J. Polastre and D. Culler, “Versatile Low Power Media Access for
Wireless Sensor Networks,” Proc. Second Int’l Conf. Embedded
Networked Sensor Systems (SenSys '04), Nov. 2004.

W. Ye,]. Heidemann, and D. Estrin, “An Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” Proc. IEEE
INFOCOM, 2002.

Y. Sun, O. Gurewitz, and D.B. Johnson, “Ri-Mac: A Receiver-
Initiated Asynchronous Duty Cycle Mac Protocol for Dynamic
Traffic Loads in Wireless Sensor Networks,” Proc. Sixth ACM Conf.
Embedded Networked Sensor Systems (SenSys '08), 2008.

P. Suriyachai, J. Brown, and U. Roedig, “Time-Critical Data
Delivery in Wireless Sensor Networks,” Proc. Int’l Conf. Distributed
Computing in Sensor Systems (DCOSS ’10), 2010.

M.-E. Felemban, M.-C.-G. Lee, and M.-E. Ekici, “MMSPEED:
Multipath Multi-Speed Protocol for QoS Guarantee of Reliability
and Timeliness in Wireless Sensor Networks,” IEEE Trans. Mobile
Computing, vol. 5, no. 6, pp. 738-754, June 2006.

M. Strasser, A. Meier, K. Langendoen, and P. Blum, “Dwarf:
Delay-Aware Robust Forwarding for Energy-Constrained Wire-
less Sensor Networks,” Proc. Third IEEE Int’l Conf. Distributed
Computing in Sensor Systems (DCOSS '07), 2007.

K. Pister and L. Doherty, “TSMP: Time Synchronized Mesh
Protocol,” Proc. Int’l Symp. Distributed Sensor Networks (DSN '08),
2008.

S. Munir, S. Lin, E. Hoque, S.M.S. Nirjon, J.A. Stankovic, and K.
Whitehouse, “Addressing Burstiness for Reliable Communication
and Latency Bound Generation in Wireless Sensor Networks,”
Proc. Ninth ACM/IEEE Int’l Conf. Information Processing in Sensor
Networks (IPSN '10), 2010.

Q. Cao, T. Abdelzaher, T. He, and]. Stankovic, “Towards Optimal
Sleep Scheduling in Sensor Networks for Rare Event Detection,”
Proc. Fourth Int’l Symp. Information Processing in Sensor Networks
(IPSN ’05), 2005.

S. He, J. Chen, D. Yau, H. Shao, and Y. Sun, “Energy-Efficient
Capture of Stochastic Events by Global- and Local-Periodic
Network Coverage,” Proc. ACM MobiHoc, 2009.

[32] Y. Wu, S. Fahmy, and N.B. Shroff, “Energy Efficient Sleep/Wake
Scheduling for Multi-Hop Sensor Networks: Non-Convexity and
Approximation Algorithm,” Proc. IEEE INFOCOM, 2007.

W. Shu, X. Liu, Z. Gu, and S. Gopalakrishnan, “Optimal Sampling
Rate Assignment with Dynamic Route Selection for Real-Time
Wireless Sensor Networks,” Proc. Real-Time Systems Symp. (RTSS
"08), 2008.

MultiHopLQI, TinyOS, http://www.tinyos.net/tinyos-1.x/tos/
lib/MultiHopLQI, 2011.

R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four-Bit
Wireless Link Estimation,” Proc. Sixth Workshop Hot Topics in
Networks (HotNets '07), 2007.

S. Lin, G. Zhou, K. Whitehouse, Y. Wu, J.A. Stankovic, and T. He,
“Towards Stable Network Performance in Wireless Sensor
Networks,” Proc. IEEE Real-Time Systems Symp. (RTSS '09), 2009.
K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “Understanding
the Causes of Packet Delivery Success and Failure in Dense
Wireless Sensor Networks,” Proc. Fourth Int’l Conf. Embedded
Networked Sensor Systems (SenSys '06), 2006.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The Flooding
Time Synchronization Protocol,” Proc. Second Int’l Conf. Embedded
Networked Sensor Systems (SenSys '04), 2004.

J. Hui and D. Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale,” Proc.
Int’l Conf. Embedded Networked Sensor Systems (SenSys '04), 2004.
M. Zuniga and B. Krishnamachari, “Analyzing the Transitional
Region in Low Power Wireless Links,” Proc. First Ann. IEEE CS
Conf. Sensor and Ad Hoc Comm. and Networks (SECON ’'04), 2004.
“CC2420 Product Information and Data Sheet,” Chipcon, http://
www.chipcon.com, 2011.

(33]

(34]

(33]

[30]

(371

[38]

[39]

(40]

[41]

Yu Gu received the PhD degree from the
University of Minnesota, Twin Cities in 2010.
He is currently an assistant professor in the
Pillar of Information System Technology and
Design at the Singapore University of Technol-
ogy and Design. He is the author or coauthor of
more than 20 papers in premier journals and
conferences. His publications have been se-
lected as graduate-level course materials by
over 20 universities in the US and other
countries. His research includes networked embedded systems,
wireless sensor networks, cyber-physical systems, wireless networking,
real-time and embedded systems, distributed systems, vehicular ad hoc
networks, and stream computing systems. He is a member of the ACM
and the |IEEE.

Tian He received the PhD degree under
Professor John A. Stankovic from the University
of Virginia in 2004. He is currently an associate
professor in the Department of Computer
Science and Engineering at the University of
Minnesota-Twin City. He is the author or
coauthor of more than 90 papers in premier
sensor network journals and conferences with
over 4,000 citations. His publications have been
selected as graduate-level course materials by
more than 50 universities in the US and other countries. He has received
a number of research awards in the area of sensor networking, including
four best paper awards (MSN 2006, SASN 2006, MASS 2008, and MDM
2009). His research includes wireless sensor networks, intelligent
transportation systems, real-time embedded systems, and distributed
systems supported by the US National Science Foundation (NSF) and
other agencies. He was also the recipient of the NSF CAREER Award in
2009 and the McKnight Land-Grant Professorship in 2009-2011. He
served in a few program chair positions in international conferences and
on many program committees, and also currently serves as an editorial
board member for four international journals including ACM Transac-
tions on Sensor Networks. He is a member of the ACM and |IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

