
Bounding Communication Delay in Energy

Harvesting Sensor Networks

Yu Gu and Tian He

{yugu,tianhe}@cs.umn.edu

Department of Computer Science and Engineering, University of Minnesota

Abstract—In energy-harvesting sensor networks, limited ambi-
ent energy from environment necessitates sensor nodes to operate
at a low-duty-cycle, i.e., they communicate briefly and stay asleep
most of time. Such low-duty-cycle operation leads to orders
of magnitude longer communication delays in comparison with
traditional always-active networks, imposing a new challenge in
many time-sensitive sensor network applications (e.g., tracking
and alert).

In this paper, we introduce novel solutions for bounding sink-
to-node communications in energy-harvesting sensor networks.
We first present an optimal solution for the sink-to-one case and
its distributed implementation. For the sink-to-many case, we
theoretically prove its NP-Hardness and inapproximability prop-
erty, followed by an efficient heuristic solution. We have evaluated
our design with both extensive simulation and a TinyOS/Mote
based implementation. Compared with an improved version of a
state-of-the-art design, our delay maintenance design effectively
provides E2E delay guarantees while consuming as much as 60%
less energy.

I. INTRODUCTION

With the increasing application of cyber-physical systems,

wireless sensor networks have emerged as a key technology

for many long-term applications [1]–[4]. To support those

long-term applications, energy-harvesting sensor networks,

which extract energy from their surrounding environment,

have become an increasing popular foundation for building

those long-term applications. Recently, several pioneer works

have built prototypes [5], [6] to verify and demonstrate the

feasibility of powering sensors by exploiting ambient energy

resources. Due to the varying environment conditions, one

major characteristic of energy-harvesting networks is energy

supply to individual nodes varies significantly over time [7],

[8]. For nodes in energy-harvesting sensor networks, their

activities therefore have to be adjusted continuously with

varying energy supply. In addition, for the energy harvested

from surrounding environment, usually it is not enough to

continuously power sensor nodes in the network [8]–[10].

Consequently, nodes in those networks have to operate in

low-duty-cycle, which means each node in the network has

to activate briefly and stay in the dormant state most of the

time. Effective data communication in such energy-dynamic

and low-duty-cycle networks, therefore poses a new challenge

over traditional energy-static sensor networks.

For many sensor network applications, sink node needs to

actively communicate with other nodes in the network in order

to perform operations such as disseminating commands to

sensor nodes, configuring sensor setups, querying sensor states

and so on [11]–[13]. For many of those operations, there is

usually also a delay bound associated with them and require

the messages sent out by the sink node to be received at

destined receivers within a designated time bound [14]–[16].

However, although many existing delay guarantee solutions

are able to effectively bound communication delays in tradi-

tional network settings, none of them consider the impact of

energy-dynamics and low-duty-cycle operation, making them

unsuitable for energy-harvesting networks [17]–[19].

To tackle both the communication challenge in energy-

harvesting sensor networks and E2E delay requirement for

sink-to-node communications, this work introduces a generic

and efficient solution that provides E2E delay guarantee for

sink-to-node communications in energy-harvesting sensor net-

works. Its main design objective is to consume a minimum

amount of energy while satisfying E2E delay bound specified

by application requirements. Specifically, the major intellec-

tual contributions of this work are as follows:

• To our best knowledge, this is the first generic work

to study distributed solutions for delay maintenance in

energy-harvesting sensor networks.

• We introduce an energy-optimal solution for bounding

E2E delay for sink-to-one communication. The whole

solution is distributed and only requires neighbor infor-

mation.

• For bounding E2E delays for sink-to-many communica-

tions, we prove the NP-Hardness and inapproximability

property by deducting from planar 3-Satisfiability prob-

lem and propose an efficient heuristic solution to solve

this problem.

• We have extensively evaluated our design with both sim-

ulation and a running test-bed to verify the effectiveness

and energy-efficiency of our delay maintenance design in

theory and practice.

The rest of this paper is organized as follows: Section II

discusses the related work. Section III describes the need

and challenges for bounding sink-to-node communication in

energy-harvesting sensor networks. Section IV defines the

network model and assumptions. Section V introduces our

main design, followed by its evaluation in Section VI and

Section VII. Section VIII concludes the paper.

II. RELATED WORK

To overcome the lifetime limitation of battery-powered

sensor networks, research on energy harvesting for sensor net-

works has been very active in recent years. Numerous running

prototypes have been built to collect ambient energy from the

environment to power the sensor nodes [5], [6]. However,

for current research in energy-harvesting sensor networks,

the focus is still mainly on the hardware design and power

management to ensure continuous operation of sensors in the

network [7]–[10]. There is few prior works investigate how

changing node duty cycles affects communication in energy-

harvesting networks. Most recently, ESC protocol introduces

a transparent middleware for minimizing network wide delay

with varying energy budget over time in energy-harvesting

sensor networks [20].

For many sensor networks, timely data communication

under low node duty-cycle is a key factor for them to in-

teract with the physical world effectively. Numerous solutions

have been designed to provide timely data communications

in sensor networks. MMSPEED provides a multi-path and

multi-speed routing protocol for probabilistic QoS guarantee

in reliability and timeliness domains [18]. Pipelined Tone

Wakeup (PTW) is introduced to achieve the balance between

energy saving and E2E delay [19]. Lu et al. show how

to minimize the communication delay given a duty-cycle

budget for nodes in the network [21]. Gu et al. introduce

a dynamic switch-based forwarding to minimize the impact

of sleep latency in low duty-cycle networks [22]. Su et al.

propose both on-demand and proactive routing algorithms for

intermittently connected networks due to duty cycling [23].

Guo et al. introduce an opportunistic flooding for low-duty-

cycle networks [24]. More recently, Gu et al. propose a

centralized spatiotemporal delay control scheme for battery-

powered low-duty-cycle networks [25].

Different from earlier works, which either focus on static

batter-powered networks or passively minimizing delay under

energy constraints, in this work we introduce the first proactive

generic delay maintenance algorithm with minimum energy

consumption in energy-harvesting networks.

III. MOTIVATION

The motivation of this work is originated from our empir-

ical experience of designing and deploying energy-harvesting

sensor networks [8]. In those networks, the energy supply

usually is very dynamic, which can vary significantly within

a day and across days [7], [8]. In addition, for the energy

harvested from surrounding environment, usually it is not

enough to continuously power sensors in the network [8]–

[10]. Consequently, nodes in those networks have to operate

in low-duty-cycle, which means each node in the network has

to activate briefly and stay in the dormant state most of the

time. Effective data communication in such energy-dynamic

and low-duty-cycle networks, therefore poses a new challenge

over traditional energy-static sensor networks.

For many sensor network applications, besides passively

receive data messages from other nodes in the network, a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
e
rc

e
n
ta

g
e
 o

f
N

o
d
e
s

Delay Bound

Optimal Sleep
Virtual Patrol

Fig. 1. Percentage of Nodes Beyond Delay Bound vs. Delay Bound

sink node usually needs to actively communicate with all

other nodes in the network, such as sending commands and

queries [13], [26]. For those commands and queries, a com-

munication delay bound is usually associated with them [27].

However, for many power management protocols that are

geared to minimize energy consumption while satisfying qual-

ity of service requirements (e.g., quality of sensing [28],

quality of tracking [29], [30]), the node working schedules

generated by them cannot guarantee that the messages sent

out by the sink node can reach its destinations within a

designated time frame. For example, Figure 1 shows after node

working schedule assignment by two state-of-the-art sensing

protocols [31], [32], the percentage of nodes in the network

with E2E delays from the sink above the specified delay

bound, where the network has an average of 2% duty cycle

and 10 neighboring nodes per node. From Figure 1, we can see

until the delay bound is fairly large (above 250 units of time

for the optimal sleep scheduling [31] and above 350 units of

time for the virtual patrol [32]), there are always some nodes

can not receive the message from the sink within the specified

delay bound. Consequently, to provide guarantee on the E2E

delay from the sink node to all other nodes in the network,

further actions need to be taken on top of those existing power

management protocols.

In summary, on observing the energy dynamics, low-duty-

cycle operation of energy-harvesting sensor networks, and the

lack of consideration for bounding communication delay in

existing power management protocols, we aim at providing

a generic and efficient delay bound maintenance design for

those emerging networks.

IV. PRELIMINARIES

This section defines the network model and assumptions

related to our E2E delay maintenance design for energy-

harvesting sensor networks.

A. Network Model

Suppose there is an energy-harvesting sensor network of

N sensor nodes. At any point of time t, a node is either in

an active or a dormant state. An active node is able to sense

its surrounding environment, transmit a packet or receive a

packet. A dormant node turns all its function modules off

except a timer to wake itself up. All nodes in the network

2

have their own respective working schedules. Those working

schedules are shared with neighboring nodes and are nor-

mally asynchronous in order to reduce information redundancy

among neighboring nodes [31], [32]. For a dormant node, it

will wake up if (i) it is scheduled to switch to the active state,

or (ii) it has some packets to send to a neighboring node that

is active at that time. In other words, a node can wake-up and

transmit a packet when its receiver is in the active state, but

can only receive a packet when it is self in the active state.

For a node, since its neighbors consistently transit between

active and dormant states, the connectivity between a pair

of nodes therefore becomes time-dependent. Formally, for

a given time t, we can denote the network topology as

G(t) = (V, E(t)), where V is the set of N nodes in the

network and E(t) is the set of directed edges at time t. A

directed edge eij(t) belongs to E(t) if node i and node j are

within each other’s communication range, and node j is in the

active state so that it is able to receive packets from node i.

Fig. 2. Example of Working Schedule

The node working schedules, managed by various power

management protocols, usually are periodic [23], [31]–[35].

Consequently, let the duration of a period be T , we can divide

it into a sequence of time instances with length τ , where τ

is the finest granularity of time duration in a given sensor

network system. For a node, its working schedule therefore

can be represented by a set of time instances that the node

is in the active state within period time T . Formally, let Γi

denote the working schedule of node i, we can have Γi =
{t1, t2, t3, ..., tn}, where tj is the time instance that node i

is active and we call tj an active instance for node j. For

example, Figure 2 shows active/dormant activities of a node i

with a period duration time 10τ and working schedule Γi =
{1, 4, 5, 9}.
In always-active networks, a sender can immediately send

its packets to a one-hop receiver once the sender has a packet

ready to be sent. The one-hop packet delivery latency, which

includes processing delay, transmission delay and propaga-

tion delay, normally in the order of milliseconds. However,

for nodes in duty-cycled sensor networks with asynchronous

working schedules, the sender may have to wait for its receiver

to transit to active state before it can send a packet. We define

sleep latency (dij(t)) as the time duration from the moment

that the sender i has a packet ready to be sent at time t to the

moment that the receiver j is in the active state. For example,

let working schedule for two neighboring nodes i and j be

Γi = {1} and Γj = {5}, respectively. Assume node i has a

packet ready to be sent to node j at time 1, then sleep latency

is dij(1) = 5 − 1 = 4. Sleep latency is usually in the order

of seconds, which is orders of magnitude longer than other

delivery latencies. Therefore in this paper, we only consider

sleep latency for measuring E2E delays.

B. Assumptions

Based on the network model, we make several assumptions

as follows:

• In energy-harvesting networks, a node in the network

shares its dynamic working schedules with all its im-

mediate neighbors after joining the network, a pro-

cess normally referred to as low-duty-cycle rendezvous.

Currently, there are many effective solutions such as

Disco [36] and ESC [20] for achieving such low-duty-

cycle rendezvous and sharing dynamic node working

schedules with neighbors.

• The network is locally synchronized so that a node

knows when it can send a packet to its neighbors given

their working schedules. Simple and low-cost local syn-

chronization techniques [37] can achieve an accuracy

of 2.24µs with the cost of exchange a few bytes of

packets among neighboring nodes every 15 minutes.

Since the duration of each active instance is typically

above 10, 000µs [22], [36], the accuracy of 2.24µs is far

more than sufficient. In addition, since we do not require

transmission starts at the beginning of an active instance,

this further relaxes the requirement of accuracy for time

synchronization.

• Packet can be successfully delivered from a sender to a

receiver within an active instance. For a typical TinyOS

packet with a total packet size of 47 bytes, given the

duration of an active instance, say 20ms, a MicaZ node

with CC2420 radio chip can attempt at least 13 trans-

missions. In other words, although low-power wireless

links are generally unreliable [38], as long as the link

quality p between a sender and its receiver is above

30%, we can ensure that at least 99% of packets can be

successfully transmitted within an active instance. Since

many neighbor management protocols filter neighboring

nodes with low link qualities [39], [40], the requirement

of at least 30% delivery ratio is realistic and reasonable

in practical sensor network settings.

• Data traffic/congestion is low. In low-duty-cycle net-

works, a packet is transmitted only when the receiver

is in the active state, and nodes in such networks only

activate very briefly and stay in the dormant state for the

majority of time. Therefore, data rate in such networks is

usually low and queueing delay is negligible. As shown

in several pioneering low-duty-cycle network works, this

assumption holds well in practice [21]–[23].

• Here we would emphasize that the operations of an

energy-harvesting network do not depend on TDMA.

Unlike TDMA networks, we do not require a node to

start a transmission at the beginning of a time instance. As

long as a node knows the wake-up time of its neighboring

nodes, the node can deliver messages to its receivers.

In terms of performance, CSMA is more favorable in

energy-harvesting networks where network traffic is low.

This is because a node in TDMA networks has to wait

for its turn to transmit and becomes inefficient in such

3

scenarios. Although our design works in both TDMA

and CSMA network, CSMA is a better choice. During

our experiment on a physical testbed, we use default B-

MAC [41] in TinyOS, which is a CSMA-based MAC

protocol.

V. MAIN DESIGN

The goal of our design is to bound E2E delays from the

sink node to nodes in the network with minimal energy

consumption. In this section, we first presents an overview

of the design and then discuss each step of design in detail.

Fig. 3. Example of Active Instance Augmentation

A. Design Overview

For many power management protocols (e.g., sensing, track-

ing and communication), after they decide node working

schedules in the network, usually they cannot provide E2E

delay guarantees for sink-to-node communications [22], [31],

[32], [42], [43]. Consequently, actions have to be taken in

order for deployed sensor network to meet the communication

delay bounds specified by applications. On the other hand,

for the node working schedules that are determined by power

management protocols, usually they are designed to meet

other application requirements such as quality of sensing

coverage [44]–[46], quality of target tracking [47], [48] and

so on. In other words, the node behaviors of those original

working schedules should be preserved. Otherwise we may

affect the quality of service originally provided by those power

management protocols. In order to bound the communication

delay and preserve the original node activities, in this work

we propose to augment additional active instances to nodes

in the network. For example, in the linear network shown in

Figure 3, the original E2E delay from sink s to node b is 6

units of time. After augmenting an active instance 4 to node b,

the sleep latency between node a and node b reduces to 1 and

the new E2E delay is just 3 units of time. In addition, for the

original working schedule, node b activates at time 7. After
augmenting the active instance 4 to node b, node b activates

at both time 4 and 7. Consequently, we preserve the original

activity pattern of node b.

In the following sections, we will introduce how we can

augment a minimal number of active instances to the network

such that the E2E delay from the sink to all nodes in the

network is within the delay bound B. For the sake of clarity,

we describe the scenario with a single sink node, that can be

extended easily for scenarios with multiple sink nodes.

B. Finding Minimal Delays for Active Instance Augmentation

In this section, we introduce how to find the optimal path

for augmenting h active instances in the network such that the

E2E delay from the sink to a node j is minimized.

Before presenting the detailed algorithm of finding minimal

delays for active instance augmentation, first we would like

to introduce an important observation on how active instance

should be augmented such that the optimality in terms of

delay can be guaranteed. For the network model presented

in Section IV, it exhibits FIFO property in packet delivery

process. In a FIFO network, the packet arrival order at

destination is the same as sending order at the source node.

It is known that waiting in FIFO networks can never reduce

E2E delay [49], an intermediate relay node therefore should

forward the packet as soon as possible to ensure the minimal

E2E delay. Consequently, when augmenting an active instance

to a node, we should reduce the sleep latency between a sender

and a receiver to one τ , the finest granularity of time duration

in the system.

Specifically, to record the minimal E2E delay from the sink

to a node j, we define the following metric:

D
h
j : The minimal delay a packet travels from the sink to

node j along a path with at most h active instances augmented.

1) Initial State: For any node j that are one-hop away from

the sink s, when h = 0, the initial delay from the sink to node

j is simply the sleep latency between them. In addition, when

h = 1, the delay from the sink to node j is simply 1 since

node j is only one-hop away from the sink and the augmented

active instance reduces this one-hop delay to 1. Consequently,
we can have following initial state for any node j that is one-

hop away from the sink:

Dh
j =







dsj , h = 0

1, h = 1
(1)

2) Recursive Solution: In this section, we discuss how we

distributively compute the minimal Dh
j value based on its

neighbors’ corresponding delay values. For any node j, the

minimal packet delivery delay from the sink to node j consists

of two possibilities:

• The packet could be firstly transmitted from the sink to

a certain intermediate node p at time t (possibly through

multiple hops), and then go directly from node p to

node j through one single edge without augmenting any

additional active instance to node j.

• The packet could also firstly be delivered to the immedi-

ate node p at time t (possibly through multiple hops), and

then augment an active instance to node j so as to reduce

sleep latency between node p and node j to 1 if the path

from the sink to node p has less than h augmented active

instances.

Therefore, for the optimal E2E delay at node j through a

neighboring node p after augmenting at most h active instances

into the network, we can have following equation:

4

Fig. 4. Example of Distributed Delay Computation

Dh
j = Min























Dh
j ,

Dh−1

p + 1,

Dh
p + dpj(t)

h > 0 (2)

3) Walkthrough Example: To further illustrate above de-

lay computation process, we provide a walkthrough of the

described algorithm on the network shown in Figure 4. In

Figure 4, we assume the sink node s has a packet ready to be

sent to all other nodes in the network at time 1 and the duration

of a period is 10 units of time. For the initial state, node a

and node b are one-hop away from the sink s, according to

Equation 1, we can have following initial states at node a and

node b (Figure 4b):

D0

a = 5 , D1

a = 1 , D0

b = 2 , D1

b = 1.

Then for node c, the minimal delay to reach it from sink s

is either through node a or through node b. Assume node c

first receives delay update from node a, then for D0

c , which

denotes the delay latency from sink s to node c without any

active instance augmentation, its value is simply the sum of

sleep latencies from sink s to node a and then from node a

to node c. Consequently, we have the following equation for

D0

c (Figure 4c):

D0

c = D0

a + dac(6) = 5 + 8 = 13.

For D1

c , it denotes the minimal delay from sink s to node

c with maximal one active instance augmentation along the

path. For the path from sink s to node c through node a, we

can augment this active instance at either node c or node a,

according to Equation 2, we have:

D1

c = Min







D0

a + 1 = 5 + 1 = 6,

D1

a + dac(2) = 1 + 2 = 3

= 3

For D2

c , it means the minimal delay from sink s to node

c with maximal two active instance augmentation along the

path. Since node c is also two-hop away from sink s, we can

augment one active instance at both node a and c and have:

D2

c = D1

a + 1 = 1 + 1 = 2.

Similarly, when node c receives delay update from node b,

the delay at node c is updating again for h equals 0, 1 and 2

(Figure 4d).

D0

c = Min







D0

c = 13,

D0

b + dbc(3) = 2 + 1 = 3

= 3

D1

c = Min























D1

c = 3,

D0

b + 1 = 2 + 1 = 3,

D1

b + dbc(2) = 1 + 2 = 3,

= 3

D2

c = Min







D2

c = 2,

D1

b + 1 = 1 + 1 = 2,

= 2

C. Maintaining Pairwise E2E Delay Bound

In previous sections, we describe how to find the minimal

delay from the sink to a node with at most h augmented

active instances. In this section, we discuss how to utilize this

information to maintain the E2E delay bound B.

In a network with N nodes, the longest simple path from

the sink to any other node consists of at most N − 1 edges.

Consequently, DN−1

j denotes the minimal E2E delay can be

achieved from the sink to a node j by augmenting at most

N − 1 active instances along the path. In other words, this

is the lower bound of E2E delay from the sink to node j. If

there is no constraints on which node has extra energy for

augmenting active instances, the minimal E2E delay at node

j is simply DH
j = H , where H is the hop count from the

sink to node j. The convergence time for all DH
j values at

a node, similar to the distributed Bellman-Ford Algorithm, is

O(DH2), where D is the density of the network.

For a node j, after obtaining all its Dh
j values, where h =

1, 2, ..., M and DM
j is the smallest achievable E2E delay at

node j, the E2E delay maintenance procedure then goes as

follows:

1) Firstly, node j checks whether its original E2E delay

falls below the bound B. Specifically, D0

j states the

minimal delay from the sink to node j without any

active instance augmentation. If D0

j ≤ B, then there is

5

no action initiated at node j. Otherwise node j initiates

active instance augmentation process below.

2) Node j finds the smallest value of h, such that Dh
j ≤ B.

In this way, we guarantee minimal energy consumption

for bounding E2E delay from the sink to node j.

3) According to the smallest value of h, node j looks

for the previous hop node p that results the minimal

Dh
j value. If Dh

j = Dh−1

p + 1, then node j augments

one active instance which reduces sleep latency between

node p and node j to one. Otherwise there is no active

instance augmentation at node j. This step continues

along the path from node j to the sink until all h active

instances have augmented.

Fig. 5. Delays for a Linear Network

To further demonstrate E2E delay maintenance process, we

provide a simple walkthrough example as shown in Figure 5.

Figure 5 shows a 3-hop linear network and the corresponding

Dh
j values for nodes in the network with varying maximum

number of augmented active instances h.

Firstly, assume the E2E delay bound for sink node s to

reach node c is B = 16, then at node c, it looks up its delay

values and finds that D0

c ≤ B. Consequently, node c confirms

that without augmenting any active instance in the network,

the E2E delay from the sink node to itself is below bound B

and there is no further action necessary.

Fig. 6. Examples of Delay Maintenance

However, if an application requires tighter delay bound,

such as B ≤ 4, then we have to initiate the delay maintenance

process. For B ≤ 4, node c checks its delay values and

finds that D0

c > B, D1

c > B and D2

c ≤ B. In other

words, we affirm by augmenting two active instance to the

network, we can achieve the application specified delay bound.

The next question, therefore is how we distributively decide

where to augment these active instances. For augmenting two

active instance (h = 2), it is corresponding to the third

scenario in Figure 5. In order to better illustrate active instance

augmentation process, Figure 6 visualizes the minimal delay

tree for augmenting at most three active instances to the linear

network shown in Figure 5. In Figure 6, vertices are minimal

delays at individual nodes by augmenting h active instances,

where h = 0, 1, 2, 3. Edges in Figure 6 denote how minimal

delay at a node by augmenting h active instances is obtained

from its previous hop nodes. By tracing from the leaf node to

the sink s of this delay tree, we can easily see where and how

active instances should be augmented. Specifically for delay

bound B ≤ 4, by tracing up the minimal delay tree from leaf

node D2

c , then to intermediate nodes D1

b and D1

a, we augment

active instance 5 and 2 to node c and node a, respectively.

To implement this process distributively, it is sufficient for

a node only knows minimal E2E delays to reach itself with

h active instance augmentations, as well as how they are

obtained from previous hop nodes. By comparing E2E delays

between its previous hop node and itself, a node decides

whether or not to augment an active instance to its working

schedule. Then this node triggers its previous hop node to start

this delay maintenance process. This whole process continues

along the reverse communication path from the sink node

to the destined receiver. Since the time complexity of delay

maintenance at individual nodes is just O(1), for bounding

E2E delay from the sink to a node, the total time complexity

is O(H).

D. Considering Energy Constraints at Individual Nodes

In previous sections, we present the delay maintenance

design as if there is no energy constraints and each node in

the network can freely augment active instances to its working

schedule. However, in energy-harvesting networks, the energy

available to a node is strictly limit to the energy-harvesting

rate and the capacity of energy storage device at the node. For

example, for solar-powered sensor nodes, nodes under direct

sunlight could harvest significant more energy than nodes that

are placed in shade. The energy available to a node (i.e., the

total number of active instances a node can afford), therefore

could vary significantly at any given period of time. Many

existing energy management protocols for energy-harvesting

sensor networks have provided effective solutions on deciding

appropriate duty-cycle (the number of active instances within

a period) with in-situ energy supply [8]–[10], [50]. In this

section, we discuss how we incorporate such constraints in

maximal affordable duty cycles provided by lower layer power

management protocols to our design.

To consider energy constraints at individual nodes in our

design, we can simply extend our delay computation intro-

duced in Section V-B. Specifically, we modify the recursive

solution 2 to following equation:

Dh
j = Min























Dh
j ,

Dh−1

p + 1,

Dh
p + dpj(t)

h > 0, Ej > 0 (3)

6

where Ej is the maximum number of active instance aug-

mentations that node j can afford.

Compare with the original recursive equation, the only

difference for new Equation 3 is when node j tries to reduce

sleep latency between node p and itself to 1 (case Dh−1

p + 1
in Equation 3), it first checks whether or not it can afford

augment one active instance to its working schedule.

Fig. 7. Example of Considering Energy Budget

Figure 7 demonstrates the impact of considering energy

budget for maintaining E2E delay bound. As seen from

Figure 7, without considering the energy budget, we would

choose node a to augment one active instance at the time 2
and have D1

a = 1, D1

b = 2. However, if node a cannot afford

to augment any active instance (Ea = 0), then we can only

augment one active instance at node b. Under such condition,

the minimal E2E delay to node a and node b is D0

a = 4
and D1

b = 5, respectively. Clearly, the energy dynamics and

variation in energy-harvesting sensor networks pose greater

challenge to maintain E2E delay bound.

E. Maintaining Network-Wide E2E Delay Bound

In previous sections, we introduce the optimal solution for

bounding E2E delay from the sink node to any given node

in the network. However for many other applications, they

may require E2E delays from the sink to all nodes in the

network within a certain time bound. Under such scenarios,

essentially, we need to bound E2E delays for one-to-many

communications. However, we have proved that maintaining

E2E delays for one-to-many communications with minimal

energy consumption is NP-hard, which can be deducted from

planar 3-Satisfiability. In addition, we also prove the problem

of one-to-many communications is inapproximable. The de-

tailed proof is omitted due to the space constraints.

Since maintaining network-wide E2E delay bound is NP-

hard, in this section, we present a heuristic solution that

effectively bounds E2E delays from the sink to all nodes in

the network. The main idea is starting from the nodes with the

largest original E2E delays (leaf nodes in the minimal delay

tree, can be locally identified by checking whether there are

neighbors with larger E2E delays), we follow the pairwise

delay maintenance design in previous sections and augment

the minimal number of active instances into the network to

bound the E2E delay from the sink to those nodes. During

above process, the new Dh
j values at any affected node j are

also updated. The heuristic algorithm continues until all nodes

in the network have their E2E delays from the sink fall below

the delay bound B or there is no available active instance

can be augmented to reduce E2E delays for nodes with delay

larger than the delay bound B (with energy constraints in the

network, it is possible that there are some nodes whose delay

can not meet the delay bound B within a period of time). The

intuition behind this heuristic algorithm is for those nodes with

larger original E2E delays, their minimal delay paths usually

include one or more nodes whose E2E delays from the sink are

also beyond bound B. Consequently, by first bounding E2E

delays for nodes with the largest delays, usually we can bound

E2E delays for multiple nodes simultaneously and thus save

both time and energy to achieve E2E delay bound network

wide.

F. Tackling Energy Dynamics in Maintaining E2E Delay

Bound

In previous sections, we present given a set of working

schedules in the network, how we can bound E2E delays from

the sink to all nodes in the network. However, as shown in

many empirical measurement results [7], [8], energy supply

to individual nodes varies significantly over time in energy-

harvesting networks. In order to ensure continuous operation,

node working schedules have to change dynamically with

energy-harvesting rate [10], [20]. Consequently, such change

in node working schedules may lead to violation of delay

bound requirement at some nodes.

Luckily our distributed solution presented earlier is able to

efficiently handle such energy dynamics. First of all, since our

delay maintenance design is able to bound E2E delays from

sink to all nodes in the network with minimal number of active

instance augmentations, nodes are able to store the maximal

amount of extra harvested energy to their energy storage

devices such as rechargeable batteries or super capacitors [7],

[8]. Such conserved energy at energy storage devices then can

be utilized to support normal operation of sensor nodes during

energy-insufficient time, and consequently reduces the impact

of duty-cycle changes on E2E delays. Secondly, even a node

has to reduce its duty cycle due to insufficient energy supply,

unless this node removes the particular active instance that

yields the minimal E2E delay from the sink to itself, there

is no E2E delay change for this node and therefore there

is no violation of E2E delay bound requirement. Finally, if

a node removes the particular active instance that yields the

minimal delay to reach itself, it will recompute its Dh
j values

and disseminate new values to its neighboring nodes whose

delay values are dependent on it. Such delay dissemination

process continues until all affected nodes update their delay

values. After updating delay values, only if some nodes notice

their E2E delays are above the specified delay bound, then they

begin to execute delay maintenance procedure discussed in

earlier sections. Otherwise there is no further actions necessary

7

for maintaining the delay bound in the network. Since energy

harvesting rate usually will not change within a very short

period of time at individual nodes [7], [8], with the help of

energy buffering at energy storage devices we can carefully

manage the interval of duty-cycle changes at individual nodes

to achieve fast convergence speed and low message overhead

for maintaining delay bound in the network [51].

VI. EVALUATION

In order to understand the performance of our delay main-

tenance design under various network settings, in this section

we provide extensive simulation results against an improved

version of streamlined wake-up scheme proposed by Cao et

al. [31], which is a state-of-the-art solution for minimizing

E2E delay in low-duty-cycle networks.

Fig. 8. Example of Streamline Augmentation

A. Baseline Setup

In original streamlined wake-up scheme, the authors first

label nodes according to the shortest hop count from the sink.

Then they begin to augment active instances and build a route

from the sink to each node without any extra sleep latencies.

For example, Figure 8 shows an example of streamline aug-

mentation for a linear network. In Figure 8, streamline scheme

augments active instance 2,3 and 4 to node a, node b and node

c, respectively. Consequently, E2E delays from sink node s to

all nodes in the network are minimized.

Fig. 9. Example of Improved Streamline Augmentation

In order for streamline scheme to bound E2E delays with

minimal energy consumption while considering energy budget

at individual nodes, here we introduce an improved version

of streamline scheme as our baseline for performance com-

parison. Specifically, for bounding E2E delay of a node j,

we allow streamlined wake-up scheme to find an optimal

route such that the minimal number of active instance are

augmented by removing extra sleep latencies from the sink

to node j at energy-rich nodes until the delay bound has

been met. Figure 9 shows an example of improved streamline

wake-up scheme. In Figure 9, let us assume delay bound

is 5 units of time. Since node a cannot afford to augment

any active instance, the improved streamline wake-up scheme

augments active instance 5 to node b (the second nearest

node to sink s). In this way, the improved streamline wake-up

scheme achieves the designated delay bound 5 for all nodes

in an energy-constrained network with the minimal energy

consumption. The performance difference of our delay bound

maintenance design and the improved streamlined wake-up

scheme is then purely due to the choice of nodes for active

instance augmentations.

B. Simulation Setup

In the simulation, up to 300 nodes are randomly deployed

in a 150m×150m square field. The communication range is

set to be 25m. Except where otherwise specified, the default

number of nodes in the network, node duty cycle and delay

bound is 200, 2% and 150 units of time, respectively. Each

data points in simulation figures is obtained by averaging 100

runs with different random seeds, node deployment and node

working schedules.

C. System Performance Over Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 30 60 90 120

H
a
rv

e
s
te

d
 P

o
w

e
r

(m
W

)

Time (hour)

Fig. 10. Sample Node Energy Har-
vesting Rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120

D
e
a
d
lin

e
 M

is
s
 R

a
ti
o

Time (hour)

Delay Maintenance
Streamline

Fig. 11. Percentage of Nodes Beyond
Delay Bound vs. Time

In an energy-harvesting network, energy-harvesting rate

varies significantly both within a day and across days [7].

To study how well our delay maintenance design works under

varying energy-harvesting rate, Figure 11 shows the percent-

age of nodes in the network whose E2E delays from the sink

are beyond the bound for a period of 120 hours. The energy-

harvesting rates used here are obtained from our empirical

measurement at running prototypes and their corresponding

energy-harvesting model [8]. Figure 10 shows sample node

energy harvesting rate over 120 hours. Clearly from Figure 11,

our delay maintenance design keeps E2E delays from the

sink to nearly all nodes in the network below the specified

bound, regardless of the level of energy supplies over time.

For example, in 120-hour duration, the maximal percentage of

nodes beyond delay bound is merely 1%, while the average

over 120 hours is 0.2%. In contrast, the streamline design

is rather sensitive to the change of energy supplies. When

energy supply drops, the percentage of nodes beyond delay

bound increases significantly. For example, the percentage of

nodes beyond delay bound can be as high as 10% when

energy-harvesting rate is low. For the period of 120 hours, the

average percentage of nodes beyond delay bound is 4.15%.

The main reason that delay maintenance design has much

better performance than the streamline design is because delay

maintenance design augments significant smaller number of

active instances than that of the streamline to achieve the delay

bound, therefore allows nodes in the network to store more

energy during energy-rich time and use those buffered energy

to help maintaining the delay bound when node energy supply

8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3

A
v
g

.
N

u
m

b
e

r
o

f
A

u
g

m
e

n
ta

ti
o

n

Node Duty Cycle

Delay Maintenance
Streamline

Fig. 12. Avg. Number of Augmentation vs. Node
Duty-Cycle

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 150 200 250 300

A
v
g

.
N

u
m

b
e

r
o

f
A

u
g

m
e

n
ta

ti
o

n

Number of Nodes

Delay Maintenance
Streamline

Fig. 13. Avg. Number of Augmentation vs.
Number of Nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 120 140 160 180 200

A
v
g

.
N

u
m

b
e

r
o

f
A

u
g

m
e

n
ta

ti
o

n

Delay Bound

Delay Maintenance
Streamline

Fig. 14. Avg. Number of Augmentation vs.
Delay Bound

falls in short. In the following sections, we will reveal reasons

for better performance of delay maintenance design in more

detail.

D. Comparison of Energy Consumptions

In this section, we aim at investigating energy consumption

(the number of augmented active instances) for delay mainte-

nance and the streamline to achieve delay bound under various

network configurations.

In Figure 12, it shows the average number of active in-

stances augmented to each node in the network for achieving

the delay bound for all nodes in the network under various

node duty cycles. Clearly from Figure 12, the average number

of augmented active instances for delay maintenance is smaller

than that of the streamline under all duty cycles. For example,

at duty cycle of 3%, the average number of augmented active

instance to each node in the network for delay maintenance

and the streamline is 0.1 and 0.16, respectively. Consequently,
at 3% duty cycle, delay maintenance saves about 60% energy

of that of the streamline. Moreover, as trend in Figure 12

shows, the larger duty cycle is, the bigger gap for energy

consumption between delay maintenance and the streamline.

Figure 13 shows the impact of node density on the average

number of augmented active instances in the network. As

node density increases, the average number of augmented

active instances for both delay maintenance and the streamline

decreases. However, for various node densities, we can see

delay maintenance still outperforms the streamline design at

all node densities. At all node densities, delay maintenance

consumes above 30% less energy than that of the streamline

design.

To study the impact of delay bound, Figure 14 shows the

average number of augmented active instances under various

delay bounds. As delay bound increases, the average number

of augmented active instances for both designs decreases dra-

matically. This is because with looser bound on the E2E delay

from the sink to all nodes in the work, there are fewer nodes

whose delays are still beyond the bound and consequently

result in smaller number of active instances augmented to

the network. Similar to the results for duty cycles and node

densities, delay maintenance augments less number of active

instances than that of the streamline at all delay bounds. In

average, delay maintenance augments about 40% less active

instances than that of the streamline design.

In summary, in terms of energy consumption for bounding

E2E delays, delay maintenance outperforms the streamline

design significantly under different node duty cycles, different

node densities, as well as different delay bounds.

VII. SYSTEM IMPLEMENTATION

In addition to large-scale simulations, we implemented our

delay maintenance design and the improved streamline wake-

up scheme described in Section VI on the TinyOS/Mote

platform with 11 MicaZ motes to further validate our design

in practice.

A. Experiment Setup

We deploy 11 MicaZ nodes along a straight line. The

transmission power at MicaZ motes is tuned down so that

nodes form a 10-hop linear network. After deployment, each

node starts to generate working schedule with the specified

duty-cycle, which is controllable by a stand-alone base station

node and corresponding GUI interface. Then, for all nodes in

the network, they start to broadcast their existence and working

schedules. Followed by neighbor discovery, sink node initiates

delay computation process and nodes in the network begin to

execute delay maintenance process. In this experiment, we use

FTSP [37] to provide time synchronization among neighboring

nodes and set the unit time τ as 20ms.

B. System Performance Comparison

First of all, we are interested to see whether we are able to

successfully meet the specified delay bound in the network.

Consequently, for both delay maintenance and streamline

scheme, sink node sends 100 packets to the node that is

10-hop away, which represents the largest E2E delay in the

network. Figure 15 shows measured E2E delays for both

delay maintenance and streamline scheme under varying delay

bounds. From Figure 15, we can see E2E delays for both

schemes are under the specified delay bound. However, to

achieve the same delay bound, two schemes pay very different

costs. In Figure 16, we show the number of active instance

augmentations in the network to achieve the specified delay

bound by different schemes. Clearly, for all delay bounds,

our delay maintenance design augments smaller number of

active instances, which represents better energy efficiency.

Especially when delay bound is relatively loose (≥ 7s), delay

maintenance only augments half of active instances than that

of the streamline design.

9

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

E
2
E

 D
e
la

y
 (

s
)

Delay Bound (s)

Delay Maintenance
Streamline

y=x

Fig. 15. E2E Delay vs. Delay Bound

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

A
u

g
m

e
n

ta
ti
o

n

Delay Bound (s)

Delay Maintenance
Streamline

Fig. 16. Number of Augmentation vs. Delay Bound

C. System Insights

To further reveal more system insights of performance

difference between delay maintenance and streamline, in Fig-

ure 17 we plot E2E delay reduction from the sink to the node

which is 10-hop away under varying number of augmented ac-

tive instances. From Figure 17, we can see benefited from the

ability to augment optimal active instances, delay maintenance

has much larger E2E delay reduction than that of streamline at

all augmented active instances. For example, by augmenting 5

active instances, delay maintenance design reduces E2E delay

to the furthest away node by 16.27s while streamline only

reduces 7.93s, which is above two times difference.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

E
2

E
 D

e
la

y
 R

e
d

u
c
ti
o

n
(s

)

Number of Active Instance Augmentation

Delay Maintenance
Streamline

Fig. 17. E2E Delay vs. Number of Augmentation

In Figure 18, we show snapshots of network wide E2E de-

lays after augmenting up to 5 active instances to the network.

From these five figures, we can see our delay maintenance

design has more balanced E2E delays among nodes in the

network while streamline has a much skewed distribution.

Consequently, with the same number of active instance aug-

mentations, our delay maintenance design is able to provide

smaller delay bound. For example, after augmenting 5 active

instances (Figure 18(e)), the largest delay in the network for

delay maintenance design and streamline is 4.04s and 12.17s,

respectively.

VIII. CONCLUSION

In this paper, we present a distributed delay maintenance

design for energy-harvesting sensor networks. We first intro-

duce an optimal distributed algorithm for finding the minimal

 0
 5

 10
 15
 20

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
(s

)

Node Hop Count

Delay Maintenance
Streamline

(a) After Augmenting 1 Active Instance

 0
 5

 10
 15
 20

 1 2 3 4 5 6 7 8 9 10
D

e
la

y
(s

)
Node Hop Count

Delay Maintenance
Streamline

(b) After Augmenting 2 Active Instance

 0
 5

 10
 15
 20

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
(s

)

Node Hop Count

Delay Maintenance
Streamline

(c) After Augmenting 3 Active Instance

 0
 5

 10
 15
 20

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
(s

)

Node Hop Count

Delay Maintenance
Streamline

(d) After Augmenting 4 Active Instance

 0
 5

 10
 15
 20

 1 2 3 4 5 6 7 8 9 10

D
e

la
y
(s

)

Node Hop Count

Delay Maintenance
Streamline

(e) After Augmenting 5 Active Instance

Fig. 18. Snapshots of Network Delays

delay from the sink to a node by augmenting at most h active

instances. In addition, we show how nodes in the network can

cooperatively bound pairwise E2E delay with minimal energy

consumption. For bounding E2E delays from the sink node to

all nodes in the network with minimal energy consumption,

we prove its NP-Hardness and propose an efficient heuristic

solution. Through extensive simulation and test-bed experi-

ments, we demonstrate our delay maintenance design is able to

10

effectively provide E2E delay guarantees in energy-harvesting

networks and significantly outperforms an improved version

of a state-of-the-art design in terms of energy consumption.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants CNS-

0917097, CNS-0845994, and CNS-0626609. We also received

partial support from InterDigital and Microsoft Research.

REFERENCES

[1] L. Mo, Y. He, Y. Liu, J. Zhao, S.-J. Tang, X.-Y. Li, and G. Dai, “Canopy
closure estimates with greenorbs: sustainable sensing in the forest,” in
SenSys ’09, 2009.

[2] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Har-
mon, and D. Estrin, “Suelo: human-assisted sensing for exploratory soil
monitoring studies,” in SenSys ’09, 2009.

[3] W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and V. N. Tran, “Design
and evaluation of a hybrid sensor network for cane toad monitoring,”
ACM Trans. Sen. Netw., vol. 5, no. 1, 2009.

[4] M. Huntwork, A. Goradia, N. Xi, C. Haffner, C. Klochko, and M. Mutka,
“Pervasive surveillance using a cooperative mobile sensor network,” in
ICRA 2006, 2006.

[5] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle,
K. Whitehouse, and D. Culler, “Trio: Enabling Sustainable and Scalable
Outdoor Wireless Sensor Network Deployments,” in IPSN’06, 2006.

[6] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann, and D. Estrin,
“Studying the Feasibility of Energy Harvesting in a Mobile Sensor
Network,” in ICRA’03, 2003.

[7] A. Kansal, D. Potter, and M. B. Srivastava, “Performance Aware Tasking
for Environmentally Powered Sensor Networks,” in SIGMETRICS ’04,
2004.

[8] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.-L. Zhang, “Leakage-Aware
Energy Synchronization for Wireless Sensor Networks,” in MobiSys ’09,
2009.

[9] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power Management
in Energy Harvesting Sensor Networks,” TECS, vol. 6, no. 4, 2007.

[10] C. Vigorito, D. Ganesan, and A. Bartoeeee, “Adaptive Control of
Duty Cycling in Energy-Harvesting Wireless Sensor Networks,” in
SECON’07, 2007.

[11] D. Lymberopoulos, A. Bamis, and A. Savvides, “A methodology for
extracting temporal properties from sensor network data streams,” in
MobiSys ’09, 2009.

[12] K. Romer, “Discovery of frequent distributed event patterns in sensor
networks,” in EWSN’08, 2008.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM

Trans. Database Syst., vol. 30, no. 1, 2005.
[14] C.-T. Huang, T.-H. Lin, L.-J. Chen, and P. Huang, “Xd: A cross-

layer designed data collection mechanism for mission-critical wsns,” in
MobiUS’09, 2009.

[15] R. Mangharam, A. Rowe, R. Rajkumar, and R. Suzuki, “Voice over
sensor networks,” in RTSS ’06, 2006.

[16] M.-Y. Nam, C.-G. Lee, K. Kim, and M. Caccamo, “Time-parameterized
sensing task model for real-time tracking,” in RTSS’05, 2005.

[17] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-Latency Trade-
offs for Data Gathering in Wireless Sensor Networks,” in INFOCOM,
2004.

[18] E. Felemban, C. Lee, E. Ekici, R. Boder, and S. Vural, “Probabilistic
qos guarantee in reliablility and timeliness domains in wireless senosr
networks,” in INFOCOM’05, 2005.

[19] X. Yang and N. H. Vaidya, “A wakeup scheme for sensor networks:
Achieving balance between energy saving and end-to-end delay,” in
RTAS’04, 2004.

[20] Y. Gu, T. Zhu, and T. He, “Esc: Energy synchronized communication
in sustainable sensor networks,” in ICNP ’09, 2009.

[21] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay Efficient
Sleep Scheduling in WIreless Sensor Networks,” in INFOCOM’05,
2005.

[22] Y. Gu and T. He, “Data Forwarding in Extremely Low Duty-Cycle
Sensor Networks with Unreliable Communication Links,” in SenSys ’07,
2007.

[23] L. Su, C. Liu, H. Song, and G. Cao, “Routing in intermittently connected
sensor networks,” in ICNP, 2008.

[24] S. Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic Flooding in
Low-Duty-Cycle Wireless Sensor Networks with Unreliable Links,” in
MobiCom ’09, 2009.

[25] Y. Gu, , T. He, M. Lin, and J. Xu, “Spatiotemporal Delay Control for
Low-Duty-Cycle Sensor Networks,” in RTSS’09), 2009.

[26] P. Sikka, P. Corke, P. Valencia, C. Crossman, D. Swain, and G. Bishop-
Hurley, “Wireless adhoc sensor and actuator networks on the farm,” in
IPSN ’06, 2006.

[27] Y. Li, C. Ai, C. T. Vu, Y. Pan, and R. Beyah, “Delay bounded and
energy efficient composite event monitoring in heterogeneous wireless
sensor networks,” IEEE TPDS, 2009.

[28] H. M. Ammari and J. Giudici, “On the connected k-coverage problem in
heterogeneous sensor nets: The curse of randomness and heterogeneity,”
in ICDCS ’09, 2009.

[29] J. Hong, J. Cao, Y. Zeng, S. Lu, D. Chen, and Z. Li, “A location-free
prediction-based sleep scheduling protocol for object tracking in sensor
networks,” in ICNP ’09, 2009.

[30] K. Shah and M. Kumar, “Distributed independent reinforcement learning
(dirl) approach to resource management in wireless sensor networks,”
in MASS 2007, 2007.

[31] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards Optimal Sleep
Scheduling in Sensor Networks for Rare Event Detection ,” in IPSN’05,
2005.

[32] C. Gui and P. Mohapatra, “Virtual Patrol: A New Power Conservation
Design for Surveillance Using Sensor Networks,” in IPSN’05, 2005.

[33] F. Wang and J. Liu, “Duty-cycle-aware broadcast in wireless sensor
networks,” in INFOCOM’09, 2009.

[34] J. Ma, W. Lou, Y. Wu, X.-Y. Li, and G. Chen, “Energy efficient tdma
sleep scheduling in wireless sensor networks,” in INFOCOM ’09, 2009.

[35] S.-J. Tang, J. Yuan, X.-Y. Li, G. Chen, Y. Liu, and J. Zhao, “Raspberry:
A stable reader activation scheduling protocol in multi-reader rfid
systems,” in ICNP ’09, 2009.

[36] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications,” in SenSys ’08, 2008.

[37] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The Flooding Time
Synchronization Protocol,” in SenSys’04, 2004.

[38] M. Zuniga and B. Krishnamachari, “Analyzing the Transitional Region
in Low Power Wireless Links,” in IEEE SECON’04, 2004.

[39] M. Zamalloa, K. Seada, B. Krishnamachari, and A. Helmy, “Efficient
geographic routing over lossy links in wireless sensor networks,” ACM

TOSN, vol. 4, no. 3, 2008.
[40] G. Zhou, T. He, and J. A. Stankovic, “Impact of Radio Irregularity on

Wireless Sensor Networks,” in MobiSys’04, 2004.
[41] J. Polastre and D. Culler, “Versatile Low Power Media Access for

Wireless Sensor Networks,” in SenSys’04, 2004.

[42] J. Zhu and X. Wang, “Peer: a progressive energy efficient routing
protocol for wireless ad hoc networks,” in INFOCOM 2005, 2005.

[43] H. Jiang and S. Jin, “Scalable and robust aggregation techniques for
extracting statistical information in sensor networks,” in ICDCS ’06,
2006.

[44] G. Wang, G. Cao, P. Bermn, and T. L. Porta, “Bidding protocols for
sensor deployment,” IEEE Transaction on Mobile Computing, vol. 6,
no. 5, 2007.

[45] D. Wang, B. Xie, and D. P. Agrawal, “Coverage and lifetime optimiza-
tion of wireless sensor networks with gaussian distribution,” IEEE Trans.
Mob. Comput., vol. 7, no. 12, 2008.

[46] W. Shu, X. Liu, Z. Gu, and S. Gopalakrishnan, “Optimal sampling rate
assignment with dynamic route selection for real-time wireless sensor
networks,” in RTSS ’08, 2008.

[47] S. Subramaniam, V. Kalogeraki, and T. Palpanas, “Distributed real-time
detection and tracking of homogeneous regions in sensor networks,” in
RTSS’06, 2006.

[48] L. Lazos, R. Poovendran, and J. A. Ritcey, “Probabilistic detection of
mobile targets in heterogeneous sensor networks,” in IPSN ’07, 2007.

[49] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. G. Scutell, “Dynamic
shortest paths minimizing travel times and costs,” University of Pisa,
Tech. Rep., 2001.

[50] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel, “Meeting
lifetime goals with energy levels,” in SenSys ’07, 2007.

[51] Y. Huang and S. Bhatti, “Fast-converging distance vector routing for
wireless mesh networks,” in ICDCS’08, 2008.

11

