
EveryoneCounts: Data-Driven Digital Advertising
with Uncertain Demand Model in Metro Networks
Desheng Zhang §∗, Ruobing Jiang†∗, Shuai Wang§, Yanmin Zhu†, Bo Yang†, Jian Cao†, Fan Zhang‡, Tian He†§∗

§University of Minnesota, USA, †Shanghai JiaoTong University, China ‡SIAT, China

Abstract—Nowadays most metro advertising systems schedule
advertising slots on digital advertising screens to achieve the
maximum exposure to passengers by exploring passenger demand
models. However, our empirical results show that these passenger
demand models experience uncertainty at fine temporal granu-
larity (e.g., per min). As a result, for fine-grained advertisements
(shorter than one minute), a scheduling based on these demand
models cannot achieve the maximum advertisement exposure. To
address this issue, we propose an online advertising approach,
called EveryoneCounts, based on an uncertain passenger demand
model. It combines coarse-grained statistical demand modeling
and fine-grained bayesian demand modeling by leveraging real-
time card-swiping records along with both passenger mobility
patterns and travel periods within metro systems. Based on
this uncertain demand model, it schedules advertising time
online based on robust receding horizon control to maximize
the advertisement exposure. We evaluate the proposed approach
based on an one-month sample from our 530 GB real-world
metro fare dataset with 16 million cards. The results show that
our approach provides a 61.5% lower traffic prediction error
and 20% improvement on advertising efficiency on average.

I. INTRODUCTION

Digital advertising systems [1] in metro networks obtain
increasing preference by advertisers because of the extensive
exposure to a large number of passengers, e.g., in New York
City, the average ridership reaches up to 5.5 million [2]
according to the Metropolitan Transportation Authority. In
such a metro advertising system, the key design issue is how
to schedule given advertising time (rented by advertisers) on a
digital screen to maximize passing audience for the maximum
advertisement exposure during all the advertising time, which
is a key indicator of the potential advertising revenues [1].

Historically, an intuitive approach for this issue is to pref-
erentially display advertisements in those time periods with
more historical passengers, i.e., a passenger demand model
based on historical passenger data collected in the automatic
fare collection (AFC) system [3]. The assumption behind
such an approach with a historical-data-based demand model
is that the daily distribution of passenger traffic volumes,
i.e., passenger demand, in the same metro station is fairly
predictable with historical distributions. Thus, higher historical
passenger demand in a past time period indicates higher future
passenger demand for the same time period in the future day.

However, our empirical study in the metro network of
Shenzhen (the twin city of Hong Kong and has more than 13
million residents) clearly shows that only coarse-grained (e.g.,
one hour) passenger demand is predictable based on historical
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data, but fine-grained (e.g., one minute) passenger demand is
with uncertainty and thus unpredictable based on historical
data. Further, we argue that the fine-grained (instead of coarse-
grained) passenger demand model is essential to advertising
time scheduling, because an advertisement is normally in a
fine-grained length (e.g., less than one minute). As a result, we
face a key challenge to predict fine-grained passenger demand
to effectively schedule adverting time.

To address this challenge, we propose an online advertise-
ment scheduling approach, named EveryoneCounts, based on
robust receding horizon control with an uncertain demand
model. In EveryoneCounts, it combines coarse-grained sta-
tistical demand modeling and fine-grained bayesian demand
modeling by inferring individual arrivals using both real-
time and historical, instead of only historical, data in the
AFC system. This is because given real-time entering stations
and time, we can accurately infer destinations and arriving
time for passengers based on the low conditional entropy of
passenger destinations and predictable travel durations in the
metro network, learned from our extensive empirical study.
In addition, we design an adverting scheduling algorithm
based on receding horizon control to maximize advertisement
exposure under our uncertain demand model. Specifically, our
main contributions are as follows:

• To our knowledge, we perform the first work, named
EveryoneCounts, to optimize advertisements exposure
with large-scale data from the metro automatic fare
collection system. We will release our data for the benefit
of research community after the paper is accepted.

• We design a two-level uncertain metro passenger demand
model based on our empirical study, which reveals that
the coarse-grained passenger demand is predictable with
the historical data while the fine-grained passenger de-
mand is with uncertainty and thus unpredictable based on
history. Thus, we combine coarse-grained statistical de-
mand modeling and fine-grained bayesian demand mod-
eling by leveraging (i) the real-time card swiping records
collected by the AFC system, (ii) the low conditional
entropy of passenger destinations, and (iii) the predictable
travel time between different stations.

• We propose an online digital advertising approach based
on robust receding horizon control, which exploits our
passenger model to allocate coarse-grained advertising
time offline but adjust fine-grained advertising time online
to maximize advertisement exposure.

• We evaluate the performance of our approach through



extensive trace-driven evaluation based on one-month
sample from our 530 GB real-world metro fare dataset
with 16 million cards in Shenzhen, China. Compared to
statistical approaches, the proposed approach has a 61.5%
lower prediction error of fine-grained traffic volumes,
leading to a 20% improvement in advertising efficiency.

The rest of the paper is organized as follows. Section II
defines the advertising optimization. Novel empirical results
are presented in Section III. Secions IV- VII show the detailed
design and its performance. Secion VIII discusses the real-
world issues. We introduce the related work in Section IX and
conclude the paper in Section X.

II. MODELS AND PROBLEM DEFINITION

In this section, we first present the scenarios and the
advertising models. Then, we provide the formal definition of
the advertising efficiency optimization problem. The mainly
used notations are summarized in Table I.

A. Scenarios and Models

We focus on the metro stations where passengers need to
swipe their metro cards at the entrance/exit to enter/leave a
station. We model the metro network as a set of connected
metro stations, denoted by Ψ = {ψ1, · · · , ψd, · · · , ψm}. As
shown in Fig. 1, we show the metro network of Shenzhen and
a scenario where digital screens are installed and exposed to
passengers between AFC machines and platforms of a station.
The lighter the icon, the higher the average passenger demand.
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Figure 1. An example of the digital screen advertising in Shenzhen metro
network: all the passengers from other stations will pass by the target screen
when they leave their destination station.

The metro network sells advertising time of digital screens
in all stations (assuming one screen per station) to advertisers
and charges them based on the length of advertising time.
The maximum length of daily advertising time for the digital
screen at all stations, denoted by T (e.g., 24 hours), is divided
into small time slots with length τ (e.g., one minute). Suppose
γ advertisers buy advertising time on digital screens and the
lengths of their advertising time are αid, where 1 ≤ i ≤ γ and
1 ≤ d ≤ m. We consider all advertisers with the same priority,
although our method can also be used for multiple priorities.

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

Notation Description
T The length of a time unit, e.g., 24 h, at a

station ψd
τ The length of time slots, e.g., 3 min
αid The length of advertising time for a station

ψd
βij·d The traffic volume of jth slot at a station

ψd
λij·d The AD schedule for jth slot at a station

ψd for advertiser i

For a given slot tj and a station ψd, the passenger demand
βj·d is given by the slot traffic volume, i.e., the number of
passengers passing by the digital screen during tj when they
exit/enter the station ψd.

B. Problem Definition

Given the advertisement utility (i.e., T ) of metro stations,
the objective of the metro advertising system is to provide the
best advertising service to the advertisers in terms of optimized
advertising efficiency. With the above models and notations,
we now formally define the key term – advertising efficiency
and its corresponding optimization problem.

Definition 1 (Advertising Efficiency). The traffic volume over
the total advertising time on the screens at all stations, i.e.,∑γ

i=1

∑m
d=1

∑T
τ
j=1 βj·d × λij·d∑γ

i=1

∑m
d=1 α

i
d

, (1)

where the schedule of the jth slot at the station ψd for the
advertiser i, λij·d, is given by,

λij·d =

{
1, if tj is an AD slot for advertiser i at station ψd
0, otherwise .

(2)

For the numerator, the innermost summation is for all AD slots
in a particular station ψd for a particular advertiser; the middle
summation is for all AD slots in all stations for a particular
advertiser; the outmost summation is for all AD slots in all
stations for all advertisers. For the denominator, the summation
is the total advertising time.

Definition 2 (Advertising Efficiency Optimization). Given
the total advertising time and the slot length, a set of schedules
λij·d needs to be made, so that the advertising efficiency is
maximized, i.e.,

max
λij·d

∑γ
i=1

∑m
d=1

∑T
τ
j=1 βj·d × λij·d∑γ

i=1

∑m
d=1 α

i
d

,

s.t. τ ×
∑T

τ

j=1
λij·d = αid,∀i ∈ [1, γ],∀d ∈ [1,m]. (3)

To solve this optimization problem, we need to find a schedule
λij·d for different AD slots in different stations for different



advertisers. In our setting, γ, m, T , τ , and αid where ∀i ∈ [1, γ]
are given in advance. But the passenger demand βj·d for a
particular slot in a particular station has to be obtained by a
demand model. Such passenger demand includes passengers
who enter or exit the target station. But since entering pas-
sengers can be straightforwardly tracked by AFC machines at
the entrance of the station, we focus on the exiting passengers
who enter at other stations but exit at this station in this paper.

In this work, as shown in Section III, we found that fine-
grained passenger demand models experience uncertainty.
Thus, we formulate the passenger demand βj·d in our op-
timization as a variable, instead of a fixed value. In this
work, we assume βj·d belongs to some uncertainty set where
β
j·d ≤ βj·d ≤ βj·d. As a result, we formulate a robust

optimization problem as follows.

Definition 3 (Robust Advertising Efficiency Optimization).

max
λij·d

min
βj·d

∑γ
i=1

∑m
d=1

∑T
τ
j=1 βj·d × λij·d∑m

d=1

∑γ
i=1 α

i
d

s.t. τ ×
∑T

τ

j=1
λij·d = αid,∀i ∈ [1, γ],∀d ∈ [1,m]

βj·d ∈ [β
j·d, βj·d],∀j ∈ [1,

T

τ
],∀d ∈ [1,m]

(4)

In this problem, the key challenge is how to obtain an
uncertainty set of passenger demand, i.e., β

j·d and βj·d and

then to determine the schedule {λj}
T
τ
j=1 with an online fashion,

so that the best n slots with highest passenger demand can be
selected as the advertising slots based on the latest info. As
follows, we conduct an empirical study in Section III before
we present our demand model and scheduling.

III. EMPIRICAL STUDY

To predict future passenger demand, we conduct an exten-
sive empirical study on the real-world AFC records collected
in the metro system in Shenzhen, China.

A. Dataset

In this paper, we utilize two sample datasets from a stream-
ing dataset of smartcard transactions in the metro AFC system
of Shenzhen, which is the twin city of Hong Kong and has
more than 13 million residents. Each card swiping record
includes card ID, device ID, swiping in or out, date, time
as well as metro station ID among 118 metro stations. In this
paper, two sample datasets, named as Dataset A and Dataset
B, are used. The summary of Dataset A and Dataset B as
well as the format of each data record are illustrated in Fig. 2.
As shown, Dataset A contains 2,807,973 smart cards, and the
records range from Dec 12, 2013 to Dec 25, 2013. The average
daily number of card swiping in the metro system is more
than 3 million. The average daily traffic per station is about
25,000. Dataset B contains the streaming card swiping data of
16,000,000 passengers from July 1, 2011, including smartcards
used in both metro systems and bus systems in Shenzhen.

Dataset A Dataset B

Collection Period

Number of Cards

Number of Records

Format:Card ID,Station ID,Device ID,Date &Time,

13/12/12- 13/12/25 11/07/01- Now

16,000,0002,807,973

41,270,178 6,212,660,742

Swipe in/out

Figure 2. The dataset summary and the record format.

We utilize Dataset A as a sample to study all metro stations
during a two week period. Dataset B is used for the large-
scale evaluation. In the rest of this section, although similar
observations are found throughout all the 118 stations, we
focus on our empirical study results over the Xixiang station,
which is a representative commute station.

B. Certainty of Coarse-grained Demand

We first study the trend of coarse-grained passenger demand
in terms of traffic volumes shown in Fig. 3, which plots
the trends of a weekday (polyline) and the nearby historical
nine weekdays (bars). The temporal granularity of the traffic
volume is one hour, which is coarse-grained compared to the
typical duration of an advertisement, i.e., one minute.
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Figure 3. The distribution of the coarse-grained passenger demand in a
weekday and the average distribution of its near historical weekdays.

Observation 1. Predictable and Smooth Coarse-grained
Passenger Demand: The trend of the single weekday highly
matches the trend of its near historical weekdays. The curve
is smooth in general, except for the rush hour. In other words,
the trend of the coarse-grained passenger demand in a station
is predictable based on the nearby history records.

The main reason for the coarse-grained predictability and
smoothness is that the passenger demand is relatively stable
during near days, in a specified area around a station. Based
on Observation 1, we conclude that the distribution of coarse-
grained passenger in a station can be accurately predicted
using the average history distribution.

C. Uncertainty of Fine-grained Demand

We now introduce the trend of the fine-grained passenger
demand. Fig. 4 plots the distribution of fine-grained passenger
demand during the rush hour (from 18:30 to 19:00) of a
weekday and its nearby historical nine weekdays.
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Figure 4. The distribution of the fine-grained traffic volumes in the rush hour
(18:30 to 19:00) in a weekday and its near historical weekdays.

Observation 2. Unpredictable and Fluctuated Fine-grained
Passenger Demand: The trends of the fine-grained traffic vol-
ume in the weekday and its nearby historical weekdays do not
match, e.g., the traffic volume in the same slot largely varies
in different days. Further, the fine-grained traffic volume, even
during rush hours with crowded passengers, is fluctuated with
continuous peak and valley values, e.g., some valleys next to a
peak even have a traffic volume as low as the average volume
in slack hours.

For the unpredictability of fine-grained passenger demand,
there are two main reasons. On the one hand, the trains arriving
at the same station might not be punctual. On the other hand,
although trains arrive punctually, a commuter cannot guarantee
to take the same train every day even the commuter needs to
arrive at the work place before 9am every day. The arrivals
of the passengers at a given metro station are temporally
different in different days. As a result, we argue that a higher
historical traffic volume cannot guarantee higher advertising
efficiency for fine-grained advertising. This motivates us to
predict fine-grained demand by inferring real-time individual
arrivals, instead of relying on pure history.

For the fluctuation of fine-grained passenger demand, the
reason is that the passenger arrivals are highly limited by
the schedule of metro trains. Between the arrivals of two
successive trains in a metro station, no passengers arrive at
the station. Inspired by this observation, we aim to propose
fine-grained advertising instead of coarse-grained advertising
because the existence of valleys slots during a coarse-grained
period (e.g., rush hours) pulls down the advertising efficiency
of that period. Only the fine-grained selection of all the high-
traffic slots leads to better advertising efficiency.

D. Historical Prediction Performance

We now reveal the different performance of the historical
prediction of fine-grained and coarse-grained passenger de-
mand. If the slot traffic volume of tj , i.e., βj , is predicted as the
average volume of tj over the near historical nine weekdays,
denoted by β̂j , the prediction errors when slot length varies
are shown in Fig. 5. The prediction error, denoted by δj , is
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Figure 5. The CDFs of the prediction error of both coarse-grained and fine-
grained traffic volumes in a weekday based on the near history.

computed by δj =
|βj−β̂j |

max{βj ,β̂j}
. As expected, the prediction

error of coarse-grained traffic volume is much lower than
that of fine-grained traffic volume. For example, when the
slot length is 1 h, the prediction errors of around 99% slots
are lower than 10%. However, more than 40% slots have a
prediction error larger than 30% when the slot length is 1 min.

E. Summary

Based on the empirical study, we have following impor-
tant conclusions: (i) According to Observation 1, the coarse-
grained passenger demand is predictable based on historical
distributions, which provides us a global view on the coarse-
grained passenger demand in a future day. (ii) According
to Observation 2, the fine-grained passenger demand is un-
predictable based on historical distributions. As a result, we
propose an uncertain passenger demand model to predict fine-
grained traffic volumes based on individual arrivals prediction.
(iii) According to Observation 2, the fine-grained, instead
of coarse-grained, advertising scheduling should be applied
due to fluctuated fine-grained passenger demand. Thus, the
selection of peak fine-grained slots among all the fluctuated
slots is enabled to achieve higher advertising efficiency. So
we design an online advertising scheduling based on robust
receding horizon control. As follows, we first give an overview
of our approach in Section IV, and then introduce our demand
model and AD scheduling at Sections V and VI, respectively.

IV. METHODOLOGY OVERVIEW

Inspired by the empirical study, we propose the “Everyone
Counts” design to improve the advertising efficiency by robust
receding horizon control based on a two-level passenger
demand model. As follows, we introduce the overview of the
proposed approach. In the rest of the paper, we use frame,
denoted by {fl}

T
h

l=1, to represent the coarse-grained time slot
whose length, denoted by h, is in hour level. We use slot,
with minute-level length τ , denoted by {tlj}

h
τ
j=1, to represent

the jth fine-grained slot in frame fl. Our demand modeling
and AD scheduling are based on these two temporal units.

Given the fixed advertising time αid and slot length τ , the
proposed approach (i) allocates the total n = αid/τ AD slots



to coarse-grained frames based on our coarse-grained demand
model obtained by historical AFC data, and (ii) allocates all
AD slots belonging a particular frame based on our fine-
grained demand model obtained by real-time AFC data plus
individual mobility patterns.
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Figure 6. An example illustrating the overview of the proposed approach.

We use an example regarding to a specific metro station
ψd and a specific advertiser i to illustrate the main process of
the proposed approach, since scheduling at different stations is
independent among each other. As shown in Fig. 6, the length
of the advertising time αid is two hours, and the length of
slots τ is 3 minutes. Then the total number of advertising
slots (AD slots) n is 40. The length of frames h is 1 h. Thus,
there are 24 frames in the day and 20 slots in each frame. Our
scheduling has two key steps. (i) According to the historical
distribution of coarse-grained passenger demand in frames,
n AD slots are allocated to {fl}24

l=1. Note the allocation
based on the global view of high-traffic slots distribution in
frames enables frame-scale (instead of day-scale) passenger
demand prediction, which leads to higher demand prediction
accuracy. (ii) Taking one of the frames with 10 AD slots
for example, fine-grained passenger demand in this frame is
predicted online and updated in each time slot with a receding
horizon of newly occurred AFC records. Suppose the best
10 slots with high traffic volumes are those illustrated in the
figure, according to the prediction at the current time (i.e., the
first slot in the frame). These best 10 slots may be replaced
by other slots in further predictions with a receding horizon.
Based on this slot-level demand model, an online AD schedule
is made for all the slots in the current frame, and the schedule
is implemented only for the nearest future slot, i.e., the next
slot of the current one. In this example, the next slot ranks 3rd
among all the slots in terms of traffic volume, which will be
selected as an AD slot. The online prediction and scheduling
continue until all the slots in the frame are scheduled.

We next present the detailed design of our demand model
and AD scheduling in the following two sections, respectively.

V. UNCERTAIN DEMAND MODEL

Our uncertain demand model has two parts, i.e., coarse-
grained passenger demand modeling at frame levels, and fine-
grained passenger demand modeling at slot levels.

A. Coarse-grained Passenger Demand Modeling

Given historical AFC data, our coarse-grained passenger
demand model is a statistical model, i.e., at frame-levels using
the historical average passenger demand as the future passen-
ger demand. Based on setting, our coarse-grained frame-level
passenger demand model has the following property.

Property 1: Stable Distribution of High Demand Slots in
Frames. When all the time slots in a day are sorted according
to their passenger demand, the distribution of those best n
slots with highest demand in each frame is stable.
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Figure 7. The distribution of high-traffic slots (τ = 1 min) in each 1 h frame
when the advertising time α is 4 h or 12 h. This result is based on Dataset A.

Fig. 7 shows the distributions of the best n slots in frames
of short term historical days when h and τ are 1 hour and
1 minute, respectively. Fig. 7(a) plots the distribution of the
best 240 slots, i.e., 4 hour advertising time, and Fig. 7(b) plots
the distribution of the best 720 slots, i.e., 12 hour advertising
time. From the figures, we found that no matter n is large or
small, the distribution of the best n slots in frames is stable.

B. Fine-grained Passenger Demand Modeling

Given both historical and real-time AFC data, our fine-
grained passenger demand at slot levels is a bayesian model,
i.e., based on passenger real-time entering AFC records and
mobility patterns, we infer passenger exiting stations and time.
Since the passenger demand in a future slot is the number
of passenger arriving at the target station from other metro
stations, their AFC records entering the metro system have
already been recorded. We use such logged AFC records,
including both the origin station and the entering time, as
a condition to predict passenger arrivals, thus to obtain pas-
senger demand at slot levels. In detail, there are three steps,
namely, destination prediction, travel duration prediction, and
traffic volume aggregation.

1) Destination Prediction: For a passenger k entering the
metro through station θk at the time µθk, we predict the
destination dk based on the recorded AFC entering information
according to the predictable passenger destinations.



Property 2: Low-entropy Destination. The entropy of
destination, H(dk), for a metro passenger k is low and the
conditional entropy H(dk|θk, µθk) is even much lower when
the origin θk and starting time µθk are given.
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Figure 8. The CDFs of the entropy of destinations and the conditional entropy
of the destinations given origins and the hour of trip starting time. The result
is based on Dataset B.

Fig. 8 plots the CDFs of H(dk), H(dk|θk), and
H(dk|θk, µθk) for all the metro records of passenger k
during 3 months, which are computed as follows,

H(dk) = −
∑
dk∈Ψ

p(dk) log p(dk),

H(dk|θk) =
∑

dk,θk∈Ψ

p(θk, dk) log p(θk)
p(θk,dk) ,

H(dk|θk, µθk) =
∑

dk,θk∈Ψ,µθk∈χ
p(θk, dk, µ

θ
k) log

p(θk,µ
θ
k)

p(θk,dk,µθk)
,

(5)
where Ψ, the set of all the metro stations, is the support of θk
and dk, which can be considered as random variables, and χ
= {[00:00:00, 01:00:00), [01:00:00, 02:00:00), · · · , [23:00:00,
24:00:00)}, the set of hours in a day, is the support of the
random variable µθk. We find from the figure that H(dk|θk, µθk)
is lower than 0.7, which means there are only 20.7 possible
destinations, compared to totally 118 stations in Shenzhen
metro, for each passenger when θk and the hour of µθk are
given. By exploring the travel history of each passenger, the
destination of a future metro trip can be exactly predicted given
the recorded AFC information of the origin and the starting
time of the trip, i.e., finding the destinations mostly associated
with the origin and the starting time in the historical data.

2) Travel Duration Prediction: We then predict the arrival
time νdk of passenger k at the predicted destination dk based
on the recorded θk and µθk, according to the following property
of passenger mobility.

Property 3: Stable Travel Duration. The travel durations
between a given pair of origin and destination, denoted by
ω(θ, d), is stable. Moreover, if the hour of the starting time
µθ is given, the standard deviation of the travel durations for
a pair of origin and destination, denoted by σ(ω(θ, d)), will
be further reduced.

Fig. 9 plots the CDFs of σ(ω(θ, d)), and
σ(ω(θ, d|µθ)), θ, d ∈ Ψ, where ω(θ, d|µθ) represents
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Figure 9. The CDFs of the standard deviation of travel durations given a
pair of origin and destination and the hour of trip starting time. This result is
based on Dataset B.

the travel durations for a given pair of stations and starting
during a given hour in χ. We find from the figure that 70%
of σ(ω(θ, d|µθ)) are lower than 3 min.

In this work, we use 90th percentile of the standard devi-
ation to obtain an arriving time interval, instead of a fixed
value, for an uncertain demand model.

3) Traffic Volume Aggregation: Based on the arriving time
intervals of all passengers who are already in the metro
network, we obtain a lower bound, i.e., β

j·d, and a upper
bound, i.e., βj·d for passenger demand at station ψd during
slot tj based on all the AFC records occurring before the
current slot tj−1. These lower and upper bounds are used in
our scheduling with robust receding horizon control as follows.

VI. SCHEDULING BY RECEDING HORIZON CONTROL

Based on our two-level demand model, our scheduling also
has two parts, i.e., offline advertising time allocation at frame
level, and online advertising time allocation at slot level.

A. Offline Advertising Time Allocation at Frame Level

Given n AD slots and the historical coarse-grained traffic
distribution of T

h frames, we first allocate n to the frames. The
number of AD slots for frame fl, 1 ≤ l ≤ T

h , is denoted by
ηl. The allocation is inspired by the Property 1 of our coarse-
grained demand model, i.e., stable distribution of high demand
slots in frames. So we determine the allocation {ηl}

T
h

l=1 accord-
ing to the stable distribution of high-traffic slots in frames.
Given the fixed n and the historical percentage, denoted by
πl, of the high-traffic slots in frame fl, ηl is computed as
the product of n and the stable historical percentage πl, i.e.,
ηl = n× πl, where

∑T
h

l=1 ηl = n, and
∑T

h

l=1 πl = 1.

B. Online Advertising Time Allocation at Slot Level

With the allocation of the number of the advertising slots
in each frame and the predicted real-time traffic volumes in
future slots in each frame, the schedule {λlj} are made with
receding horizons of real-time AFC records, where 1 ≤ l ≤
T
h , 1 ≤ j ≤ h

τ . The pseudo code in Alg. 1 explains the main
process of the scheduling.



Algorithm 1: Online AD Slot Allocation
Input {ηl}: the allocation of n advertising slots for each frame fl;

Real-time card swiping records
Output {λlj}: the schedule of all the time slots in all the frames

1: l = 1, j = 0
2: for l = 1, l <= T

h
(i.e., all the frames) do

3: for j = 0,j < h
τ

do
4: Predict the lower and upper bounds for

{βlj+1, β
l
j+2, · · · , βlh

τ
} based on the updated AFC records

occurring before tlj .
5: Solve robust advertising efficiency optimization problem

proposed in eq.(4).
6: When the current time moves into tlj+1, display

advertisements if λlj+1 is 1.
7: Continue
8: end for
9: end for

During a frame fl, before each slot tlj , the advertising schedule
λlj , is made by first predicting lower and upper bounds of
passenger demand in the future slots in fl, {βlj+1, · · · , βlh

τ

}
with updated AFC records. Then, we solve the robust ad-
vertising efficiency optimization problem proposed in eq.(4)
by a numerical method to obtain the schedule for the rest of
slots. Then, we choose to display the AD or not based on the
obtained schedule.

VII. PERFORMANCE EVALUATION

Based on one month data from Dataset B in Fig. 2, we
evaluate the performance of the advertising time allocation,
the fine-grained traffic prediction, and the resulted advertising
efficiency of our approach against different settings of the slot
length (default: 3 min), frame length (default: 1 hour), and the
length of advertising time (default: 5 hours).

We compare the performance of the proposed approach with
the performance of the optimal scheduling and two existing
approaches as follows.
• The optimal approach (Optimal): This approach makes

the optimal schedule for each time slot to achieve the
optimal advertising efficiency under the given advertising
time and slot length, based on the ground truth of fine-
grained traffic volumes.

• Coarse-grained scheduling approach (Coarse-
grained): This approach selects the best coarse-grained
frames with highest historical traffic volumes in near
historical days to display advertisements. The frames
are sorted and selected to display advertisements in
decreasing order of their historical frame traffic volume.

• Historical traffic volume based approach (Historical):
This approach applies fine-grained advertising based on
historical traffic volume instead of individual mobility
pattern based traffic volume prediction. Fine-grained slots
are sorted and selected as advertising slots in decreasing
order of the historical slot traffic volume in near history.

A. Performance of Advertising Time Allocation

We first explore the allocation accuracy of the advertising
slots of EveryoneCounts under different settings of the slot

length τ and the frame length h, given the default value of α.
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Figure 10. The allocation error of the given advertising time (five hours)
into coarse-grained frames when both the length of slots and the length of
frames vary.

Fig. 10 plots the allocation error δη when τ varies from
1 min to 6 min and h varies from 0.5 hour to 3 hour. The
allocation error δη is computed as the average prediction error
of the number of high-traffic slots in each frame,

δη =
h

T

∑T
h

l=1

|ηl − η̂l|
max{ηl, η̂l}

, (6)

where {η̂l} are the true distribution of the high-traffic slots in
the frames of the target day.

We can find from the figure that the allocation error of most
settings are lower than 10%, especially when the slot length
is 3 min and the frame length is longer, e.g., 3 h. The reason
for the largely decreasing allocation error as the frame length
increases is that the more coarse-grained traffic volume is more
predictable. This phenomenon corresponds to the Observation
1 that coarse-grained traffic volumes are more stable than fine-
grained traffic volumes.

We can also find that when the slot length is 3 min, the
allocation error is the lowest among those with the same frame
length. The key reason is as follows. The train interval in the
metro system in Shenzhen city is 3 min in rush hours and 6
min in nonrush hours. Then, the 3 min time slots naturally
grouping the passengers getting off from the same train. As a
result, the traffic volumes in every 3 min slot are more regular
than in other length of slots. Inspired by this conclusion, we
suggest the setting of slot length τ according to the train
interval of the target metro station.

B. Performance of Traffic Prediction

We then evaluate the performance of the online fine-grained
traffic volume prediction of our approach by comparing the
prediction error with that of Historical under different settings
of the slot length, which are plotted in Fig. 11.

We can find from the figure that the prediction error of
both approaches decrease as the slot length increases and
the prediction error of EveryoneCounts is on average 61.49%
lower than that of Historical. When the slot length is as short
as 1 min, the prediction performance of both approaches is
poor while the reasons of their poor performance are different.
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Figure 11. The prediction error of fine-grained traffic volumes of the proposed
approach, compared to the history based approach.

The reason for the high prediction error of EveryoneCounts
with 1 min slot length is the deviation of the individual travel
duration from the average historical duration of each passenger
(as shown in Fig. 9) is much larger than the 1 min slot length.
While the reason for the extremely high prediction error of
Historical is the uncertainty of the fine-grained traffic volume,
our novel observations made in Section III-C.

C. Performance of Advertising Efficiency

The performance of the advertising efficiency of all the
approaches are evaluated against the impact of advertising time
α, slot length τ and frame length h.

1) Impact of the Advertising Time: Fig. 12 and Fig. 13 plot
the total traffic volume accumulated during all the advertising
time (the objective of the equivalent problem presented in
Equation (4)) and the advertising efficiency when the given
advertising time varies from 1 h to 8 h.
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Figure 12. The total traffic volumes of all the approaches when the advertising
time varies from 1 h to 8 h.

From the two figures, the proposed approach performs the
best among all the non-optimal approaches. As the advertising
time increases, as expected, the total traffic volume increases,
while the advertising efficiency decreases for all the approach-
es. Since the passenger traffic is not evenly distributed in the
target day and those time slots with higher traffic volumes
will be preferentially selected, the longer the advertising time,
the lower the advertising efficiency. When the advertising
time is 1 h, the total traffic volume (advertising efficiency)
of EveryoneCounts is 37% and 62.9% higher than that of
Coarse-grained and that of Historical, respectively. The reason
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Figure 13. The advertising efficiency of all the approaches when the
advertising time varies from 1 h to 8 h.

for the lower advertising efficiency of Coarse-grained than
that of EveryoneCounts is the fluctuated fine-grained traffic
volume even during rush hours, which has been introduced
as Observation 2. Historical has the worst performance of
the advertising efficiency because of the high prediction error
of the fine-grained traffic volume, which is resulted by the
temporal irregularity of fine-grained traffic volumes.

2) Impact of the Slot Length: Given the fixed length of the
advertising time, the length of the slots has different impacts
on the advertising efficiency of different approaches. Fig. 14
plots the advertising efficiency of all the approaches when the
slot length varies from 1 min to 6 min.
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Figure 14. The advertising efficiency of all the approaches when the slot
length varies from 1 min to 6 min.

Optimal and our approach have decreasing advertising effi-
ciency while Historical has increasing advertising efficiency as
the slot length increases. For Coarse-grained, since it applies
the coarse-grained scheduling, the slot length has no impact
on its performance. The decreasing advertising efficiency of
Optimal and EveryoneCounts is resulted by the more coarse-
grained advertising with longer slot length. Although Every-
oneCounts has a decreasing advertising efficiency, the distance
between its efficiency and that of Optimal decreases. For
example, when the slot length is 1 min and 6 min, the efficiency
of EveryoneCounts is 91% and 96.3% of that of Optimal,
respectively. As expected, the lowest advertising efficiency of
Historical when the slot length is shortest is resulted from the
temporal uncertainty of fine-grained traffic volume.

3) Impact of the Frame Length: Fig. 15 presents the adver-
tising efficiency of approaches when the frame length varies



from 0.5 h to 3 h. Optimal and Historical are not affected by
the frame length because they both apply only fine-grained
advertising. Our approach and Coarse-grained have decreasing
performance with larger frame length because they both take
advantage of the coarse-grained traffic certainty. However,
longer frame length leads to higher traffic volume prediction
error of EveryoneCounts because that more and farther future
traffic volumes need to be predicted in longer frames.
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Figure 15. The advertising efficiency of all the approaches when the frame
length varies from 0.5 hour to 3 hour.

4) Global Performance: We show the advertising efficiency
achieved by all the approaches in all the metro stations under
the default setting in Fig. 16. From the figure, we can find that
EveryoneCounts has the closet performance with Optimal. The
average advertising efficiency of EveryoneCounts is 26.84,
which is 89.7% of the efficiency of Optimal, and 18.6%
and 58.5% higher than the efficiency of Coarse-grained and
Historical, respectively.
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Figure 16. The empirical CDFs of the advertising efficiency in all the 118
metro stations of all the approaches under the default setting.

VIII. DISCUSSIONS

In this section, we discuss some practical issues regarding
to the real-world deployment of the proposed approach.

Advertisement Fairness: The proposed approach is to
assist a metro system optimize its advertising efficiency given
the total advertising time rented by all advertisers. Since an
advertiser is charged according to the length of its advertising
time, it is also important to maintain the fairness among all
advertisers. Our approach can be easily adapted to take the
fairness into account. When a time slot is selected as an
advertising slot, each advertisement will be displayed with a

probability proportional to the its length of rented time. As a
result, when the rented time of an advertisement is longer, its
display probability would be higher.

Passengers Contributing to Revenues: In this paper, we
envision that all passengers passing by a digital screen would
see advertisements. Admittedly, in reality, only a portion of
passengers would see advertisements, and an even smaller
portion of passengers would actually contribute to advertisers’
revenues. However, these real-world factors are extremely
difficult to quantify, and are out of the technical scope of this
paper. Thus, we focus on the total passing by passenger traffic
volume in this work.

Passengers with Temporary Cards: In a real-world metro
system, there are passengers traveling with temporary cards,
e.g., foreign visitors. Thus, the mobility patterns of these pas-
sengers cannot be inferred from the historical travel records. In
this work, for these passengers, the destinations and the travel
durations are predicted based on statistical general regularities
of the passenger mobility within the metro system.

Metro Station Exits Without AFC Machines: Some
metro stations might not have AFC machines at the exits, so
the destinations of passengers are unavailable. Our approach
is still applicable for such stations, because the destination
and travel duration of a passenger trip can be estimated by
exploring the entering record of the passenger’s next trip [4].

Demand Modeling using Other Infrastructures: Other
infrastructures, e.g., wifi routers or infrared sensors, can also
be used to model passenger demand. But they typically in-
troduce additional costs. In contrast, our approach based on
AFC data did not introduce any additional costs, since AFC
data are collected automatically for billing purposes.

IX. RELATED WORK

Our approach predicts the passenger traffic volume by
utilizing the real-world card-swiping information recorded by
the metro automatic fare collection (AFC) system. The most
related topics with this work include advertising efficiency
improvement, traffic volume prediction, and traffic arrival time
prediction. Though smart card data have been used before [3],
our work is the first one on the advertising efficiency improve-
ment based on an uncertain demand model. To the best of our
knowledge, there is little, if any, research on the topic, so we
summary our related work within the area of traffic arrival
time prediction and passenger demand estimation.

A. Arrival Time Prediction

In our design, we predict the passenger arrivals in metro
networks, which is determined by the arrivals of metro trains.
Similarly, several existing studies propose wise designs to
predict the travel time of other kinds of transportation, e.g.,
bus. We classify such work into three categories according to
the different information they use, i.e., (i) road sensors, (ii) the
taxi GPS information [5], [6], and (iii) the cell phone data [7].

Several pieces of work have been proposed to use road
sensors, e.g., the loop detectors, to predict travel time. Based
on the data collected by the road sensors, such approaches



predict the travel time by estimating speeds of vehicles. Given
the estimated vehicle speed as well as the fixed length of the
road segments, these studies further predict the travel time.
Recently, more researchers cast their attentions on the large
scale taxi GPS data. Balan et al. [5] propose a real-time trip
information system that provides passengers with the expected
fare and travel time. The authors in [6] propose a citywide
model for estimating the travel time of any path in real time,
based on the map information and the GPS trajectories of
vehicles received in current time slots as well as the history
records. Zhou et al. [7] propose a novel idea to predict the
bus arrival time using the cell phone data. They present a
bus arrival time prediction system based on the participatory
sensing data provided by cell phones of bus passengers. The
work VTrack [8] also uses sensing data from phones, e.g., the
WiFi-based positioning samples, to predict traffic delay.

B. Passenger Demand Estimation

The existing work on the real-time passenger demand,
i.e., traffic volume estimation, mainly focuses on the volume
estimation of vehicles, which can be classified into two
categories, i.e., parametric and non-parametric methods. Para-
metric methods typically used models include local regression
model [9], and Markov chain model [10], etc. Non-parametric
methods include non-parametric regression [11], Bayesian
networks [12] and neural networks [13].

Based on the source of the data used for prediction, the
related work can also be divided into two categories, i.e., (i)
the approach using road sensors [8], [14], [15], and (ii) the
approach using taxi GPS data [16]–[21]. Singliar et al. [14]
develop a probabilistic estimation model for highway networks
based on the information collected from a set of traffic sensors
placed around the city. The authors in [16] use both historical
patterns and real-time traffic information from the GPS data
of taxicabs to estimate traffic conditions. Aslam et al. [17]
provide model and inference procedures which can be used to
analyze traffic patterns from historical data, and to estimate
current traffic status from data collected in real-time. Yuan et
al. [21] propose a taxi passenger demand model for taxi drivers
to quickly pick up passengers to maximum their revenue.

C. Summary

Our work solves the advertising optimization problem based
on our uncertain passenger demand model with card-swiping
records collected by AFC machines in a metro system. Com-
pared with other kinds of transportation, e.g., cars or buses,
the metro system has quite different properties in both metro
train traveling and passenger mobility patterns. The existing
approaches for vehicle traffic prediction cannot be directly
used to predict metro passenger demand.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel online approach for
metro digital advertising to improve advertising efficiency. Our
extensive empirical study and technical efforts provide a few
valuable insights on metro transit networks, which are hoped to

be useful for fellow researchers on similar topics. Specifically,
we find that (i) coarse-grained passenger demand is regular
while find-grained passenger demand is more dynamic; (ii)
passenger mobility patterns are fairly stable, and given en-
tering station and entering time, the exiting station can be
predicted with a high accuracy; (iii) travel periods between
same stations are also stable in different time; (iv) it has a
high accuracy to predict passenger demand by using time and
stations passengers entering the metro network as conditions.
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