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Target tracking systems need to meet certain real-time constraints in response to transient
events, such as fast-moving targets. While the real-time performance is a major concern in these
applications, it should be compatible with other important system properties such as energy
consumption and accuracy. This work presents the real-time design and analysis of VigilNet,

a large-scale sensor network system which tracks, detects and classifies targets in a timely and
energy efficient manner. Based on a deadline partition method and theoretical derivations to

guarantee each sub-deadline, we are able to make guided engineering decisions to meet the end-
to-end tracking deadline. The results from 10,000-node simulation and 200 mote field test reveal
the effectiveness of our design.
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tems]: Real-Time and Embedded Systems; C.2. [Computer Communication Networks]:

Distributed Systems

General Terms: Design, Performance, Experimentation
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1. INTRODUCTION

Recent developments in sensor techniques make wireless sensor networks (WSNs)
available to many application domains [Dutta et al. 2005; He et al. 2004; Juang
et al. 2002; Simon et al. 2004; Xu et al. 2004; Arora and et al. 2005]. Most of these
applications, such as battlefield surveillance, disaster and emergency response, deal
with various kinds of real-time constraints in response to the physical world. For
example, surveillance may require a sensor node to detect and classify a fast moving
target within 1 second before it moves out of the sensing range. Compared with the
traditional distributed systems, the real-time guarantee for sensor networks is more
challenging due to the following reasons. First, sensor networks directly interact
with the real world, in which the physical events may exhibit unpredictable spa-
tiotemporal properties. These properties are hard to characterize with traditional
methods. Second, although the real-time performance is a key concern, it should
be performance compatible with many other critical issues such as energy efficiency
and system robustness. For example, it is not efficient to activate the sensors all the
time only for the benefit of a fast response. This naive approach severely reduces



the system lifetime [He et al. 2004]. Third, the resource constraints restrict the
design space we could trade off. For example, the limited computation power in
sensor nodes makes the Fast Fourier Transformation not quite suitable for real-time
detection. All these issues challenge us with two questions. How to make the design
of a large-scale real-time sensor network system manageable? And how to trade off
among system metrics while maintaining the real-time guarantee? Our answer to
these questions, presented in this paper, is a case study of the VigilNet system, a
real-time outdoor tracking system using a large-scale wireless sensor network.

Our contribution lies in the following aspects: 1) This work addresses a real-
world application with a running real-time system, designed and implemented over
the last few years. 2) We demonstrate how to guarantee the end-to-end tracking
deadline in a complex sensor system. For a given sub-deadline partition, we identify
the system configurations that meet the sub-deadlines without compromising other
important system properties. 3) The real-time design and tradeoffs are validated
by a large-scale field evaluation with 200 XSM motes and an extensive simulation
with 10,000 nodes. These evaluations reveal quite a few practical design suggestions
that can be applied to other real-time sensor systems.

The remainder of the paper is organized as follows: Section 2 introduces the track-
ing process in VigilNet. Section 3 identifies the real-time requirements. Section 4
provides a real-time analysis of VigilNet’s tracking performance and its tradeoffs. In
Section 5 we describe the implementation of the VigilNet system. In Section 6, we
evaluate the real-time performance of VigilNet in an outdoor field test. In Section 7,
we conduct a large-scale simulation to further validate and analyze the real-time
issues in VigilNet. Section 8 discusses the related work. Section 9 concludes the
paper.

2. OVERVIEW OF VIGILNET TRACKING OPERATIONS

VigilNet is an energy-efficient surveillance and tracking system, designed for spon-
taneous military operations in remote areas. In these areas, the events of interest
happen at a relatively low rate, i.e. the duration of significant events (e.g., in-
truders) is very short, compared with the overall system lifetime (e.g., 5-minute
tracking per day). According to our empirical results [He et al. 2006], nearly 99%
of energy is consumed during the idle-waiting period for potential targets. There-
fore to conserve energy, the most effective approach is to selectively turn a subset of
nodes off, and wake them up on demand in the presence of significant events. This
power management technique fundamentally shapes the VigilNet tracking process.
It introduces a set of new delays that traditional tracking systems do not experience.

In this section, we give a brief overview of the VigilNet tracking operation, serving
as a background for the real-time design and analysis in the following sections. As
shown in Figure 1, after a target enters the area, it activates the first sensor node
that can confirm the detection, then other nodes nearby are awakened to form a
group to deliver the aggregated reports to the base. More specifically, the VigilNet
tracking operation has six phases:

A. Initial Activation: VigilNet stays in the power management state when there
are no targets. The power management protocol puts nodes into either one of
two states: sentry and non-sentry. In brief, a node becomes a sentry node
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Fig. 1. The Delay Breakdown in Tracking Operation

if it is a part of the routing infrastructure or it needs to provide the sensing
coverage. Otherwise, it becomes an inactive non-sentry node. The details of
sentry selection can be found in [He et al. 2004]. If the sentry nodes are awake
100% of time (i.e. the deployed area is always covered), any incoming target
is covered by at least one sentry node immediately. On the other hand, if
the sentry nodes have a certain duty cycle (i.e. they go to sleep and wake up
periodically to save energy), there will be an initial activation delay, denoted
as Tinitial, before the first sentry node starts to sense the incoming target.

B. Initial Target Detection: After the initial activation, it takes a certain de-
lay, defined as Tdetection, for the first sentry node to confirm the detection.
This delay consists of the hardware response delay, the discrete sampling delay
and the delay to accumulate a sufficient number of samples before a detection
algorithm recognizes the target.

C. Wake-up: Normally, the detection from a single sentry node does not provide
sufficient confidence in detection and classification, therefore a group-based
tracking is designed in VigilNet. In order to form a group with a reasonable
size, non-sentry nodes need to be awakened after the initial target detection
by a sentry node in Phase B. We define the wake-up delay Twakeup as the time
required for a sentry node to wake up other sleeping non-sentry nodes. This
delay is determined by the toggle period of none-sentry nodes.

D. Group Aggregation: Once awakened, all nodes that detect the same target
join the same logic group in order to establish a unique one-to-one mapping
between this logic group and the detected target. Each group is represented by
a leader which maintains the identity of the group as the target moves through
the area. Group members (who by definition can sense the target) periodically
report to the group leader. A leader reports a detection to the base after the
number of member reports exceeds a certain threshold, defined as the degree of
aggregation (DOA). We use Taggregation to denote the group aggregation delay,
which is the time required to collect and process the detection reports from the
member nodes.

E. End-to-End Report: After group aggregation, the leader node reports the
event to the nearest base. Multiple bases are used to partition a network into
several sections, in order to bound the end-to-end delivery delay Te2e.

F. Base Processing (Tbase): A base is in charge of processing the reports from
the leaders of different logic groups. Since the reports from the same logic
group are spatiotemporally correlated, a string of consecutive reports can be



further analyzed and summarized for end users. For example, taking the time
stamps and the locations of targets as the inputs, a base uses the least-square
estimation to obtain the velocity of each target.

3. REAL-TIME REQUIREMENTS IN VIGILNET

To ensure the effectiveness of target tracking, VigilNet must meet a certain real-time
constraint. Specifically, VigilNet should detect, classify and analyze the incoming
targets within a certain end-to-end deadline (e.g., 5 seconds from Phase A to F).
As shown in Section 2, the end-to-end deadline is affected by many system param-
eters, which form a high-dimensional design space where the number of possible
configurations increases exponentially with the number of system parameters. It
is intractable to identify a system-wide global optimal solution within this design
space. Therefore, we adopt the deadline partition method to divide the end-to-end
deadline into multiple sub-deadlines. By confining the real-time decisions within
each phase, we make the end-to-end analysis manageable in a lower-dimensional
design space. For a given end-to-end deadline, a designer can make an initial
partition, according to the workload, system resources available and preliminary
estimation of the delay in each phase. As a concrete example, supposing a target
enters the field with a speed up to 20 mph, to guarantee that this target can be
detected by the first sentry node with a probability higher than 90%, we need to
design a detection algorithm with a sub-deadline less than 1 second, assuming the
detection range is 10 meters. After the initial partition, one can identify a system
configuration to guarantee the sub-deadlines, based on the analysis in this work.
As long as the individual sub-deadlines are met, we have a certain guarantee on
the end-to-end delay.

4. VIGILNET REAL-TIME TRACKING ANALYSIS

The description in this section follows the natural order of VigilNet’s tracking op-
erations presented in Section 2. Such design and analysis is validated later with a
real system implementation consisting of 200 XSM nodes as well as a large-scale
simulation in Section 6 and 7, respectively.

4.1 Initial Activation Delay and Its Tradeoffs

In a duty-cycle-based power management scheme, the sentry nodes go to sleep and
wake up periodically. In this case, the initial activation delay Tinitial may not be
zero, because the sentry nodes near the target’s entry point may be asleep when
the target enters the field. In this section, we identify a quantitative relationship
between the energy savings and the Tinitial, which helps us make decisions to guar-
antee that the initial activation finishes within a given sub-deadline Dinitial.

In our VigilNet design, all sentry nodes agree on a common sentry toggle period P
and a common sentry duty cycle SDC. The starting time of a period is randomized
in each node. For each period, a sentry wakes up and stays awake for P · SDC,
then goes to sleep for P · (1 − SDC). Assuming a target enters the tracking area
from point s for L meters till it reaches the point e, as shown in Figure 2(a),
we first derive Pr, the probability that a single sentry node detects this target.
Obviously, the nodes that may detect the target must be in the rectangle or the
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Fig. 2. Detection Probability for fast targets

semi-circle shown in the Figure 2(a). The size of the area is 2SR · L + π · SR2/2,
where SR is the Sensing Range. For a single node located at (x, y) in this area,
the probability that the node detects the target P (x, y) is SDC + l(x, y)/(P · TS)
if SDC + l(x, y)/(P · TS) ≤ 1, where l(x, y) is the overlapping length of the node’s
sensing range and the target’s trace, and TS is the Target Speed. If we consider
all possible locations in this area, we can get Pr in Equation 1 by integrating and
normalizing P (x, y) over the area. We note that when (x, y) is in the circle (area

A), as shown in Figure 2(b), l(x, y) =
√

SR2 − y2 + L − x. When (x, y) is in area

B, l(x, y) = 2
√

SR2 − y2.

Pr =

∫

A

(SDC+

√
SR2

−y2+L−x
P ·T S )ds+

∫

B

(SDC+
2
√

SR2
−y2

P ·T S )ds

(2SR·L+πSR2/2)

= SDC + π·SR·L
(2L+π·SR/2)·TS·P

(1)

We note that Pr calculated by Equation 1 is valid only when the target speed is
faster than or equal to 2SR/(P − P · SDC). We define this as a fast target. For
a target with a speed slower than 2SR/(P − P · SDC), which we define as a slow
target, it may happen that for a node located at (x, y), the corresponding l(x, y)
is greater than (P − P · SDC) · TS, so that SDC + l(x, y)/(P · TS) > 1. For
the node at this location, the probability that it detects the target is 1 instead of
SDC + l(x, y)/(P · TS). Therefore, we need to revise the result in Equation 1 for
slow targets. We define variable a such that SDC + 2a/(TS · P ) = 1. In Figure 3,
it can be easily proven that if a node appears inside area C bounded by the dashed
arc and lines, the probability that it detects the target is 1. Note that the distance
between the dashed line and the target trace is

√
SR2 − a2. The dashed arc is

centered at (L − 2a, 0) and its radius is SR. The rest of the area is divided by the
circle with radius SR centered at (L, 0) into area A’ and area B’. The detection
probabilities for nodes in area A’ and area B’ have the same forms as those for
nodes in area A and area B in the fast target case, correspondingly. Then we have

Pr =

∫

A′

(SDC+

√
SR2

−y2+L−x
P ·T S )ds+

∫

B′

(SDC+
2
√

SR2
−y2

P ·T S )ds+
∫

C

1ds

(2SR·L+πSR2/2)

= SDC + π·SR2·L+min[(L−a)k(SR,a),0]
(2SR·L+π·SR2/2)·TS·P ,

(2)

in which k(SR, a) = 2a
√

SR2 − a2 − 2SR2 cos−1(a/SR).
In the paper, we omit the intermediate derivation, for those interested, more

information can be found at [Cao et al. 2005].
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Fig. 3. Detection Probability for slower targets

Now we are ready to provide a statistical real-time guarantee for the initial
activation process, i.e., we need to ensure a target is detected before the sub-
deadline Dinitial. Equivalently, a target should be detected before it enters for
L = TS · Dinitial meters. Obviously, P (Tinitial < Dinitial) equals P (Tinitial · TS <
L), where P (Tinitial · TS < L) is the probability that at least one of nodes in
the area (A+B) detects the target. If there are n nodes in the area, the proba-
bility that at least one of them detects the target is 1 − (1 − Pr)

n. Suppose the
sentry density is Ds and n conforms to a Poisson distribution with parameter λ
=(2SR · L + π · SR2/2)Ds, therefore, the probability that the initial activation
finishes before sub-deadline Dinitial is:

P (Tinitial < Dinitial) = P (Tinitial · TS < L) = 1 − e−Pr·λ (3)

Equation 3 identifies a feasible region for us to decide the system parameters
such as sentry duty cycle (SDC) and sensing range (SR) to ensure the real-time
property in Phase A. In addition, we can obtain the expected value of Tinitial from
the formula E(Tinitial) =

∫ ∞
0

(1 − P (Tinitial < t))dt =
∫ ∞
0

(1 − P (SD < TS · t))dt.
According to Equations 1 and 3, we have the expected delay for a target whose
speed is greater than or equal to 2SR/(P − P · SDC):

E(Tinitial) =
e−SDC·π·SR2·DS/2

(2SR · SDC · TS + πSR2/P )DS
(4)

Similarly, for a target whose speed is lower than 2SR/(P − P · SDC), we have

E(Tinitial) =
e−SDC·π·SR2·DS/2[1 − k(SR,a)e−(2SR·SDC·T S·P )(1−SDC)Ds/2

2SR·SDC·TS·P+πSR2+k(SR,a) ]

(2SR · SDC · TS + πSR2/P )DS
(5)

One caveat in the analysis needs some attention. Above we derive the expected
detection delay for a duty cycle based system with random deployment. However,
sentry nodes are located more evenly than totally randomly case [He et al. 2004].
Fortunately, we can prove that the random deployment case provides a theoretical
upper bound for the sentry-based deployment case. It can be easily proved that if
for all t, P (T1 < t) > P (T2 < t), we must have E(T1) < E(T2). For 0 < Pr < 1,
1 − (1 − Pr)

n is a strictly concave function of n. Therefore, E(1 − (1 − Pr)
n) ≤

1− (1−Pr)
E(n), and the left side of the equation equals the right side if and only if

n is a constant. Given the same E(n), the more scattered the distribution of n is,
the smaller the value of E(1−(1−Pr)

n) is. Since the sentry nodes are selected more
uniformly than the random case, P (Tinitial < Dinitial) for the sentry based system
is greater than a totally randomly distributed system, and therefore the expected
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Fig. 4. Initial Delay vs. SDC

delay is smaller. The expected delay for the random case can be used as an upper
bound for the expected detection delay for a more evenly distributed system. Later,
we will see from the simulation that the analytical result overestimates the Tinitial

by 15%.
We can further take the detection delay Tdetection into account, since a successful

detection in Phase B activates a full tracking process. In this case, we establish an
equivalent model for Tinitial. Specifically, in Equation 4 or Equation 5, we substitute
SDC with the effective sentry duty cycle SDCeff = SDC − Tdetection/P and sub-

stitute SR with the effective sensing range SReff =
√

SR2 − (Tdetection · TS/2)2.
Figure 4 gives a more concrete view of the tradeoff between SDC and expected
Tinitial. We take parameters from the real VigilNet implementation: DS = 0.01node/m2,
P = 10s, SR = 10m, TS = 10m/s and Tdetection = 1000ms. This result is consis-
tent with what we obtained from the real experiments and simulations.

4.2 Sentry Detection Delay and Its Tradeoffs

After the initial delay in Phase A, a target approaches the vicinity of a sensor
which begins to observe a different signal pattern than that without a target. With
the current sensing algorithms, the signal pattern can be amplitude, frequency, or a
combination of the two. We call the signal pattern corresponding to a target a target
signature. The recognition of a target signature indicates a sensor-level detection,
and produces data for higher-level detection and classification algorithms.

As defined before, Tdetection is the time for a detection algorithm to recognize a
target signature. This delay must be smaller than a certain sub-deadline Ddetection.
Multiple reasons contribute to this delay. First, the sensor hardware has a response
delay for the physical signals that the target generates. Second, the sensing circuitry
requires special operations with a further delay. For example, the magnetometer in
MICA2 node [CrossBow 2003] takes about 35ms to stabilize after the potentiometer
adjustment. Third, the sampling is discrete and periodic, not continuous, which
leads to sampling delay. Fourth, the target signature itself may be time related
(e.g., a certain frequency), which can not be recognized from just one sample.
Finally, the VigilNet system is designed for outdoor deployment. It must adapt to
environmental noise and dynamics, such as the change of temperature, the motion
of small plants on windy days, and the sound of animals. Hence, noise filtering is
a key step in the recognition of the target signal pattern. Such filtering usually
needs to accumulate and analyze measurements over a period of time, and imposes
a delay in detection.

Now we describe how to decide the sub-deadline Ddetection. Obviously, a detection
algorithm must finish before a target moves out of the sensing range of a node.



Suppose that the nominal sensing area is a circle with a fix sensing range SR, the
amount of time a target stays in a node’s sensing range can be derived from the
speed of the target, TS, and the minimum distance from the target’s trajectory
line to the sensor node. Since the target trajectory intersects with the sensing
circle randomly, we assume this minimum distance is uniformly distributed within
[0, R), therefore the probability that a target stays in one sensing circle for at least
Ddetection seconds can be calculated as

P (t > Ddetection) =

√

1 − (T S·Ddetection)2

4SR2 Ddetection < 2SR
T S

P (t > Ddetection) = 0 Ddetection ≥ 2SR
T S

(6)

According to Equation 6, the sub-deadline Ddetection can be decided by choosing
a desired P (t > Ddetection) value.
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Fig. 5. Detection Confidence vs. Detection Delay

In addition, we desire to know how a detection algorithm performs under a given
sub-deadline Ddetection. We define the Detection Confidence (DC), as the confidence
on the target detection, i.e., 100% DC indicates this sensor has no doubt about the
existence of the target. Normally, the longer Ddetection is, the more information
about target signature a sensing algorithm can obtain, and therefore, it can achieve
a higher detection confidence DC. Such a relationship depends on the type of
sensors. In order to quantitatively analyze the relation between DC and Ddetection

as a case study, we performed experiments on XSM motes with the magnetic sensing
algorithm detecting a moving vehicle in an outdoor environment. We approximate
the sensing range as 7 meters around the sensor node, according to empirical data.
Figure 5 plots the relation between the detection confidence and the detection delay,
based on the experiments. As we can see from the figure, DC does not have a linear
relation to Ddetection. Based on experimental measurements, we use a polynomial
to characterize DC versus Ddetection. Figure 5 shows a series of polynomials of
different orders that fit the points representing the relation between the detection
confidence and the detection delay. The plotting indicates that the polynomials of
an order higher than 5 are fairly close to each other and fit the points well. Hence,



we choose the polynomial of order 5 to characterize the relation, as shown below.

DC = f(Ddetection) =

5
∑

i=0

aiD
i
detection (7)

The coefficients of the polynomial calculated from the curve fitting are a5 =
1.0999, a4 = −13.1138, a3 = 51.3443, a2 = −73.2343, a1 = 54.6671, a0 = 0.2402.
The polynomial f(Ddetection) characterizes the relation of the detection confidence
and the imposed sub-deadline Ddetection when the vehicle is moving at a relatively
low speed. In the scenarios where the vehicles move faster, the detection delay tends
to be shorter and detection confidence will be higher because the targets impose a
faster change to the sensor readings. Hence, f(Ddetection) represents a conservative
estimation of the detection confidence, given a certain amount of time available to
the sensor node to capture and process the target signals.

We note that in the analysis of the time-related properties of the sensing algo-
rithms, we choose such a conservative-case approach instead of a worst-case ap-
proach. In many cases, the worst-case scenario is a rare event that the system is
not designed to handle well. For example, with the magnetic sensing algorithm,
the worst case of detection delay is infinity – if a vehicle moves extremely slowly,
it provides a low-frequency signal just as the background noise, resulting in a non-
detection for that target. We note that an analysis with such a worst-case scenario
provides little insight into the system. To represent a reasonably practical scenario,
we study a conservative case in which a target can be detected.

In conclusion, we must provide a detection algorithm that finishes before a given
sub-deadline Ddetection. According to Equations 6 and 7, when running a detection
algorithm with a sub-deadline Ddetection, one node can detect P (t > Ddetection)
percent of targets with DC percent of the confidence in detection. This analysis
justifies the benefits of fast detection algorithms and the need for group aggregation
to improve the detection confidence.

4.3 Wake-up Delay and Its Tradeoff

Once a target is detected in Phase B, we need more nodes to join in order to increase
the confidence in detection. We design a wake-up service to activate the non-sentry
nodes after the sentry nodes detect the incoming targets. Different target speeds
impose different sub-deadlines Dwakeup to the wake-up services.

Normally the wake-up service can be supported either through hardware or soft-
ware. Several hardware solutions have been proposed in [Dutta et al. 2005; Gu
and Stankovic 2004]. Since the wake-up circuits accumulate the ambient energy
slowly, the current hardware solutions are not fast enough for the real-time target
tracking. Therefore, we propose a software-based wake-up strategy, which has a
short average delay and a predictable worse-case delay.

The wake-up operation goes as shown in Figure 6. A non-sentry actually does not
sleep all the time. It periodically wakes itself up, quickly senses the radio activity at
a particular frequency. If no radio activity is detected, this node goes back to sleep,
otherwise it remains active and starts to sample the environment. We control the
non-sentry operation through two parameters: Toggle Period (TP ) and Channel
Clear Access duration (CCA). The toggle period is defined as the time interval
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Fig. 6. The Wake-up Operation

between two consecutive wake-up instances. The CCA is defined as the minimal
time for a radio module to detect the existence of the radio signal. For example,
the CC2420 radio transceiver takes at least 2ms (8 symbol periods, as specified by
802.15.4 [IEEE ]) to access the radio activity. Based on TP and CCA, we can get
the Non-Sentry Duty Cycle (NSDC) as CCA

TP . At the sentry side, once a sentry
detects a target, it broadcasts a radio message with a long preamble. This long
preamble is guaranteed to be sensed by neighboring non-sentry nodes as long as
this preamble has a length equal to or longer than the toggle period of non-sentry
nodes. The worst case wake-up delay WCDelay equals TP . In other words, the sub-
deadline Dwakeup can be ensured trivially in our design by setting TP = Dwakeup.
Let the power consumption for an active node during a unit of time be E, the
energy consumption for a non-sentry node is E×CCA

TP . Since the amount of time to
check the radio activity (CCA) is constant for a specific radio hardware, the length
of the toggle period determines the energy consumption rate in non-sentry nodes.
In general, a long toggle period TP leads to a low energy consumption, however,
it also leads to a long delay in waking up the non-sentry nodes. Figure 7 shows
such a tradeoff, using the CC1000 radio transceiver for MICA2/XSM motes as an
example. As shown in Figure 7, a sub-deadline of 200ms lead to a 99% energy
saving for the non-sentry nodes.
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4.4 Aggregation Delay and Its Tradeoffs

Once all nodes near the target are awakened in Phase C, the group-based tracking
begins. To avoid an excessive power consumption, instead of relaying every detec-
tion message back, VigilNet sends only aggregates to the base stations for further
processing. Such an online aggregation process is subject to a certain sub-deadline
Daggregation determined by the target speed and the node density.

Specifically, we organize the nodes in the vicinity of a target into one group.
We use a semi-dynamic leader election [Luo et al. 2005] to minimize the delay.
Nodes that detect the target become the group members, which, upon detection,
immediately report their own locations and sensing data to a leader. The leader
then averages the locations of members as the estimates of the target positions,
and sends such estimates to a base station. To filter out the sporadic false alarms
of individual nodes, we introduce a configurable parameter, DOA (Degree of Ag-
gregation), which forces the leader to withhold reports to a base station until the
number of received member reports reaches DOA. To achieve a high confidence in
target detection, one should set a high DOA value (e.g., 4). On the other hand,
a higher DOA value inevitably introduces a longer group aggregation delay since
the leader waits longer to expect more member reports. This tradeoff allows us to
choose appropriate DOA to meet the sub-deadline Daggregation.
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Fig. 8. The Detection Areas Before and After Movement

The relation between DOA and the group aggregation delay is complicated by
various factors, e.g., the sensing range, the target speed, and the node density.
Therefore, we make several assumptions to simplify the analysis, including a circular
sensing range, a straight target trajectory and randomly distributed nodes. Based
on these assumptions, Figure 8 depicts the movement of a target with a speed TS
for a time period T . Again, the sensing range of a sensor node is SR. The white
circle and the grey circle denote the detection area of the target before and after
movement, respectively. Nodes located in the diagonally lined area are the new
detectors of the target, which contribute to DOA by sending reports to the leader.
To guarantee a certain sub-deadline Daggregation, the number of new detectors must
exceed or equal DOA before the sub-deadline Daggregation:

Daggregation ≥ Taggregation =
DOA

2 · SR · TS · D
(8)



where D represents the node density. Note that after the wake-up process, not
only the sentry nodes but also the non-sentry nodes participate in the tracking.
Equation 8 quantitatively reveals a feasible region for us to guarantee the sub-
deadline Daggregation. For example, if the network density (D) and the sensing
range (SR) are fixed, we can exploit a feasible solution, using different DOA values
under different target speeds. Figure 9 gives a more concrete design space by
depicting the group aggregation delay for varied DOA values and target speeds
when the sensing range is 10m, the node density is 1 per 100 m2. We note that
this result is consistent with the results obtained from the large-scale simulations
presented in Section 7.
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Fig. 9. Minimal Group Aggregation Delay for Varying DOA and Target Speed

4.5 Communication Delay and Its Tradeoff

After group aggregation in Phase D, the leader delivers the aggregated tracking
reports to a nearby base. Suppose the end-to-end communication sub-deadline is
De2e and one-hop worst case communication delay is TWC MAC [He et al. 2003],
we need to ensure that the number of hops is smaller than De2e/TWC MAC . For
a given node density, the hop length Lhop can be estimated through Kleinrock-
Silvester formula [L.Kleinrock and J.Slivester 1978], which gives the correlation
between the hop length Lhop, the communication range CR and the number of
neighbors N as:

Lhop = CR × (1 + e
−N −

∫ 1

−1

e
−

N
π

(arccos(t)−t
√

1−t2)
dt) (9)

Therefore, to guarantee a sub-deadline De2e, when we deploy the network, we
should ensure that every node can reach a base within a radius of Le2e:

Le2e =
De2e · Lhop

TWC MAC
(10)

In VigilNet, the sub-deadline De2e is guaranteed by partitioning the whole net-
work into multiple sections based on the Voronoi diagram [Okabe et al. 2000].
Specifically, a network with n bases is partitioned into n Voronoi sections such that
each section contains exactly one base and every node in that Voronoi section is
closer to its base than to any other base inside the network.



4.5.1 Base Deployment Strategy. We have shown that an ideal deployment should
ensure that each node is able to reach a base within a distance of Le2e, so that the
sub-deadline De2e can be satisfied. This possesses an implicit requirement on the
number of base stations and their positions. We therefore provide a detailed analy-
sis regarding this requirement and compare the performances of different strategies.

We model the area S with each side as D. Suppose the total number of deployed
base stations is N , each serving nodes located within a radius of L. We assume
that a large number of other non-base nodes are deployed in the area as well. The
problem is, what is probability that every non-base node can reach a base within
a distance of L, given a certain deployment strategy? Furthermore, what is the
best deployment strategy available? We shall analyze three different deployment
strategies: random, grid and optimal. In particular, we show that the optimal
strategy is a special case of the grid deployment.

We first consider random deployment. We derive the probability in question as
follows. Consider an arbitrary point Q under question. Since each base can serve
a radius of L, once a base station is deployed, we know that the point Q has a

probability of πL2

S of being located inside this base’s service radius. Therefore,
once N bases are deployed, the coverage probability for an arbitrary point Q is

1−(1− πL2

S )N . Notice that this derivation does not take into account the boundary
effect. This approximation is valid when S � πL2, as verified in our experiment.
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Fig. 10. Random Deployment Performance

Figure 10 validates our analysis on the performance of the random deployment
strategy. In particular, we assume that D = 1000m. The number of bases N and
the serving distance L are both adjustable. All simulation results are plotted based
on 50 rounds of data, and the confidence interval is 95%. As shown in this figure,
the analysis result roughly fits the experimental data, with certain inconsistencies.
These inconsistencies are introduced by the boundary effect: the bases deployed
near the boundary have a service area less than πL2, therefore, the observed cov-
erage probability is slightly lower than the predicted coverage probability.

An interesting problem regarding deployment strategies is redundancy. Since
typically more bases than needed are provided, it is interesting to consider the



ratio between the number of base stations deployed to the minimum number of base
stations required. For example, when L = 100m, using the random deployment,
we observe that roughly 150 bases are needed to provide each potential node real-
time service (the coverage probability is more than 98%). The redundancy can

be calculated at πL2×N
D2 , which is 4.71. This is indeed quite high. We, therefore,

discuss more efficient deployment strategies, assuming we can position the base
stations at desired places accurately.

We focus on two types of grid strategies, square based and hexagon based. These
strategies are shown in Figure 11.
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Fig. 11. Regular Deployment Strategies

In the first type of grid deployment, the base stations form a regular square
structure. The redundancy can be determined to be about 1.57. The second type
of grid deployment forms the honeycomb structure, where regular hexagons are
used. Notice that this figure also shows the Voronoi diagram partitions associated
with the honeycomb structure. The second grid deployment has a redundancy of
2π

3
√

3
, or approximately 1.208.

Previous literature [Williams 1979] has proved that the optimal redundancy ratio
for any circle covering is exactly 2π

3
√

3
. This result indicates that the honeycomb

based node deployment is the optimal strategy. Indeed, boundary effect also exists
in this type of deployment, however, when the area is considerably large, the actual
redundancy ratio should approach the optimal bound.

4.6 Base Processing Delay and Its Tradeoffs

After a base receives the reports delivered in phase E, it performs the high-level
processing such as the velocity estimation. In order to do so, a base node needs
to accumulate several reports from the network. The delay to accumulate the
reports Tbase is subject to its sub-deadline Dbase. We defined the minimal number
of reports needed by the base as K. This value can be one, if the in-networking
processing is sufficient. The frequency of reports depends on the speed of the
target and the aggregation of locations from nodes at different locations. From the
analysis in Section 4, we know that after the target enters the system for time t, the
expected number of nodes that can sense the target is (π · SR2/2 + 2SR · TS · t)D.



Obviously, if the target goes further for ∆t, the expected number is increased by
2SR · TS · ∆t. Considering the detection delay Tdetection, only nodes that are
√

SR2 − (Tdetection · TS/2)2 meters away from the target trajectory can recognize
the target. Therefore, we can estimate the number of reports (NR) generated before
the sub-deadline Dbase as:

NR = (2TS · D ·
√

SR2 − (Tdetection · TS/2)2) · Dbase (11)

Alteratively, to guarantee Dbase, we need to select K, the minimal number of
reports needed by the base, to be a value smaller than NR.

Now we consider how the selection of K impacts the accuracy in velocity estima-
tion. Since each location report is an approximation of the target location, there is
an error in the result of velocity estimated using the least square method. With-
out loss of generality, we first consider the velocity along the x-axis. Statistics has
established the variance of the estimated slope in a two-variable least square linear
regression as:

σ2

∑K
i=1(xi − x̄2)

,

where σ is the standard deviation of the disturbance, which in our case is the
detection error of a single report; xi in our case is a timestamp. It is hard to get
the distribution of

∑K
i=1(xi − x̄)2, but a rough estimation can be obtained by a

simplification so that the values of xi are evenly distributed and xi = i/(2D · SR ·
TS · PR). Thus we can get an estimation of the standard deviation of the velocity:

4σ · D · SR · TS · PR
√

3K(K + 1)(K − 1)
, (12)

where σ is the standard deviation of the location error of a single report. Equa-
tion 12 reveals the tradeoff between the accuracy in tracking and the delay in base
processing. In brief, Tbase increases linearly with the number of reports required
and the standard deviation of the velocity estimation reduces approximately lin-
early with K−3/2.

4.7 Summary of the Analysis and Tradeoffs

Dealing with the physical world, many sensor-based systems must respond to exter-
nal stimuli within certain time constraints. Such constraints could change over time
with the changes of the application objectives. For example, a surveillance system
should be able to track fast vehicles at a high energy budget as well as slow person-
nel at a smaller budget. So it is desirable for a system designer to have the ability
to trade off the system parameters to satisfy certain real-time constraints. In this
section, we use the deadline partition method to guarantee the sub-deadline of each
phase, consequently guaranteeing the end-to-end deadline. This approach makes
the real-time design for a complex sensor network manageable. Since VigilNet aims
at various tracking scenarios, for a given end-to-end deadline, the actually parti-
tion among the phases would vary significantly. Our analysis is independent of how
the sub-deadlines are assigned, which gives the designer more flexibility to choose



appropriate partition. Currently, the deadline partition is done statically, and we
shall investigate the solutions that allow dynamic online partition in the future.

We note our analysis provides a set of generic design guidelines for other track-
ing systems with or without certain features. For example, the tracking system
presented in [Arora et al. 2004] does not consider the power management, which
makes the analytical results of Tinitial and Twakeup trivially zero, while other an-
alytical results are still applicable. Other notable insights from our analysis are:
First, to guarantee the same sub-deadline, a higher node density is desired in the
slow-target case, however a slower duty cycle can be tolerated without jeopardizing
the detection. Second, it is very beneficial to increase the wake-up delay, when
possible, in exchange for the energy saving. Third, fast detection algorithms are es-
sential. Fourth, a low network density increases the group aggregation delay, which
indirectly reduces the detection confidence. Fifth, theoretically, honeycomb is the
optimal base placement strategy.

We also note due to the unpredictable and statistical nature of environmental
inputs (e.g., a target could move infinitely slowly, and sensing and communication
ranges could be highly irregular), VigilNet is not quite amenable to the traditional
precise worst-case real-time analysis. Nevertheless, the analytical results we provide
can assist the designer to provide soft real-time guarantee and make guided decisions
on system configurations. In the Section 6 and Section 7, we validate our real-time
design and analysis through a physical test-bed with 200 XSM motes as well as a
large-scale simulator with 10,000 nodes, respectively.

5. SYSTEM IMPLEMENTATION

A large portion of code of VigilNet is written in NesC [Gay et al. 2000], a module
oriented extension of the C programming language. Since the concept of traditional
OS kernels does not exist in TinyOS [Hill et al. 2000], a NesC programmer can
directly access the hardware devices, which facilitates the time analysis within a
single node [Mohan et al. 2004]. The network infrastructure in VigilNet is a multi-
path diffusion tree rooted at bases. The contention-based B-MAC protocol [Polastre
and Culler 2004] is the default media access control protocol, which has certain
uncertainty in the communication delay. Three detection algorithms are designed
separately for acoustic, magnetic and motion sensors. They identify the target
signatures through a lightweight classification scheme as described in [Gu et al.
2005]. VigilNet consists 40,000 lines of code, supporting multiple existing mote
platforms including MICA2, MICA2dot and XSM. The compiled image occupies
83,963 bytes of code memory and 3,586 bytes of data memory.

Among 30 protocols implemented within VigilNet, we only describe the time-
related services here. Other information can be found at [He et al. 2006; He et al.
2006; He et al. 2004]. VigilNet needs a millisecond-level synchronization to co-
ordinate the operations among the nodes. In addition, to obtain precise timing
measurements in the experiments, we need a network-wide synchronization be-
tween a base and other nodes within the field. Several well-known schemes are
able to achieve a high synchronization precision, however they do not match well
with VigilNet requirements. GPS-based schemes [Wellenhoff et al. 1997] typically
achieve persistent synchronization with a precision of about 200 ns. However, GPS



devices are expensive and bulky. The reference broadcast scheme (RBS) proposed
in [Elson and Romer 2002] maintains information relating the phase and frequency
of each pair of clocks in the neighborhood of a node. While RBS achieves a precision
of about 1 µs, the message overhead in maintaining the neighborhood information is
high and may not be energy-efficient in large systems. We believe that fine-grained
clock synchronization achieved by costly periodic beacon exchanges may not be
suitable for the energy-constrained surveillance system. Therefore, we modified
the FTSP time synchronization protocol [Maroti et al. 2004] to synchronize the
motes only during the initialization phase, using a synchronization beacon broad-
cast by the base station at the beginning of each initialization cycle. Since the
underlying MAC layer provided by TinyOS does not guarantee reliable delivery,
the base station retransmits the synchronization beacon multiple times. The syn-
chronization beacons are propagated across the network through limited flooding
with timestamp values reassigned at intermediate motes immediately prior to the
transmission of the timestamp. This eliminates the uncertainty in MAC contention
delay. Receivers take the timestamp from the beacon plus a fixed hardware delay
as their own local time. The timer drift that accumulates over time is rectified
by a new system cycle (i.e., a repeated initialization phase). The frequency of re-
initialization is a configurable parameter, which can be calculated based on the rate
of clock drift and the desired accuracy of time synchronization. As for the current
VigilNet system, the accuracy of tens of milliseconds is sufficient, which leads to
about once per day synchronization.

6. EVALUATION OF REAL SYSTEM PERFORMANCE

In the evaluation, we validate the analytical results as well as provide more insights
into the timing issues from the real system and simulation perspectives.

6.1 Experimental Settings

Fig. 12. Deployment Site

As a real-time online tracking system, VigilNet is designed to complete detection,
classification and velocity estimation within 4 seconds. The field test was done



on a T-shape dirt road in Florida as shown in Figure 12 from the aerial view.
We deployed 200 XSM motes which are equipped with CC1000 radio, magnetic,
acoustic, photo, temperature and passive infrared sensors (PIR). Along the road,
nodes were randomly placed roughly 10 meters apart, covering one 300-meter road
and one 200-meter road. Through a certain localization [Stoleru et al. 2004; He
et al. 2003; Stoleru et al. 2005], nodes were aware of their positions. In order to
measure various kinds of delay, all nodes within VigilNet synchronized with the base
within 1∼10 milliseconds using the techniques described in [Maroti et al. 2004]. The
time stamps of various actions such as initial detection were sent back to the base,
so that we can calculate the delay. We used a Ford Explorer that weighted about
4000 lbs. as the target.

6.2 Delay Measurements

When a car enters the surveillance area at about 10 meters per second (22 mph),
a detection report is issued first, followed by classification reports. Finally, after
sufficient information is gathered, velocity reports are issued. Figure 13 illustrates
the cumulative distribution of different delays. The communication delay (leftmost
curve) is much smaller compared with other delays. About 80% of detections are
done within 2 seconds. Over 80% of the classification and velocity estimations are
made within 4 seconds. The empirical results from most runs are consistent with
our analysis in Section 4 and the simulation results in Section 7.
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Fig. 13. Various Delays Measurements from Field Test

We emphasize here that field experiments indicate that VigilNet meets its real-
time requirement and our real-time analysis can approach the reality with a reason-
able precision, despite the amount of complexity within the VigilNet (30 protocols
integrated). On the other hand, we acknowledge that due to various physical con-
straints, field experiments can only exploit a very limited design space and obtain
a limited amount of data. Therefore, to understand the real-time properties in
VigilNet at scale with a much larger context, we provide a large-scale simulation in
the next section.

7. LARGE-SCALE SIMULATION

Our simulator is a discrete simulator, written in C++. It emulates the tracking
operations as shown in Figure 1. We distribute 10,000 nodes randomly within a
100,000 m2 rectangle area, assuming nominal circular sensing and communication



ranges. We run each experiment 30 times with different random numbers. The
figures are plotted with the average value as well as the 95% confidence interval.

7.1 Experiment Setup

We note that our evaluation does not choose deadline/sub-deadline miss ratios
as the major metrics, because such an approach reveals less information about the
tradeoff between actual delays and other system performance parameters. Since the
mean value and 95% confidence intervals of the delays are plotted in the figures, one
can determine the appropriate system settings for a given deadline requirement.

In our experiments, we study several system-wide parameters that directly affect
the real-time properties of VigilNet. These parameters are: 1) the target speed
(TS), 2) the physical delay in detection (Tdetection), 3) the sentry duty cycle (SDC),
4) the non-sentry duty cycle (NSDC), 5) the required degree of aggregation (DOA),
6) the sensing range (SR) and 7) the required number of reports for base processing
(K). We match the simulations with the analysis to see how well they fit with each
other.

We use the settings from the VigilNet system as the default values for these
system parameters, which are listed in Table I. Unless mentioned otherwise, the
default values in Table I are used in all experiments. The metrics used to measure
the system performance are mainly the six types of delays discussed in Section 2,
the end-to-end delay and the energy consumption per day per node.

Table I. Key System Parameters

Parameter Definition Default Value
TS Target Speed 10 m/s
SDC Sentry Duty Cycle 50%
NSDC Non-Sentry Duty Cycle 1%
DOA Degree of Aggregation 1%
SR Sensing Range 10
K Reports required by the base 1

D Node Density 0.01 m2
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Fig. 14. Delays vs. Target Speed
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Fig. 15. Energy Consumption vs. Target Speed

7.2 Performance vs. Target Speed

The target speed determines the spatiotemporal distribution of events over a certain
time period. It is crucial to understand its impacts on the tracking performance.
In this experiment, we incrementally increase the target speed (TS) from 5m/s to
15m/s in steps of 1 meter. As expected from our analysis in Section 4, Tinitial and
Taggregation decrease with the target speed, as shown in Figure 14. One interesting
observation is that the descend rate of Tinitial diminishes when TS becomes larger.
This is because a node needs a sufficient sensing time to ensure detection. It is
possible that a quick target passes one sensor without detection, which negatively
affects the Tinitial. Since VigilNet deals with a rare event model, the energy con-
sumed during the tracking is not perceptibly affected by the target speeds as shown
in Figure 15.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500  550  600  650  700  750  800  850  900  950

D
el

ay
s(

m
s)

Detection Delay

T_inital
T_detection

T_wakeup
T_agg
T_e2e

T_base
T_total

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500  550  600  650  700  750  800  850  900  950

D
el

ay
s(

m
s)

Detection Delay

T_inital
T_detection

T_wakeup
T_agg
T_e2e

T_base
T_total

Fig. 16. Delays under Varying Detection Delay

7.3 Performance vs. Detection Delay

Different tracking systems use different sensing devices and detection algorithms,
which have various detection delays Tdetection. In this experiment, we increase the
delay in the detection algorithm Tdetection from 500 ms to 1000 ms in steps of 50 ms.
It is interesting to observe in Figure 16 that at a speed of 10m/s, the detection delay
has a small impact on the initial delay, however it contributes most significantly to
the overall increase of the total tracking delay. Again, since the detection time is
relatively small, this system parameter does not noticeably affect the overall energy
consumption, as shown in Figure 17.
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Fig. 17. Energy Consumption vs. Detection Delay
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Fig. 18. Delays vs. Sentry Duty Cycle
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Fig. 19. Energy Consumption vs. Sentry Duty Cycle

7.4 Performance vs. Sentry Duty Cycle

From the analytical results in Section 4, we obtain an analytical delay curve between
Tinitial and SDC in Figure 4. In this experiment, we obtain a set of other curves
(Figure 18) through the simulation. By comparing these two results, we conclude
that they are consistent with each other. For example, at a default 50% duty cycle,
Tinitial obtained from the analysis in Figure 4 is 1600ms, while Tinitial obtained
from the simulation (Figure 18) is 1360ms (Note that our analysis is relatively
conservative). In addition, Figure 19 reveals that the energy consumption escalates
linearly with the SDC, which indicates that an efficient sentry scheduling algorithm
is beneficial.
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Fig. 20. Delays vs. Non-Sentry Duty Cycle
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Fig. 21. Energy Consumption vs. Non-Sentry Duty Cycle

7.5 Performance vs. Non-sentry Duty cycle

Here, we evaluate the impact of the wake-up operation on the delay and energy
consumption. First, the simulation results confirm that the average wake-up delay
is approximately half of the toggle period as predicted in Section 4.3. Since the
wake-up delay Twakeup is one order of magnitude smaller than other delays such
as Tinitial, a slight decrease in the wake-up delay, shown in Figure 20, does not
noticeably impact the overall delay. However, interestingly a slight increase of the
Non-Sentry Duty Cycle leads to a significant increase in energy consumption as
shown in Figure 21. This is because the non-sentry nodes are by far the majority,
so a duty-cycle increase for the non-sentry nodes leads to a quick increase in the
total energy. This result indicates that it is beneficial to increase the wake-up delay,
when possible, in exchange for the energy saving.
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Fig. 22. Delays vs. DOA
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Fig. 23. Energy Consumption vs. DOA

7.6 Performance vs. DOA

In-network processing through data aggregation can reduce the amount of data
transmitted over the network and can increase the confidence in target detection.
However, to accumulate enough report, it inevitably introduces a certain delay.
This experiment studies the effects of data aggregation. We gradually increase the
DOA threshold for a leader to report to the base. Since the DOA value only affects
the tracking phase, which has a small energy consumption, DOA’s impact on the
energy consumption is not noticeable. On the other hand, with a larger DOA value,
it takes more time for a leader to collect the member reports. For example as shown
in Figure 22, it takes as long as 2.39 seconds to achieve DOA value of 5. We note
that this simulation result is again consistent with the analytical results shown in
Figure 9, which has an estimated delay of 2.5 seconds.
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Fig. 24. Delays vs. Sensing Range

7.7 Performance vs. Sensing Range

To accommodate various requirements in detection and classification, different
tracking systems use sensors with different ranges. Figure 24 and Figure 25 in-
vestigate the impact of sensing range to the tracking performance and energy con-
sumption. With a large sensing range, a smaller number of sentries is required.
Therefore, the total energy consumption decreases quickly. For example in Fig-
ure 25, the energy reduces by 75% when the sensing range increases from 10m to
28m. It is interesting to see that the initial delay Tinitial actually slightly increases.
This is because the number of sentry nodes reduces while the coverage per sensor
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Fig. 25. Energy Consumption vs. Sensing Range

increases, the total coverage by all sentry nodes remains the same. We can de-
rive from Equation 3 that the expected Tinitial is higher when the sensing range is
smaller, given the same coverage in both cases. This analytic result is confirmed by
the simulation results shown in Figure 24. Due to the space constraints, we omit
the detailed derivation here.
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7.8 Performance vs. Number of Reports

To improve the estimation of target velocity and to classify targets with a high
confidence, a base node normally needs to accumulate a certain number of spa-
tiotemporally related reports from the same logic tracking group. This experiment
investigates the impact of the number of reports required by a base on the tracking



delays. Obviously, this only affects Tbase. Figure 26 shows that Tbase approximately
increases linearly with the number of reports, which is expected from our analytical
results in Section 4.6. Since the operation is done at the base, there is no energy
impact to the sensor network, as shown in Figure 27.

8. RELATED WORK

Real-time protocols have been designed at different layers to guarantee the effec-
tiveness of the interactions between wireless sensor networks and the physical world.
At the MAC layer, RAP [Lu et al. 2002] uses a novel velocity monotonic scheduling
to prioritize the real-time traffic and enforce such prioritization through a differenti-
ated MAC Layer. Woo and Culler [Woo and Culler 2001] propose an adaptive rate
control scheme to achieve fairness among the nodes with different distances to a base
station. Li [Li et al. 2005] proposes a SLF message scheduling algorithm to exploit
spatial channel reuse, so that deadline misses can be reduced. Carley [Carley et al.
2003] designs a periodic message scheduler to provide a contention-free predicable
medium access control. At the network layer, He [He et al. 2003]et al. support a
soft real-time communication service with a desired delivery speed across the sensor
network, using feedback-based adaptation algorithms that enforce per-hop speed in
face of unpredictable traffic. Felemban [Felemban et al. 2005] presents a novel
packet delivery mechanism, called multi-path and multi-speed routing protocol, for
probabilistic QoS guarantee in wireless sensor networks. At the aggregation layer,
Vasudevan [Vasudevan et al. 2003] proposes an application-specific compression for
time delay estimation in sensor networks, and He [He et al. 2004] adaptively per-
forms application independent data aggregation in a time sensitive manner. The
real-time solutions at the application is highly diversified. Huang [Huang et al.
2003] et al. propose the Mobicast protocol to provide just-in-time information dis-
semination to nodes in a mobile delivery zone. Given the complete knowledge of
traffic pattern, Somasundara [Somasundara et al. 2004] proposes a mobile agent
scheduling algorithm to collect the buffered sensor data, before the buffer overflow
occurs at the sensor nodes. Nam [Nam et al. 2005] proposes time-parameterized
sensing task model for real-time tracking. Yang [Yang and Vaidya 2004] proposes
a wakeup scheme that assists balancing energy saving and end-to-end delay. The
Lightning protocol [Wang et al. 2004] localizes the acoustic source with a bounded
delay regardless of the node density.

Besides the real-time protocol design, several researchers have focused on the
time analysis for sensor networks. Lu [Lu et al. 2005] studies how to minimize
the communication latency given that each sensor has a duty cycling requirement
of being awake for only 1

k time slots on average. In [Mohan et al. 2004], Mohan
et al. provides a cycle-accurate WCET analysis tool for the applications running
on the Atmega Processor Family. Abdelzaher [Abdelzaher et al. 2004] derives a
real-time capacity bound for multi-hop wireless sensor networks. It is a sufficient
schedulability condition for a class of fixed priority packet scheduling algorithms.
Using this bound, one can determine whether a certain traffic pattern can meet its
real-time requirement beforehand.

With advances in the sensor techniques, several large-scale sensor systems have
been built recently. The GDI Project [Szewczyk et al. 2004] provides an environ-



mental monitoring system to record animal behaviors for a long period of time.
The shooter localization system [Simon et al. 2004] collects the time-stamps of
the acoustic detection from different nodes within the network to localize the posi-
tions of the snipers. These systems mention some timing issues, however they do
not treat real-time as a major concern. Our previous publications on VigilNet [He
et al. 2004; He et al. 2006] focus on the middleware services and overarching system
integration. To the best of our knowledge, this work is the first to analyze the
real-time performance and its tradeoffs in a real-world large-scale wireless sensor
system.

9. CONCLUSION

In this paper, we demonstrate the feasibility to design a complex real-time sen-
sor network, using the deadline partition method, which guarantees an end-to-end
tracking deadline by satisfying a set of sub-deadlines. We also analytically identify
the tradeoffs among system properties while meeting the real-time requirements.
We validate our design and analysis through both a large-scale simulation with
10,000 nodes as well as a field test with 200 XSM nodes. We contribute a set of
tradeoffs that are useful for the future development of real-time sensor systems.
Given real-time constraints, a system designer can make guided engineering judg-
ments on the system parameters. Here we just name a few. First, to guarantee
the same sub-deadline, a higher node density is desired in the slow-target case,
however a slower duty cycle can be tolerated without jeopardizing the detection.
Second, it is beneficial to increase the wake-up delay, when possible, in exchange
for the energy saving. Third, fast detection algorithms are essential. Fourth, a low
network density increases the group aggregation delay, which indirectly reduces the
detection confidence. Fifth, theoretically, honeycomb is the optimal base placement
strategy to meet the communication sub-deadline.

Finally, we acknowledge that although it is amenable to provide the worst-case
real-time analysis for a certain protocol such as the wake-up protocol in Section 4.3,
however, due to the dynamic and unpredictable nature of the sensor networks, it
is a long-term research goal for us to achieve precise worst-case real-time analysis
across the whole system.
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