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Abstract—In wireless sensor networks (WSNs), trap coverage
has recently been proposed to tradeoff between the availability
of sensor nodes and sensing performance. It offers an efficient
framework to tackle the challenge of limited resources in
large scale sensor networks. Currently, existing works only
studied the theoretical foundation of how to decide the de-
ployment density of sensors to ensure the desired degree of
trap coverage. However, the practical issues such as how to
efficiently schedule sensor node to guarantee trap coverage
under an arbitrary deployment is still left untouched. In this
paper, we formally formulate the Minimum Weight Trap Cover
Problem and prove it is an NP-hard problem. To solve the
problem, we introduce a bounded approximation algorithm,
called Trap Cover Optimization (TCO) to schedule the activation
of sensors while satisfying specified trap coverage requirement.
The performance of Minimum Weight Trap Coverage we find is
proved to be at most O(ρ) times of the optimal solution, where
ρ is the density of sensor nodes in the region. To evaluate
our design, we perform extensive simulations to demonstrate
the effectiveness of our proposed algorithm and show that our
algorithm achieves at least 14% better energy efficiency than
the state-of-the-art solution.

Keywords-trap coverage; energy-efficient; scheduling; wire-
less sensor networks

I. INTRODUCTION

While recent advances in wireless communication and

hardware device have posed a bright blueprint for Wireless

Sensor Network (WSN) applications in a large range of

fields including military affairs, health care and environment

surveillance [1], [2], most practical implementations are

restricted to small-scale experiments or applications with

dozens or hundreds of sensors. One of the major reason for

such relatively small scale deployment is the prohibitively

high cost of deploying thousands/millions of sensor nodes

for large scale applications. Consequently, designing a sen-

sor network where the number of sensor nodes does not

increase quickly (e.g., exponentially) with the deployment

size while maintaining desired system performance is a

fundamental challenge.

Partial coverage is introduced in [3] to address the limited

quantity of sensor nodes in large-scale applications, as it

is prohibitively expensive to guarantee the full coverage

of the Region of Interest (RoI) [4]–[6]. Partial coverage
allows coverage holes [7] and its quality of coverage is

mainly indicated by the ratio of uncovered area to the whole

Figure 1. An example of trap coverage, D is the largest diameter among
all coverage holes.

region [3], [8], [9]. By adopting partial coverage scheme,

a significant number of sensor nodes could be saved and

thus scale well with the network size. However, for the

partial coverage, it is difficult to evaluate the actual network

performance by the ratio of uncovered area as the size of

coverage holes could be extremely large or even unbounded.

For applications such as intrusion detection, this implies that

the moving target could travel an arbitrarily long distance

and time in certain area of the RoI without being detected.

Therefore, the simple partial coverage has a very narrow

spectrum of practical applications that has well recognized

by many researchers.

To tradeoff the scalability and network performance, P.

Balister et al. recently propose a new kind of coverage,

called trap coverage [10], based on the concept of partial
coverage. In trap coverage, the size of each coverage hole

is incorporated as the indicator of quality of sensing. For

the coverage hole, its size is indicated by its diameter D,

which is defined as the largest Euclidean distance between

any two points in the coverage hole. A set of sensor nodes

is said to provide D-Trap Coverage to the RoI A, if the

diameter of every coverage hole in A is smaller or equal

to D. Although there may exist lots of coverage holes in

the network according to this definition, the largest area

of coverage holes is no more than πD2. An example of

trap coverage is illustrated in Fig. 1. A target is trapped

in a coverage hole as it will be detected within a maximal

moving distance of D. Compared with the partial coverage

which takes coverage ratio as an indicator, trap coverage
guarantees the quality of coverage in the worst case. By
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carefully controlling the parameter D, network performance

such as connectivity or delay of detecting intrusions can be

ensured in trap coverage.

P. Balister et al. for the first time study the trap coverage

of randomly deployed sensor networks. They consider the

fundamental problem of how to design reliable and explicit

deployment density required to achieve D-trap coverage.

Their work is concerned with conceptual network design,

however, practical implementation scheme such as how to si-

multaneously guarantee trap coverage and energy efficiency

is left uninvestigated. As sensor nodes could be deployed in

an arbitrary manner, the required number of sensor nodes

to ensure D-trap coverage is usually more than the optimal

value.

In this paper, we fill in this gap by considering the

energy-efficient scheduling of sensor nodes in the randomly

deployed sensor networks to achieve D-trap coverage for

the first time. In fact, this problem is extremely difficult

and we have proved that it is an NP-hard problem. To

effectively solve this problem, we design an approximation

algorithm called Trap Cover Optimization. Specifically, the

main intellectual contributions of this work are as follows:

1) To the best of our knowledge, we are the first to

study how to schedule the activation of sensors to

maximize network lifetime while D-trap coverage is

ensured in the randomly deployed sensor networks.

The problem of scheduling the activation of sensors

while achieving D-trap coverage is first formulated

in this paper. Efficient algorithm has been designed to

solve the problem in polynomial time.

2) We theoretically prove that the performance of our

algorithm is not greater that O(ρ) times of the optimal

solution, where ρ is the density of sensors scattered in

the RoI, i.e., ρ is defined as the ratio of the number of

sensor nodes N to the size of RoI S. Our algorithm

attains a provable guarantee in the worst case which

is only related to ρ. The approximation ratio will be

more desirable when our algorithm is applied to large-

scale wireless sensor networks.

3) We perform extensive simulations to demonstrate that

our proposed algorithm is effective and much more

energy efficient than a naive approach to the optimal

lifetime scheduling for trap coverage problem, as well

as a state-of-the-art solution.

The rest of the paper is organized as follows. We discuss

related work in Section II, followed by the formulation

of Minimum Weight Trap Cover Problem in Section III.

Section IV presents the details of our algorithm design. The

approximation ratio of the algorithm is obtained theoretically

in Section V. We perform extensive simulations to verify the

effectiveness of algorithm in Section VI and conclude the

paper in Section VII.

II. RELATED WORK

Sensing coverage has been attracting considerable atten-

tion in WSNs [4]–[6], [11], [12]. Most of existing works

concentrate on duty-cycling sensors to achieve full coverage

as well as energy efficiency during the network opera-

tion [5], [11]. Centralized and distributed algorithms are

both proposed to dynamically activate a subset of sensors

to ensure coverage, connectivity and optimize energy con-

sumption [13]–[15].

Requiring every point in the RoI to be covered is infea-

sible in many real-life large-scale deployments. Liu et al.
demonstrate that in some application scenarios, full coverage

is either impossible or unnecessary. They indicate that a par-
tial coverage with a certain degree of guaranteed coverage

is acceptable and analyze its corresponding properties for

the first time in [3]. In most of the existing literatures, the

percentage of uncovered area to the RoI mainly acts as the

indicator of quality of partial coverage [8], [9], [11]. These

solutions provide approaches to achieve desirable percentage

of uncovered area with a guaranteed approximation ratio.

Nevertheless, the fraction of uncovered region to the whole

region can only indicates quality of coverage at average. A

target moving in a WSN can remain to be undetected for an

arbitrarily long distance even though a large fraction of RoI

is covered. This is because the area of the coverage hole in

partial coverage can be arbitrarily large or even unbounded.

On the other hand, for many applications, the quality of

sensing coverage needs to be guaranteed in the worst, instead

of average case.

The quality of partial coverage in the worst case has been

studied in [16]–[20]. In [16], wave protocol is designed to

improve the coverage performance in the worst case. For

any specified continuous curve with two ends on opposite

borders of the field, it always finds a subset of sensors whose

sensing ranges completely cover this curve. The curve is

allowed to move so that every geographical point on the field

can be scanned at least once in one wave scanning period

and the detection period in the worst case is guaranteed.

Gui et al. [19] defines the quality of partial coverage as the

expected travel distance before a moving object is detected.

In [17], κ-weak coverage is first introduced to characterize

the worst case in partial coverage. The problem of maximum

network lifetime of κ-weak coverage is presented in [18],

and an algorithm based on square and hexagonal tiling is

proposed to solve the problem by dividing disjoint sensor

sets as many as possible. The disadvantage of this approach

is that it heavily depends on the uniformity of sensor

deployment, which may not be applicable in a randomly

deployed WSN of large scale. The framework of optimal

sleep scheduling for rare event detection is described in [20]

and event detection delay is treated as an indicator of quality

of partial coverage.

Trap coverage is proposed in [10], which defines the size
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of coverage hole as the indicator of quality of coverage.

In [10] the expected density of sensors to achieve the desired

quality of coverage is studied. Balister et al. also study

the effect of random failures of sensor nodes when sensor

nodes are deployed randomly versus deterministically [21].

Our work differentiates from the aforementioned works in

that we focus on maximizing the network lifetime based on

trap coverage. To our best knowledge, we are the first to

address the problem by rotating active state of sensor nodes

to guarantee trap coverage and prolong the network lifetime

in large scale WSNs. An approximation algorithm called

Trap Cover Optimization is proposed to solve the problem

in polynomial time, based on which the network lifetime

is maximized efficiently. We rotate sensor nodes at each

time slot and thus balances the energy consumption among

sensors to extend the network lifetime.

III. PRELIMINARY AND PROBLEM FORMULATION

A. Network Model

We consider a large scale WSN in the RoI A. We assume

A is a rectangle of size S = l1× l2 for simplicity. The WSN

consists of N sensor nodes. The location of individual sensor

nodes is denoted by Pi, where i = 1, 2, · · · , N . Each sensor

can only detect targets in a certain range, which we refer

to as sensing region, denoted by R. We assume the sensing

regions of sensor nodes are homogeneous, and all are unit

disc centered at the location of the sensor with radius of r.

While we are aware that the actual sensing region is typically

irregular dependent on the type of sensors and the environ-

ments [22], we argue that the disk model can be regarded as

the largest embedded circle of the actual sensing region [23].

By making such simplified assumption, we can concentrate

on our main problem and understand its intrinsical property,

with a minor penalty of performance degradation in practical

applications. The boundary of sensing region Ri of sensor i
is referred to as sensing border, which is essentially a circle

of radius r centered at Pi.

For large scale sensor network applications, controlled de-

ployments of sensor nodes is normally infeasible, therefore

leads to the popular adoption of random deployment. For

example, an airplane can be used to airdrop sensor nodes

in a forest. So for our network, we assume sensor nodes

are randomly deployed with a density of ρ. Apparently, ρ
can be approximated by N/S, where S = l1 × l2 is the

area of region A. While a classic Poisson point process is

assumed in [10], our solution can be applied to all potential

deployment processes.

We divide operation time of individual nodes into time

slots. At each slot, a subset of sensors is activated to ensure

trap coverage. We rotate active time of sensor nodes in

different slots in order to extend network lifetime. Assume

that each sensor has an initial energy of E units and

consumes one unit per slot if it is active. For simplicity,

if a sensor is put in sleep mode, we assume it consumes no

energy. The sensor node with residual energy less than one

unit can not be activated any more.

In terms of communication, each sensor node can only

communicate with other sensor nodes within a certain range,

referred as transmission range. As proved in [24], if the

transmission range of sensor node is at least twice of its

sensing range, coverage implies connectivity of the network.

This is to say if the sensing region of two sensors intersects

with each other, they are connected. In trap coverage, the

sensing regions of isolated sensors do not intersect with each

other, meaning the isolated set of sensors must be trapped in

a coverage hole with uncovered physical points around. If

we neglect the detection measurements of isolated sensors,

the main connected component of sensors can still provide

required D-trap coverage (see the definition in the section

III-B). We therefore assume that trap coverage also implies

connectivity of the network.

B. Trap Coverage Model

Trap coverage is a new coverage model allowing the ex-

istence of uncovered physical points in the RoI but restricts

the size of coverage holes, as shown in Fig. 1. In this section,

we give a mathematical definition of trap coverage.

Definition 1: (Coverage hole) A set of uncovered points

in RoI A forms a coverage hole H , if for any two points

a and b in H , there always exists a curve ζ whose start

and end points are a and b, respectively, satisfying that

ζ
⋂
(
⋃

i∈C Ri) = ∅, where C is the set of active sensor

nodes at that time. Obviously, H ⊆ A.

The diameter of coverage hole H is defined as the largest

Euclidean distance between any two points in the coverage

hole. Denote the diameter of coverage hole H by d(H) and

dist(a, b) is the Euclidean distance between point a and b,
then

d(H) = max
a,b∈H

(dist(a, b)). (1)

Definition 2: (D-trap coverage) Sensor set C provides

D-trap coverage to RoI A, if the diameter of every coverage

hole H in A is not greater than D, i.e.,

d(H) ≤ D, ∀H ⊆ A. (2)

We call C a D-trap cover of RoI A.

Obviously, if we set diameter threshold D to zero, D-trap
coverage reverts back to full coverage.

C. Minimum Weight Trap Cover Problem

For the sake of energy saving in WSN, we require that the

amount of activated sensors should be as little as possible per

time slot while D-trap coverage is achieved so that we can

reduce the energy consumption of the network. To guarantee

the balance energy consumption among all sensors, we also

require that the activated sensors should be those with more

residual energy.
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Each sensor in the network is assigned with a weight

based on its residual energy at the beginning of each time

slot. We show an example of weight assigning in this paper.

Let Ei denote the residual energy of sensor node i and

γi = 1−Ei/E denote its energy consumption ratio, where,

γi is a variable between 0 and 1. The weight of sensor node

i at time slot t, t = 1, 2, · · ·, is assigned as an exponential

function related to the residual energy, i.e.,

wi(t) = θγi(t)/E, 0 ≤ γi < 1 (3)

where θ is a constant value greater than one. Sensor i
is specially marked by assigning infinite weight if it has

no residual energy, when γi = 1. After weight assigning,

we formulate Minimum Weight Trap Cover Problem in this

section.

Consider a sensor set C which provides D-trap coverage
to RoI A, i.e., each sensor i in C is associated with a weight

wi. The weight of trap cover C is defined as the sum of

weights of all sensors in C, i.e., w(C) =
∑

i∈C wi. Given

the diameter threshold D, there exists a family of trap covers

ℵ.

Definition 3: (Minimum Weight Trap Cover) Given RoI

A, a set of sensors {1, 2, · · · , N} with corresponding weights

w1, · · · , wN . A minimum weight trap cover C∗ is a trap
cover with minimum weight among all trap covers, i.e.,

w(C∗) = min
C∈ℵ

w(C) = min
C∈ℵ

∑

i∈C

wi. (4)

Minimum Weight Trap Cover Problem: Given RoI

A, a set of sensors {1, 2, · · · , N} with their corresponding

weights w1, w2, · · · , wN and sensing radius r. C is a subset

of sensors. There is M coverage holes H1, . . . , HM in RoI

A if all sensors in C are activated while other sensors not

in C are put into sleep. The minimum weight trap cover
problem is to choose a minimum weight set C∗ which can

ensure that every coverage hole in A has a diameter no more

than D, where D is a threshold set by applications.

The problem can be formally formulated as follows.

min
C∈ℵ

∑
i∈C wi

s.t. d(Hm) ≤ D,m = 1, · · · ,M.
(5)

IV. ALGORITHM DESIGN

A. Finding the Diameter of A Coverage Hole

An intersection point is one of the two points where two

sensors’ sensing boundaries intersect with each other. We

would like to introduce some basic knowledge on inter-

section points in previous literatures before presenting an

efficient solution to the minimum weight trap cover problem.

Let Ω denote the set of intersection points of all sensors’

sensing boundaries in region A.

Firstly, a sensor set covers every point in region A if and
only if it covers all points in set Ω.

Figure 2. A demonstration of diameter calculation. The diameter of
coverage hole H equals to the maximum Euclidean distance between
the intersection points a and b in point set ΩHm , i.e., d(H) =
maxa,b∈ΩHm

dist(a, b), hereby ΩHm = {P1, P2, · · · , P8} is the set
of intersection points on the boundary hole H .

The theorem above is first presented and proved in [14].

Considering the sensing region of a sensor is open disc, the

problem of region coverage can be easily transformed into

the problem of finding a vertex cover [13].

Recall that the diameter of a coverage hole is defined as

the largest Euclidean distance between any two points in the

coverage hole. Let Ωa denote the set of intersection points

of all active sensors’ sensing boundaries. Without loss of

generality, we also consider the situation on the edge of

A by adding intersection points among all active sensors’

sensing boundaries and the boundary of A into set Ωa. The

set ΩHm denotes the intersection points on the border of

Hm.

Secondly, the diameter of coverage hole Hm equals to
d(ΩHm) if the sensing regions are convex, i.e.,

d(Hm) = d(ΩHm) = max
a,b∈ΩHm

dist(a, b), (6)

where d(ΩHm) denotes the largest Euclidean distance be-
tween any two points in set ΩHm .

The theorem above and detailed proof are first pre-

sented in [10]. We can therefore calculate the diameter

of a coverage hole in a convenient way. An example is

demonstrated in Fig. 2. In Fig. 2, the boundary of coverage

hole H is composed of sensors’ sensing boundaries and

ΩHm = {P1, · · · , P8}, are the intersection points of these

sensing borders. The diameter of coverage hole H equals to

the maximum Euclidean distance of the intersection points

in ΩHm , i.e., d(H) = maxa,b∈ΩHm
dist(a, b).

B. Trap Cover Optimization

If D = 0, Minimum Weight Trap Cover Problem boils

down to a set covering problem which has already been

proved to be NP-hard [25]. Therefore, Minimum Weight

Trap Cover Problem is NP-hard which can not be solved

in polynomial time unless P = NP .

In this section, we discuss how to find a minimum weight
trap cover in detail. We develop an efficient approximation

algorithm Trap Cover Optimization (TCO) to solve mini-

mum weight trap cover problem. Assume C ′ is the minimum
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weight sensor cover [11] which provides full coverage to A
and C is the trap cover obtained by TCO. We will derive C
from set C ′ in TCO, i.e., C ⊆ C ′.

TCO is composed of two major steps. Firstly, a minimum
weight sensor cover C ′ is selected to cover the whole RoI

A, which is viewed as Minimum Weight Sensor Cover

Problem [11]. We regard all intersection points in Ω as

targets to be covered. Existing literatures have developed

algorithms to efficiently solve this problem [4], [13], [26].

Secondly, we remove sensors in C ′ successively until C ′

is empty. We let Ψ represent C ′ ∪ C for simplicity in our

description. A sensor i is added to set C if it satisfies that

the maximum coverage hole diameter of (Ψ − i) exceeds

the threshold D, which means it is not removed from set Ψ.

The sensors which are not removed from Ψ are all retained

in C ultimately. Our aim is to remove as many sensors with

poor residual energy from Ψ as possible so that the output

of TCO, C contains only a few sensors and they are rich in

residual energy. We will discuss next how to remove sensors

in a proper order to achieve better performance.

In Algorithm 1, we let DΨ(i) represent the aggregate

diameters of all coverage holes which are covered by

sensor i but not covered by set (Ψ − i), i.e., the sum

of diameters of all newly emerging coverage hole when

sensor i is removed, which is the largest possible increment

of a coverage hole. Let ΩΨ(i) represent all intersection

points which are covered by set C but not covered by set

(Ψ − i). Assume points in set ΩΨ(i) belong to boundary

points of Mi coverage holes. Accordingly, we divide ΩΨ(i)
into ΩΨ1(i),ΩΨ2(i), · · · ,ΩΨMi

(i). Assume the diameters of

these coverage holes are dΨ1(i), · · · , dΨMi
(i), respectively.

We set

DΨ(i) = min{
Mi∑

j=1

dΨj (i), 2r} (7)

which means that DΨ(i) should not be greater than the

diameter of sensing region of a sensor, since the diam-

eter of sensing region restricts the largest increment of

a coverage hole when sensor i is removed. Essentially,

DΨ(i) is supposed to be the upper bound of increment of a

coverage hole’s diameter when sensor i is removed from

C. We argue that DΨ(i) is an important factor because

it depicts the possible effect of a candidate sensor on the

diameter of existing coverage holes. Since DΨ(i) restrains

the increment of coverage hole’s diameter when sensor i
is removed from C, we can safely remove sensors with

low DΨ(i) whose effects on the existing coverage holes

are bounded. Thus, more sensors can be removed before the

diameter of any coverage hole is beyond D. We adopt DΨ(i)
in TCO as an important factor. We also conduct simulation

experiments to justify our design. Sensors with same weights

are deployed randomly and a full cover set C ′ is picked with

aforementioned methods. We compare the amount of sensors

removed from Ψ between TCO and a random approach
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Figure 3. Amount of removed sensors by TCO and random approach vs.
N , D = 25

which randomly selects a sensor to remove. The average

results are plotted in Fig. 3, which shows that TCO improves

the amount of removed sensors significantly by considering

DΨ(i).

We consider to normalize the weights of sensors by DΨ(i)
to determine which sensor is to be removed. DΨ(i) is a

variable between 0 and 2r. To avoid zero in denominator,we

set the normalized factor as 1/(1 + αDΨ(i)), where α =
1/(2r). Furthermore, the normalized weight G(i) of sensor

i is defined, i.e., G(i) = wi/(1 + αDΨ(i)). We remove

the sensor with the greatest normalized weight G(i) each

time. In this way, sensors with less residual energy or greater

upper bound of increment of a coverage hole, i.e., DΨ(i),
are supposed to be removed from Ψ with a higher priority.

Every sensor i in set C ′ are checked iteratively and added

to C if the maximum coverage hole diameter of (Ψ − i)
exceeds the threshold D, while the uncovered intersection

points and coverage holes are updated accordingly. TCO

terminates when C ′ is empty. The remaining set C is the

output of TCO.

Sensors with no residual energy are not involved in

minimum weight sensor cover C ′ since they have infinite

weights, unless there are no set covers with residual energy

to provide full coverage. Even if sensors with no residual

energy are involved in C ′, they are removed first in TCO

because they have infinite normalized weights. If the output

of TCO, C contains sensors with no residual energy, it

indicates that there are no trap covers with redundant energy

to provide D-trap coverage any more, which means that the

network reaches the end of its lifetime.

We use G(i) as an important guidance to remove sensors

but it is not always the best especially when removing a

sensor i with high G(i) will cause violation against restraint

of D, which may force the algorithm to return a trap cover

instantly. We try to tackle with the problem in our algorithm.

In TCO, we enumerate every candidate sensor i successively

according to the magnitude of its G(i). A sensor is removed

from Ψ only if it will not cause violation against restraint

of D. In this way, we can ensure that the restraint of D will

not be exceeded prematurely.

The detailed algorithm is shown in Algorithm 1 and d(Ψ)
is used to represent the maximum diameter of coverage holes
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Figure 4. An illustration of Algorithm 1

Figure 5. An example of Algorithm 1

when only sensors in set Ψ are activated. We also illustrate

TCO in Fig. 4.

Algorithm 1 Trap Cover Optimization

1) Find a minimum weight cover set C ′ using Greedy-
MSC in [4] which ensures the whole region A is

covered. Let C = ∅, α = 1/(2r). Let Ψ represent

C ′ ∪ C.

2) For every sensor i in set C ′, calculate G(i) =
wi/(1 + αDΨ(i)). If C ′ = ∅, return trap cover C.

3) Find the sensor i with maximum G(i) and remove

i from C ′.
4) Update existing uncovered intersection points in A

and the boundaries of coverage holes with respect

to set Ψ.

5) Calculate d(Ψ). If d(Ψ) > D, then let C = C∪{i}.

6) Back to step 2.

Consider a simple example in Fig. 5. The four sensors

in set C ′ are deployed symmetrically which full cover the

square region with side length a and set C is empty initially.

The sensors are assumed to have the same weights. The

threshold of coverage hole is supposed to be less than a.

We will show how TCO works then. At first, we assume

TCO picks Sensor 1 to be removed from set C ′. Since d(Ψ)
where Ψ = C ′ ∪ C is not beyond the threshold, Sensor 1

will not be added into set C. Next, we find that Sensor 3

has the lowest DΨ(i) among C ′ and Ψ only contains Sensor

2,3,4 now. Considering the sensors have the same weights,

we will remove Sensor 3 from C ′. After that, d(Ψ) is still

not beyond the threshold, so Sensor 3 will not be added

into set C either. We then remove Sensor 2 from set C ′.
The diameter of Ψ which only contains Sensor 4 can not

provide required trap coverage any more, so we add Sensor

2 into set C. In the same way, we remove Sensor 4 from

C ′ and add it into set C. Finally, TCO terminates when C ′

is empty and Sensor 2 and 4 in C are activated to provide

required trap coverage.

The time complexity of TCO is apparently polynomial

since we only enumerate the elements in C ′ once. Later on,

we will prove the approximation ratio of TCO is only related

to the sensor deployment density in Section V. Simulations

in Section VI have confirmed that G(i) based TCO always

picks trap cover with higher average residual energy and

lower energy consumption.

V. PERFORMANCE ANALYSIS

A. Theoretical Analysis

We investigate the performance of our proposed algorithm

TCO theoretically in this section.

Before the derivation, we make assumptions as follows.

Assumption 1: Given RoI A of size l1 × l2, l1 � r +D
and l2 � r+D, where r is the sensing range of each sensor

and D is the diameter threshold of D-trap coverage.

We will first prove the ratio bound of aggregate weight

between the output C and the initial input C ′ of TCO. Let

NC′ denote the number of sensors in C ′.
Lemma 1: wC ≤ 2NC′

2NC′+D/(2r)wC′ .

Proof: Let C = C ′−C denote the set of sensors which

are removed from set C ′ by Algorithm 1. Here we use D(i)
to represent DΨ(i) for simplicity. Suppose at the (k + 1)th
iteration d(C ′

k+1) exceeds threshold D for the first time.

Let Q denote the set C ′ − C ′
k, where C ′

k is C ′ at the kth
iteration. Thus, C ⊆ C ′

k. Obviously, Q ⊆ C, which means

wQ ≤ wC .

Since TCO always selects to remove sensor i from C ′

with maximum G(i) = wi/(1 + αD(i)), we get that,

wQ∑
i∈Q

(1+αD(i))
≥ maxj∈C{ wj

1+αD(j)}
≥ wC∑

j∈C
(1+αD(j))

(8)

According to the definition of set Q and D(i), the

upper bound of the incremental of maximum coverage hole

diameter, we have
∑

i∈Q

D(i) ≥ D − 2r (9)

With Eq.(8), (9) and α = 1/(2r),
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w
C

wC
≥ wQ

wC

≥
∑

i∈Q
(1+αD(i))∑

j∈C
(1+αD(j))

≥ αD
(1+2αr)NC′

(10)

With the Eq. wC′ = wC + wC , we have

wC

wC′
≤ (1 + 2αr)NC′

(1 + 2αr)NC′ + αD
(11)

wC ≤ 2NC′

2NC′ +D/(2r)
wC′ (12)

where concludes the proof.
We denote the optimum minimum weight trap cover

which provide D-trap coverage as OPT . Let N1 denote

the number of sensors in OPT .
Lemma 2: The number of sensors providing D-trap cov-

erage to RoI A of size l1×l2 must be greater than 2S
3
√
3(r+D)2

where S = l1 × l2.
Proof: As referred in [10], if the sensing radius r is

increased to (r+D), the sensor set will provide full coverage

to A.

Figure 6. Optimal deployment on the vertices of equilateral triangles

It is well-known that it is optimal to deploy sensor nodes

of disk sensing model on the vertices of equilateral triangles

to cover a plane [27]. If l1 � r +D and l2 � r +D, ac-

cording to the property of equilateral triangles, the minimum

number of sensors with sensing range r+D which provide

full coverage to the RoI A is 2S
3
√
3(r+D)2

. We have

N1 ≥ 2S

3
√
3(r +D)2

. (13)

This concludes the proof.
Assume that wOPT denotes the aggregate weight of

sensors in set OPT . According to equation (3), the weight of

energy-redundant sensor i, w(i) satisfies that θ/E > w(i) ≥
1/E. We have

wOPT ≥ N1/E. (14)

wC′
wOPT

< Nθ/E
N1/E

≤ θN 3
√
3(r+D)2

2S

= ρθ 3
√
3(r+D)2

2

. (15)

We have the following main result for TCO, which

theoretically guarantees the performance of TCO even in

the worst case. Based on Lemma.1, we have the following

theorem,
Theorem 1: wC/wOPT < 2NC′

2NC′+D/(2r)ρθΦ, where Φ =
3
√
3(r+D)2

2 .
As θ, r and D are constants, the approximation ratio of

TCO is only related to the density ρ. As the number of

sensors in a full cover set NC′ increases, the approximation

ratio approaches ρθΦ, which is treated as O(ρ). The bound

guarantees the approximation ratio of TCO compared with

optimal solution even in the worst case. If more and more

sensor nodes are placed, the optimal solution improves

quickly since more options are available. Compared with

optimal solution, our algorithm relatively improves slower.

Thus, the worst bound may deteriorate as ρ increases.

B. Simulation Performance
We conduct simulations to validate the performance of

TCO. The ratio of the aggregate weight of removed sensors

to the aggregate weight of initial full cover sensor set is

viewed as the indicator of the performance of TCO. We

present the boxplot in Fig. 7, which shows the statistics of

running for 300 times to test the performance of TCO in

average. As we can see, TCO performs well both in the

average case and in the worst case. The removed aggregate

weight ratio is even above 0.45 in the worst case, which

guarantees the effect of employing TCO.
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Figure 7. Removed aggregate weight ratio vs. N , D = 40
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Figure 8. Status of maximum hole diameter and aggregate weight during
TCO running, D = 40

We also record the status of maximum hole diameter and

aggregate weight of sensors in Ψ during a period of TCO
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Figure 9. Coverage during a time slot of Naive-Trap, TCO and Greedy-MSC Heuristic in RoI. N = 300,E = 20,D = 25. Blue circles denote the
sensing region of activated sensors.

running in Fig. 8. The results illustrate the running status

of TCO. The maximum hole diameter increases very slowly

when it approaches D. That is because we remove sensors

not just depend on G(i). We enumerate each candidate sen-

sor i successively according to the magnitude of G(i) when

the maximum hole diameter is about to exceed D. Candidate

sensor i is removed only if it will not cause violation against

restraint of D. Hence, many sensors are removed with no

significant effect on maximum hole diameter at the end.

VI. SIMULATION RESULTS

A. Experiment Setup

The WSN in our simulations has N sensors, each with

an initial energy of E units and a sensing range of 15 units.

The sensors are deployed randomly in a square of 100×100
units2. Active sensors in each time slot consume 1 unit

of energy. We assume that the switching frequency is very

low so that the costs including residual energy information

collection and scheduling information dissemination are

negligible in the simulations. The diameter threshold of trap

coverage is D units.

The simulations are conducted mainly in following pro-

cedures. Firstly, at the beginning of each time slot, each

sensor is assigned with a weight according to its residual

energy. The sensor with more residual energy is assigned

lower weight. Secondly, we employ specified algorithm to

find a D-trap cover and only sensors in the trap cover

are activated during each time slot. Finally, the lifetime

of network terminates if there exist no trap covers with

redundant energy to provide D-trap coverage any more.

B. Energy balance and consumption

In this section, we conduct extensive simulations to eval-

uate the performance of TCO in a lifetime span of WSN.

The best algorithm to the maximum network lifetime

under full coverage model, to our best knowledge, is Greedy-
MSC Heuristic [4]. We describe a naive approach used in

the simulation to compare with TCO. We name the naive

approach as Naive-Trap, which is slightly modified from

the Greedy-MSC Heuristic algorithm with adjustment to the

trap coverage requirement. Assume U(k) = z(k)/wk for a

sensor k where z(k) is the number of uncovered intersection

points covered by k and wk is the weight of sensor k.

This algorithm always sets the sensor k∗ with maximum

U(k∗) to be active iteratively until the region achieves D-
trap coverage. At each time slot, sensors are assigned with

weights and a minimum weight trap cover is activated by

the naive approach until the network expires. Since no trap

coverage based scheduling algorithm has been proposed

before, Naive-Trap which guarantees D-trap coverage is

considered to be the state-of-the-art solution.
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Figure 10. Active amount of sensors vs. time slot, E = 20,D = 15,N =
300
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Figure 11. Active amount of sensors vs. time slot, E = 30,D = 25,N =
400

Simulations are performed for these three algorithms

under the same setting. We assign weights to sensors at

the beginning of each time slot and treat each intersection

point as a target in Greedy-MSC Heuristic. We compare trap
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coverage with full coverage in the simulations because there

is no existing work of conducting experiments to verify the

significant improvement of energy consumption and lifetime

under trap coverage in WSNs of large scale.
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Figure 12. Average residual energy of activated sensors vs. time slot,
E = 10,D = 15,N = 300
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Figure 13. Average residual energy ratio of activated sensors vs. time slot,
E = 20,D = 25,N = 400

Since we assume that inactive sensors do not consume any

energy, the number of active sensors per time slot denotes

the energy consumption. We conduct simulations to compare

the active number of sensors during the lifetime running by

these three algorithms. The results in Fig. 10 and Fig. 11

suggest that the energy consumption of our algorithm is the

lowest, which may lead to a longer lifetime. In order to

balance the energy consumption of sensors, sensors with

more residual energy are activated with higher priority.

Results in Fig. 12 and Fig. 13 show the average residual

energy of activated sensors by these three algorithms, which

demonstrates that TCO always activates sensors with higher

residual energy. We also illustrate the coverage of these

three algorithms during a time slot in Fig. 14, where blue

circles denotes the sensing region of activated sensors.

Our algorithm apparently activates less sensors to provide

required quality of trap coverage compared with Naive-
Trap and Greedy-MSC Heuristic according to Fig. 14. We

can learn that trap coverage model is an energy-efficient

model since its energy consumption per slot is only half of

that of full coverage model while the diameter of coverage

hole is constrained to be below the diameter of sensor’s

sensing region, which might be acceptable in many cases.

We have three observations about the results. Firstly, Naive-

Trap always picks up active sensors without backtracking,

while TCO finds a minimum weight sensor cover at the

beginning and then removes the redundant sensors, which

means TCO determines active sensor set globally and thus

more efficiently. Secondly, TCO considers the effect of each

sensor on the diameter of coverage hole directly. DΨ(i) of

sensor i as the upper bound of increment of coverage hole’s

diameter is taken into consideration, which can significantly

reduce the amount of activated sensors. The importance

of DΨ(i) is validated in Fig. 3. We define G(i) as the

normalized weight in TCO to tradeoff between upper bounds

of increment and weights of sensors, and remove sensors

from initial sensor set based on G(i). Thirdly, instead of

ending the algorithm prematurely, we enumerate all sensors

to check whether we can remove more sensors when the

diameter of coverage hole is about to exceed D. Trap cover

with lower energy consumption and higher residual energy

can always be obtained by TCO. Therefore, our algorithm

outperforms Naive-Trap.

C. Lifetime performance evaluation

The lifetimes achieved by Naive-Trap, TCO and Greedy-
MSC Heuristic versus different scenarios are plotted in

Fig. 14(a) and Fig. 14(b). The lifetime is lengthened if the

number of deployed sensors N or the initial energy of each

sensor E increases. The plots suggest that TCO always has

a better performance of longevity compared with Naive-
Trap in different scenarios. That is because TCO always

has lower energy consumption and activates sensors with

higher residual energy, which is shown in aforementioned

plots. The simulation results also prove that trap coverage

can extend the network lifetime significantly. We vary the

diameter threshold D to compare the lifetimes achieved

by Naive-Trap and TCO and Greedy-MSC Heuristic in

Fig. 14(c). The network lifetime increases if we allow a

larger D. Since Greedy-MSC Heuristic has nothing to do

with the diameter D, the lifetime remains unchanged when

D varies.

VII. DISCUSSION AND CONCLUSION

In this paper, we have investigated the problem of trap

coverage in WSNs. Minimum Weight Trap Cover Problem
is formulated to schedule the activation of sensors in WSNs

under the model of trap coverage. We always activate the

minimum weight trap cover successively at each time slot

to balance the energy consumption of each sensor so that

the longevity of networks is ensured. A novel algorithm

is proposed to tackle with the problem based on trap

coverage which is shown in simulation results to have better

performance than a naive approach. The performance of

Minimum Weight Trap Coverage we find is proved to be

at most O(ρ) times of the optimal solution, where ρ is the

density of sensor nodes in the region.

Our algorithm, as a centralized algorithm, outperforms

Naive-Trap and Greedy-MSC Heuristic in energy consump-
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Figure 14. Lifetimes of Naive-Trap, TCO and Greedy-MSC Heuristic

tion and lifetime. Naive-Trap is centralized while Greedy-
MSC Heuristic can be designed ad hoc. Thus, Greedy-MSC
Heuristic is relatively easy to deploy and may need less extra

communications during operation. In fact, it is a hard task

to design a distributed scheduling scheme to achieve trap

coverage because the diameter of coverage hole is always

larger than a sensor’s sensing range and communication

range. Hence, it is rather difficult for sensors to guarantee

the size of a coverage hole in a distributed way.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the Natural Science

Foundation of China (NSFC) under Grants 61004060 and

60974122, Joint Funds of NSFC-Guangdong under Grant

U0735003, the Natural Science Foundation of Zhejiang

Province under Grant R1100324, SUTD-ZJU Collaboration

Grant SUTDZJU/ RES/03/2011 and the 111 Projects under

Grant B07031.

REFERENCES

[1] J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis, and
M. Welsh. Wireless sensor networks for healthcare. Pro-
ceedings of IEEE, 2010.

[2] S. Zahedi, M. Srivastava, C. Bisdikian, and L. Kaplan. Quality
tradeoffs in object tracking with duty-cycled sensor networks.
In RTSS, 2010.

[3] Y. Liu and W. Liang. Approximate coverage in wireless
sensor networks. In IEEE LCN, 2005.

[4] M. Cardei, T. Thai, Y. Li, and W. Wu. Energy-efficient target
coverage in wireless sensor networks. In IEEE INFOCOM,
2005.

[5] S. Slijepcevic and M. Potkonjak. Power efficient organization
of wireless sensor networks. In IEEE ICC, 2001.

[6] S. He, J. Chen, D. Yau, H. Shao, and Y. Sun. Energy-
efficient capture of stochastic events by global- and local-
periodic network coverage. In ACM MobiHoc, 2009.

[7] J. Jeong, Y. Gu, T. He, and D. Du. VISA: Virtual Scanning
Algorithm for Dynamic Protection of Road Networks. In
IEEE INFOCOM, 2009.

[8] G. Wang, G. Cao, and T. Porta. Movement-assisted sensor
deployment. In IEEE INFOCOM, 2004.

[9] B. Liu and D. Towsley. A study of the coverage of large-scale
sensor networks. In IEEE MASS, 2004.

[10] P. Balister, Z. Zheng, S. Kumar, and P. Sinha. Trap coverage:
Allowing coverage holes of bounded diameter in wireless
sensor networks. In IEEE INFOCOM, 2009.

[11] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky. Effi-
cient energy management in sensor networks. Ad Hoc and
Sensor Network, Wireless Networks, 2005.

[12] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Sri-
vastava. Coverage problems in wireless ad-hoc sensor net-
works. In IEEE INFOCOM, 2001.

[13] S. Yang, F. Dai, M. Cardei, and J. Wu. On multiple point
coverage in wireless sensor networks. In IEEE MASS, 2005.

[14] G. Kasbekar, Y. Bejerano, and S. Sarkar. Lifetime and cov-
erage guarantees through distributed coordinate-free sensor
activation. In ACM MobiCom, 2009.

[15] D. Dong, Y. Liu, K. Liu, and X. Liao. Distributed coverage
in wireless ad hoc and sensor networks by topological graph
approaches. In IEEE ICDCS, 2010.

[16] S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang. Design
and analysis of sensing scheduling algorithms under partial
coverage for object detection in sensor networks. IEEE Trans.
on Parallel and Distributed Systems, 18, 2007.

[17] R. Balasubramanian, S. Ramasubramanian, and A. Efrat.
Coverage time characteristics in sensor networks. In IEEE
MASS, 2006.

[18] S. Sankararaman, A. Efrat, S. Ramasubramanian, and
J. Taheri. Scheduling sensors for guaranteed sparse coverage.
http://arxiv.org, 2009.

[19] C. Gui and P. Mohapatra. Power conservation and quality
of surveillance in target tracking sensor networks. In ACM
MobiCom, 2004.

[20] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards
optimal sleep scheduling in sensor networks for rare-event
detection. In ACM/IEEE IPSN, 2005.

[21] P. Balister and S. Kumar. Random vs. deterministic deploy-
ment of sensors in the presence of failures and placement
errors. In IEEE INFOCOM, 2009.

[22] J. Hwang, T. He, and Y. Kim. Exploring in-situ sensing
irregularity in wireless sensor networks. In ACM SenSys,
2007.

[23] T. Yan, Y. Gu, T. He, and J. Stankovic. Design and opti-
mization of distributed sensing coverage in wireless sensor
networks. IEEE Trans. on Embedded Computing System.

[24] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill.
Integrated coverage and connectivity configuration in wireless
sensor networks. In ACM SenSys, 2003.

[25] Richard M. Karp. Reducibility among combinatorial prob-
lems. In 50 Years of Integer Programming 1958-2008, pages
219–241. Springer Berlin Heidelberg, 2010.

[26] M. Cardei and D. Du. Improving wireless sensor network life-
time through power aware organization. Wireless Networks,
2005.

[27] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. Lai. Deploying
wireless sensors to achieve both coverage and connectivity.
In ACM MobiHoc, 2006.

148


