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Abstract

This paper presents LiteOS, a multi-threaded operating
system that provides Unix-like abstractions for wireless sen-
sor networks. Aiming to be an easy-to-use platform, LiteOS
offers a number of novel features, including: (1) a hier-
archical file system and a wireless shell interface for user
interaction using UNIX-like commands; (2) kernel support
for dynamic loading and native execution of multithreaded
applications; and (3) online debugging, dynamic memory,
and file system assisted communication stacks. LiteOS also
supports software updates through a separation between the
kernel and user applications, which are bridged through a
suite of system calls. Besides the features that have been im-
plemented, we also describe our perspective on LiteOS as
an enabling platform. We evaluate the platform experimen-
tally by measuring the performance of common tasks, and
demonstrate its programmability through twenty-one exam-
ple applications.

1 Introduction

This paper introduces LiteOS, an operating system that
provides Unix-like abstractions to wireless sensor networks.
LiteOS maps a sensor network into a UNIX-like file system,
and supports extremely resource-constrained nodes such as
MicaZ. It supports C programming natively, and allows on-
line debugging to locate application bugs. We believe that
such an operating system could potentially expand the cir-
cle of sensor network application developers by providing
a familiar programming environment. While TinyOS and
its extensions have significantly improved programmability
of mote-class embedded devices via a robust, modular en-
vironment, NesC and the event-based programming model
introduce a learning curve for most developers outside the

sensor networks circle. The purpose of LiteOS is to sig-
nificantly reduce such a learning curve. This philosophy is
the operating system equivalent of network directions taken
by companies such as Arch Rock [1] (that superimposes a
familiar IP space on mote platforms to reduce the learning
curve of network programming and management).

Our key contribution is to present a familiar, Unix-like
abstraction for wireless sensor networks by leveraging the
likely existing knowledge that common system program-
mers (outside the current sensor network community) al-
ready have: Unix, threads, and C. By mapping sensor net-
works to file directories, it allows applying user-friendly
operations, such as file directory commands, to sensor net-
works, therefore reducing the learning curve for operating
and programming sensor networks.

LiteOS differs from both current sensor network oper-
ating systems and more conventional embedded operating
systems. Compared to the former category, such as TinyOS,
LiteOS provides a more familiar environment to the user. Its
features are either not available in existing sensor network
operating systems, such as the shell and the hierarchical file
system, or are only partially supported. Compared to the
latter category (conventional embedded operating systems),
such as VxWorks [29], eCos [2], embedded Linux, and
Windows CE, LiteOS has a much smaller code footprint,
running on platforms such as MicaZ, with an 8MHz CPU,
128K bytes of program flash, and 4K bytes of RAM. Em-
bedded operating systems, such as VxWorks, require more
computation power (e.g., ARM-based or XScale-based pro-
cessors) and more RAM (at least tens of KBytes), and thus
cannot be easily ported to MicaZ-class hardware platforms
(such as MicaZ, Tmote, and Telos).

A possible counter-argument to our investment in a



small-footprint UNIX-like operating system is that, in the
near future, Moore’s law will make it possible for conven-
tional Linux and embedded operating systems to run on
motes. For example, the recent iMote2 [6] platform by
CrossBow features an XScale processor that supports em-
bedded Linux. Sun and Intel also demonstrated more pow-
erful sensor network hardware platforms [3, 24]. While it is
true that more resources will be available within the current
mote form factor, Moore’s law can also be harvested by de-
creasing the form factor while keeping resources constant.
For example, the current MicaZ form factor is far from ade-
quate for wearable computing applications. Wearable body
networks can have a significant future impact on health-
care, leisure, and social applications if sensor nodes could
be made small enough to be unobtrusively embedded in at-
tire and personal effects. These applications will drive the
need for small-footprint operating systems and middleware
as computation migrates to nodes that are smaller, cheaper,
and more power-efficient. This paper serves as a proof of
concept by pushing the envelope within the constraints of a
current device; namely, the MicaZ motes.
We have implemented LiteOS on the MicaZ platform.

The LiteOS software is available for download at the web-
site http://www.liteos.net, including its manual, program-
ming guide, application notes, and source code.
The rest of this paper is organized as follows. Section 2

describes the related work. Section 3 introduces the LiteOS
operating system and describes its design and implemen-
tation. Section 4 introduces its programming environment
and application examples. Section 5 presents the evalua-
tion results. Section 6 outlines more features that LiteOS
currently supports. Section 7 discusses the potential of this
platform. Section 8 concludes this paper.

2 Related Work
The rapid advances of sensor networks in the past few

years created many exciting systems and applications. Op-
erating systems such as TinyOS [16], Contiki [9], SOS [15],
Mantis [5], t-Kernel [14], and Nano-RK [10] provided soft-
ware platforms. Middleware systems such as TinyDB [21]
and EnviroTrack [4] made fast development of special-
ized applications feasible. Deployed applications ranged
from global climate monitoring to animal tracking [18],
promising unprecedented sampling of the physical world.
Widespread adoption and commercialization of sensor net-
works is the next logical step.
The most obvious challenge in sensor network devel-

opment has been to fit within extremely constrained plat-
form resources. Previous work, such as TinyOS, there-
fore focused on reducing overhead and increasing robust-
ness. Since initial users were researchers, compatibility
with common embedded computing environments was not
a major concern. Moving forward, to decrease the bar-
rier to widespread adoption and commercialization, lever-

aging familiar abstractions is advisable. One approach is
to build user-friendly applications and GUIs such as Sen-
sorMap [25] and MoteView [7]. In this paper, we explore
a complementary solution that targets the operating system
and programming environment.
In additional to proposing several novel features, LiteOS

also draws from previous research efforts. Its shell sub-
system is directly inspired by Unix, by adopting Unix-like
commands. The advantage of such command-line shells is
that they are well-established mechanisms to interact with
complicated systems, providing powerful scripting and au-
tomation support. Previous systems, such as Mantis and
Contiki, have implemented shell interfaces on resource-
constrained motes. In contrast, LiteOS implements the shell
on the resource-rich PC side (basestation). This design
choice allows us to implement more powerful commands,
because the shell is no longer constrained by sensor node
resources.
There have also been efforts to provide file systems

for MicaZ-class sensor nodes, such as MatchBox [11] and
ELF [8], as well as flash-based systems, where additional
flash is plugged to sensor nodes, such as Capsule [22]. To
implement the file system of LiteOS, we did not adopt the
former because their interfaces do not match our goals:
Matchbox and ELF do not support hierarchical file orga-
nizations, and only provide basic abstractions for file oper-
ations such as reading and writing. On the other hand, we
did not adopt the latter because it requires an external flash
attachment. In contrast, we want users with off-the-shelf
MicaZ nodes to be able to directly use LiteOS.
The third subsystem of LiteOS, its kernel, features dy-

namic loading, a feature that is taken for granted in almost
every modern operating system. One approach to imple-
ment dynamic loading is based on virtual memory. While
virtual memory support in MicaZ-class sensor networks has
been implemented [14, 20], we observe that such efforts
slow down program execution, because of the lack of hard-
ware support for page tables and the limited computation
power of the CPU. While the direction of supporting dy-
namic loading with the help of virtual memory may still be
possible, several previous efforts have tried alternative ap-
proaches to implement dynamic loading in sensor networks.
The dynamic loading mechanism of LiteOS follows the

line of several previous efforts in the literature that did not
involve virtual memory such as TinyOS (using XNP), SOS,
and Contiki. In XNP, a boot loader provides loading ser-
vice by reprogramming part of the flash and jumping to its
entry point to dispatch it. While this approach is practical,
it cannot load more than one application, due to potential
conflicts in memory accesses. SOS, on the other hand, pro-
poses to use modules. Its key idea is that if modules only
use relative addresses rather than absolute addresses, they
are relocatable. However, compiling such relocatable code
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Figure 1. LiteOS Operating System Architec-
ture

has size limitations: the compiler for the AVR platform (Mi-
caZ) only supports such binaries up to 4K bytes. Contiki
takes yet another approach, where it parses ELF files to
patch all unsolved symbolic links, and performs binary re-
location with the help of a symbol table in its kernel. The
approach in LiteOS does not handle ELF files directly, in-
stead, it uses modified HEX files, which are smaller in size,
to store relocation information.

3 The LiteOS Operating System
In this section, we present the LiteOS operating system.

We first present an overview and its design choices, then we
describe its three subsystems.

3.1 Architectural Overview

Figure 1 shows the overall architecture of the LiteOS op-
erating system, partitioned into three subsystems: LiteShell,
LiteFS, and the kernel. Implemented on the base station PC
side, the LiteShell subsystem interacts with sensor nodes
only when a user is present. Therefore, LiteShell and LiteFS
are connected with a dashed line in this figure.
LiteOS provides a wireless node mounting mechanism

(to use a UNIX term) through a file system called LiteFS.
Much like connecting a USB drive, a LiteOS node mounts
itself wirelessly to the root filesystem of a nearby base
station. Moreover, analogously to connecting a USB de-
vice (which implies that the device has to be less than a
USB-cable-length away), our wireless mount currently sup-
ports devices within wireless range. The mount mechanism
comes handy, for example, in the lab, when a developer
might want to interact temporarily with a set of nodes on
a table-top before deployment. While not part of the cur-
rent version, it is not conceptually difficult to extend this
mechanism to a “remote mount service” to allow a network
mount. Ideally, a network mount would allow mounting a
device as long as a network path existed either via the In-
ternet or via multi-hop wireless communication through the
sensor network.

Table 1. Shell Commands
Command List
File Commands ls, cd, cp, rm, mkdir, touch, pwd, du, chmod
Process Commands ps, kill, exec

Debugging Commands
debug, list, print, set
breakpoint, continue, snapshot, restore

Environment Commands history, who, man, echo
Device Commands ./DEVICENAME

Once mounted, a LiteOS node looks like a file directory
from the base station. A sensor network, therefore, maps
into a higher level directory composed of node-mapped di-
rectories. The shell, called LiteShell, supports UNIX com-
mands, such as copy (cp), executed on such directories. The
external presentation of LiteShell is versatile. While our
current version resembles closely a UNIX terminal in ap-
pearance, it can be wrapped in a graphical user interface
(GUI), appearing as a “sensor network drive” under Win-
dows or Linux.
The basic (stripped-down) version of LiteOS is geared

for trusted environments. This choice of default helps re-
duce system overhead when the trust assumptions are satis-
fied. In more general scenarios, where security concerns are
relevant, an authentication mechanism is needed between
the base station and mounted motes. Low-cost authentica-
tion mechanisms for sensor networks have been discussed
in prior literature and are thus not a focus of this paper [26].

3.2 LiteShell Subsystem

The LiteShell subsystem provides Unix-like command-
line interface to sensor nodes. This shell runs on the base
station PC side. Therefore, it is a front-end that interacts
with the user. The motes do not maintain command-specific
state, and only respond to translated messages (represented
by compressed tokens) from the shell, which are sufficiently
simple to parse. Such an asymmetric design choice not only
significantly reduces the code footprint of the LiteOS kernel
that runs on motes, but also allows us to easily extend the
shell with more complicated commands, such as authenti-
cation and security.
Currently, we have implemented the commands listed in

Table 3. They fall into five categories: file commands, pro-
cess commands, debugging commands, environment com-
mands, and device commands.

3.2.1 File Operation Commands

File commands generally maintain their Unix meanings.
For example, the ls command lists directory contents. It
supports a -l option to display detailed file information, such
as type, size, and protection. To reduce system overhead,
LiteOS does not provide any time synchronization service,
which is not needed by every application. Hence, there is
no time information listed. As an example, a ls -l command
may return the following:

$ ls -l
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Name Type Size Protection
usrfile file 100 rwxrwxrwx
usrdir dir --- rwxrwx---

In this example, there are two files in the current direc-
tory (a directory is also a file): usrfile and usrdir. LiteOS
enforces a simple multilevel access control scheme. All
users are classified into three levels, from 0 to 2, and 2 is
the highest level. Each level is represented by three bits,
stored on sensor nodes. For instance, the usrdir directory
can be read or written by users with levels 1 and 2.
Once sensor nodes are mounted, a user uses the above

commands to navigate the different directories (nodes) as if
they are local. Some common tasks can be greatly simpli-
fied. For example, by using the cp command, a user can
either copy a file from the base to a node to achieve wire-
less download, or from a node to the base to retrieve data
results. The remaining file operation commands are intu-
itive. Since LiteFS supports a hierarchical file system, it
provides mkdir, rm and cd commands.

3.2.2 Process Operation Commands

LiteOS has a multithreaded kernel to run applications as
threads concurrently. LiteShell provides three commands
to control thread behavior: ps, exec, and kill. We illustrate
these commands through an application calledBlink, which
blinks LEDs periodically. Suppose that this application has
been compiled into a binary file called Blink.lhex1, and is
located under the C drive of the user’s laptop. To install it
on a node named node101 (that maps to a directory with the
same name) in a sensor network named sn01, the user may
use the following commands:

$ pwd
Current directory is /sn01/node101/apps

$ cp /c/Blink.lhex Blink.lhex
Copy complete

$ exec Blink.lhex
File Blink.lhex successfully started

$ ps
Name State
Blink Sleep

As illustrated in this example, we first copy an applica-
tion, Blink.lhex, into the /apps directory, so that it is stored
in the LiteFS file system. We then use the exec command to
start this application. The implementation of exec is as fol-
lows. The processor architecture of Atmega128 follows the
Harvard architecture, which provides a separate program
space (flash) from its data space (RAM). Only instructions
that have been programmed into the program space can be
executed. Hence, LiteOS reprograms part of the flash to run
the application.
Once the Blink application is started, the user may view

its thread information using the ps command. Finally, the
kill command is used to terminate threads.

1LiteOS uses a revised version of the Intel hex format, called lhex, to
store binary applications. lhex stands for LiteOS Hex.

3.2.3 Debugging Commands

We now describe the debugging commands. Eight com-
mands are provided, including those for setting up the de-
bugging environment (debug), watching and setting vari-
ables (list, print, and set), adding/removing breakpoints
(breakpoint and continue), and application checkpoints
(snapshot and restore). Note that all debugging commands
keep information on the front-end, i.e., the PC side. In
fact, there is no debugging state stored on the mote, which
means that there is no limit on the maximum number of
variables (or the size of variables) can be watched, or how
many breakpoints can be added. We now briefly explain
these commands. Detailed documentation of these com-
mands can be found in the LiteOS manual.
The user first invokes the debug command to initiate

the environment. This command takes the source code di-
rectory of the application as its parameter. For example,
if supplied with the kernel source code location, it allows
debugging the kernel itself. Once invoked, this command
parses the source code as well as the generated assembly
to gather necessary information, such as memory locations
of variables. Such information is then used by other de-
bugging commands for diagnosis purposes. For instance,
it is used by the command list to display the current vari-
ables and their sizes, commands print and set to watch
and change variable values, and commands breakpoint and
continue to add and remove breakpoints. Once a breakpoint
is added, the command ps tells whether a thread has reached
the breakpoint.
We now explain the commands snapshot and restore.

Snapshot allows adding a checkpoint to an active thread,
by exporting all its memory information, including variable
values, stack, and the program counter, to an external file.
Restore, on the other hand, allows importing such mem-
ory information from a previously generated file, essentially
restoring a thread to a previous state. Combined use of these
two commands allows replaying part of an application by
rewinding it, and is particularly useful for locating unex-
pected bugs.

3.2.4 Environment Commands

The next four commands support environment manage-
ment: history for displaying previously used commands,
who for showing the current user, man for command ref-
erences, and echo for displaying strings. The meanings of
these commands are similar to their Unix counterparts.

3.2.5 Device Commands

The LiteOS shell provides an easy way to interact with the
sensors. Every time the file system is initialized, a directory
dev is created, which contains files that map to actual device
drivers. On MicaZ, the dev directory contains the following
files:
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Figure 2. LiteShell Implementation

$ls
led, light, temp, magnet, accel, radio

In this directory, led refers to the LED device. There are
four sensors, light, temperature, magnetic, and accelerator,
respectively. There is also the radio device, which sends and
receives packets. An example of reading 100 data samples
from the light sensor at a frequency of 50 milliseconds is
written as follows, where the first parameter is the frequency
and the second parameter is the number of readings.

./light 50 100

3.2.6 Implementation of LiteShell

Figure 2 illustrates the implementation of LiteShell. Its
command processor interprets user commands into internal
forms, communicates with the sensor network, and replies
to the user. To reduce overhead, sensor nodes are stateless.
All state information regarding user operations, such as the
current working directory, is maintained by the shell, while
the sensor nodes only respond to interpreted commands us-
ing an ACK-based reliable communication protocol.
As an additional note, not every command can always be

successfully completed. For example, when the user installs
an application, if the remaining program flash and RAM of
a node are not sufficient for a binary to be loaded, the node
responds with an error message.

3.3 LiteFS Subsystem

We now describe the LiteFS subsystem. The interfaces
of LiteFS provide support for both file and directory opera-
tions.The APIs of LiteFS are listed in Table 2.
While most of these APIs resemble those declared in

“stdio.h” in C, some of them are customized for sensor net-
works. For instance, two functions, fcheckEEPROM and
fcheckFlash, are unique in that they return the available
space on EEPROM and the data flash, respectively. An-
other feature of LiteFS is that it supports simple search-
by-filename using the fsearch API, where all files whose
names match a query string are returned. These APIs can
be exploited in two ways; either by using shell commands
interactively, or by using application development libraries.

3.3.1 Implementation of LiteFS

Figure 3 shows the architecture of LiteFS, which is parti-
tioned into three modules. It uses RAM to keep opened files

Table 2. LiteFS API List
API Usage API Interface
Open file FILE* fopen(const char *pathname, const char *mode);
Close file int fclose(FILE *fp);
Seek file int fseek (FILE *fp, int offset, int position);
Test file/directory int fexist(char *pathname);
Create directory file int fcreatedir(char *pathname);
Delete file/directory int fdelete(char *pathname);
Read from file int fread(FILE *fp, void *buffer, int nBytes);
Write to file int fwrite(FILE *fp, void *buffer, int nBytes);
Move file/directory int fmove(char *source, char *target);
Copy file/directory int fcopy(char *source, char *target);
Format file system void formatSystem();
Change current directory void fchangedir(char *path);
Get current directory void fcurrentdir(char *buffer, int size);
Check EEPROM Usage int fcheckEEPROM();
Check Flash Usage int fcheckFlash();
Search by name void fsearch(char *addrlist, int *size, char *string);
Get file/directory info void finfonode(char *buffer, int addr);

Root

D

D

D

F

F

F

F

2K

2K

2K

2K

File Handle
( x 8 )

EEPROM 
Bit Vector

Flash
Bit Vector

RAM EEPROM Flash

65 control blocks
256 storage blocks

Figure 3. LiteFS Architecture

and the allocation information of EEPROM and the data
flash in the first module, uses EEPROM to keep hierarchical
directory information in the second, and uses the data flash
to store files in the third. Just like Unix, files in LiteFS rep-
resent different entities, such as data, application binaries,
and device drivers. A variety of device driver files, includ-
ing radio, sensor, and LED, are supported. Their read/write
operations are mapped to real hardware operations. For ex-
ample, writing a message to the radio file (either through the
shell by a user or through a system call by an application)
maps to broadcasting this message.
In RAM, our current version of LiteOS supports eight

file handles (this number is adjustable according to applica-
tion needs), where each handle occupies eight bytes. Hence,
at most eight files can be opened simultaneously. LiteFS
uses two bit vectors to keep track of EEPROM/flash alloca-
tion, one with 8 bytes for EEPROM, the other with 32 bytes
for the serial flash. A total of 104 bytes of RAM are used to
support these bit vectors.
In EEPROM, each file is represented as a 32-byte con-

trol block. LiteFS currently uses 2080 bytes of the 4096
bytes available in EEPROM to store hierarchical directo-
ries, while the remaining EEPROM is available for other
needs. These 2080 bytes are partitioned into 65 blocks. The
first block is the root block, which is initialized every time
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Figure 4. LiteOS Memory Organization

the file system is formatted. The other 64 blocks are either
directory blocks (specified with D) or file blocks (specified
with F) according to application needs. Just like Unix, files
represent data, binary applications, and device drivers.
We follow three design choices in LiteFS. First, the max-

imal length of a file name is 12 bytes. Therefore, the Eight
Dot Three naming system is supported. Second, a file con-
trol block addresses at most ten logical flash pages. Each
page holds 2K bytes of data (or 8 physical flash pages). If a
file occupies more than 20K bytes, LiteFS allocates another
control block for this file, and stores the address of the new
block in the old one. Third, all control blocks reside in EEP-
ROM rather than in RAM.

3.4 LiteOS Kernel Subsystem

3.4.1 Kernel Overview

Threads are the most commonly used concurrency mech-
anism in modern general purpose operating systems. In
sensor networks, there are design tradeoffs between us-
ing threads and events. Both approaches have been im-
plemented in previous research efforts. TinyOS [16]
and SOS [15] are based on events, Mantis [5] and
TinyThreads [23] choose threads, and Contiki [9] provides
support for both.
The kernel subsystem of LiteOS takes the thread ap-

proach, but it also allows user applications to handle events
using callback functions for efficiency. We implement both
priority-based scheduling and round-robin scheduling in the
kernel. We also support dynamic loading and un-loading of
user applications, as well as a suite of system calls for the
separation between kernel and applications. We now de-
scribe these topics in more detail.

3.4.2 Dynamic Loading in LiteOS

LiteOS provides two approaches for dynamic loading of
user applications. These approaches allow multiple threads
to be concurrently executed without memory access con-
flicts. Figure 4 illustrates such an example, where six
threads (besides the kernel) are executed. Note that the
memory sections of different threads do not overlap, and
threads are executed natively.
In the first loading approach, we assume that the source

code is available. Every time the user needs to load the
binary to a different location, the source code is re-compiled
with different memory settings. This approach introduces
no extra overhead, and generates smaller binary images.
In the second approach, we do not assume the source

code is available for the user. This approach remotely
echoes the differential patching idea [17, 28] in application
distributions over networks. Different from that idea, how-
ever, we directly encode relocation information into appli-
cation binaries, by fitting differential patches with mathe-
matical models, and distributing these models together with
binary images. With such models, the kernel is able to
rewrite part of the binary images for relocation.
Our development of mathematical models for differen-

tial patches is driven by practical observations, and is cus-
tomized for our GCC-based toolchain. We start presenting
its details by observations of binary instructions. When the
kernel loads a binary to different memory locations, the po-
tential factors that affect the image can be written as a vec-
tor (S, M, T), where S is the start address of the binary exe-
cutable in the program flash,M the start address of allocated
memory, and T the stack top. Observe that the difference
between T and M is the actual memory space allocated for
this executable, whose minimum requirement can be stat-
ically decided using a technique called stack analysis (as
long as the application has no recursive functions). Several
such tools are available [23, 27]. Therefore, we assume that
the stack top has been statically decided.
Because (S, M, T) is volatile, we have to find a way to

encode its impact. Experimentally, we observe that as the
vector changes, it only affects the immediate operands of a
few instructions. More specifically, of the 114 instructions
provided by the Atmega128 processor (on MicaZ), under
our customized GCC compiling environment, only the fol-
lowing six instructions are affected: LDI, LDS, STS, JMP,
CALL, CPI. The detailed meanings of these instructions
can be found in the datasheet of Atmega128. We call them
differential instructions.
We use an example to illustrate the major steps of our

address translation procedure. In this example, we sample
the light sensor for 100 times, at a frequency of once per
second, and write readings into a local file in LiteFS. Using
the GCC compiler, this application compiles to 358 instruc-
tions consuming 790 bytes of binary. We compiled it with
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Section Address = 0x500 = 0x504 = 0x600 

_do_copy
_data

① 19098
② 1909a
③ 1909c
④ 190ac
⑤ 190ae

ldi   r17, 0x05
ldi   r26, 0x00
ldi r27, 0x05
cpi r26, 0x0C
cpc r27, r17

ldi   r17, 0x05
ldi   r26, 0x04
ldi r27, 0x05
cpi r26, 0x10
cpc r27, r17

ldi   r17, 0x06
ldi   r26, 0x00
ldi r27, 0x06
cpi r26, 0x0C
cpc r27, r17

_do_clear
_bss

⑥ 190b2
⑦ 190b4
⑧ 190b6
⑨ 190bc
⑩ 190be

ldi   r17, 0x05
ldi   r26, 0x0C
ldi r27, 0x05
cpi r26, 0x14
cpc r27, r17

ldi   r17, 0x05
ldi   r26, 0x10
ldi r27, 0x05
cpi r26, 0x18
cpc r27, r17

ldi   r17, 0x06
ldi   r26, 0x0C
ldi r27, 0x06
cpi r26, 0x14
cpc r27, r17

main ⑪ 190d2
⑫ 190d4
⑬ 190d6
⑭ 190d8

ldi   r22, 0x00
ldi   r23, 0x05 
ldi r24, 0x02
ldi   r25, 0x05

ldi   r22, 0x04
ldi   r23, 0x05
ldi r24, 0x06
ldi   r25, 0x05

ldi   r22, 0x00
ldi   r23, 0x06
ldi r24, 0x02
ldi   r25, 0x06

Figure 5. Binary Image Difference Example

three M settings, 0x500, 0x504, and 0x600, and compared
the compiled code in the assembly level. We found a total of
12 different instructions out of these 358 instructions. Se-
mantically, they are grouped into three difference clusters,
shown in Figure 5.
We list a total of 14 instructions, including two instruc-

tions (©5 and ©10 ) that are not differential, but are useful
for our following explanations. Before illustrating what we
can do, we start with what we cannot do. Generally, it is
almost impossible to leverage the semantic relationships to
construct models. For example, in Figure 5, instructions©1
to©5 are part of the initialization of the data segment before
the main program runs. The same is true for instructions©6
to ©10 , which serve the function of clearing the bss section
(for storing global variables). Such kind of implicit rela-
tionships only emerge by application specific analysis, but
are beyond the capability of our mathematical models.
In our design, we take an application independent ap-

proach to model the impact of (S, M, T). We analyze the
differences between compiled images under different mem-
ory settings, generate linear models to fit such differences,
and test the models with training data. For differential
instructions, their values under different (S, M, T) vectors
demonstrate a set of linear displacements. This follows di-
rectly from the format of machine code for various address-
ing modes. In the previous example, except non-differential
instructions©5 and©10 , f can be written as follows:

V = ((aM + b) >> L) << R (1)

In this equation, the values of a, b, L and R are to be
solved, >> is the right-shifting operation, and << is the
opposite. After solving these variables for the previous ex-
ample, the f function of ©1 is determined as M >> 8
(a = 1, b = 0, L = 8, and R = 0).
While our discussions so far are only about M, the same

approach applies to S and T. The final form of f is typi-
cally a superposition of different linear equations for S, M,
and T, and is sufficiently simple to be encoded into binary
images. To ensure that our approach works correctly, we

always generate training binary images, serving as verifica-
tions of the mathematical models.

3.4.3 System Calls and Software Compatibility

To distribute applications using the LiteOS HEX format,
one important problem is software compatibility. To re-
duce redundancy, LiteOS provides system resources, such
as LiteFS, drivers, and thread services for user applications.
If the LiteOS kernel is modified, the addresses of its internal
data structures will change. If not handled carefully, such
an updated kernel will no longer support binaries compiled
for older versions of LiteOS. While this problem can be de-
tected easily (through version numbers), we are interested
in how to avoid such incompatibilities.
We introduce lightweight system calls to address com-

patibility. Our implementation is based on revised call-
gates, a special type of function pointers. These callgates
are the only access points through which user applications
access system resources. Therefore, they implement a strict
separation between the kernel and user applications. As
long as the system calls remain supported by future versions
of LiteOS, user binaries do not need to be recompiled.
At the system kernel side, each system call gate takes

4 bytes, with 1024 bytes of program space allocated for
at most 256 system calls. Compared to directly invoking
kernel functions, each system call adds 5 instructions (10
CPU cycles), a sufficiently low overhead to be supported on
MicaZ. At the user side, interactions with system calls are
provided as libraries. The details of call gates are therefore
hidden from user applications.

4 The Programming Environment

In this section, we briefly describe the programming en-
vironment of LiteOS. This section is organized as follows.
We first present a concrete programming example, then we
describe the programming model details.

4.1 The “Hello, World” Example

As a concrete example of how to program in LiteOS, we
use the classical “Hello, World” example. The source code
of this application is shown as follows. Lines starting with
#include are not listed.

int main()
{
while (1) {

radioSend_string("Hello, world!\n");
greenToggle();
sleepThread(100);
}

return 0;
}

4.2 Programming Model

We use programming model to refer to a developer’s
view of a programming environment. In TinyOS/NesC [12,
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13], the view is that an application is driven by events,
which can optionally post long-running tasks to a FIFO
scheduler. A complicated program typically needs state ma-
chines, because TinyOS does not directly support execution
contexts. For instance, in writing reliable communication
stacks, the developer sometimes wants to do the following:
after sending a packet, a node waits for a period Ttimeout

(after which the previous packet is considered lost), or stops
waiting if an acknowledgement is received. In the program-
ming model of TinyOS, such a task is decomposed into two
events: a timeout event, and a radio receive event. Because
the order of these two events is not predictable, a devel-
oper introduces two states in the state machine, and han-
dles their possible transitions. If the number of states grows
large, handling state transitions usually becomes compli-
cated. Such difficulties motivated several research efforts to
simplify application development, such as protothreads [9]
and the OSM model [19].
In contrast to the event based programming model

adopted by TinyOS, LiteOS uses threads to maintain ex-
ecution contexts. For example, in the previous “Hello,
World” example, every time the function radioSend string
is called, the thread is suspended until the radio operation
finishes. Threads, however, do not completely eliminate the
use of events for efficiency reasons. Observe that there are
two types of events: internally generated events, and ex-
ternally generated events. For instance, a sendDone event
always follows a packet sending operation, and is there-
fore internally generated. A radio receive event, however,
is triggered by external events, and may not be predictable.
LiteOS treats these two types of events separately. Gener-
ally, internally generated events are implicitly handled by
using threads, where events like sendDone are no longer
visible. It is the externally generated events that deserves
special attention.
We illustrate how externally generated events are han-

dled using the radio receive event as an example. LiteOS
provides two solutions to handle this event. The first is to
create a new thread using the createThread system call,
which blocks until the message arrives2. Consider a reli-
able communication example. Suppose that the application
thread creates a child thread to listen to possible acknowl-
edgements. If such a message is received before T timeout,
the child thread wakes up its parent thread using the wake-
upThreadmethod. Otherwise, if its parent thread wakes up
without receiving an acknowledgement, this child thread is
terminated by its parent thread using the terminateThread
method.
While this thread-based approach is usually sufficient for

handling externally generated events, it introduces the over-
head of creating and terminating threads. This is typically

2LiteOS classifies radio messages using ports, where the kernel deliv-
ers messages to threads listening on matching ports.

not a problem because it wastes a few hundred CPU cycles,
less than 0.1ms. For computationally intensive applications,
however, user applications want to reduce overhead. LiteOS
provides another primitive for this purpose: callback func-
tions.
A callback function registers to an event, which could

range from radio events to detections of targets, and is in-
voked when such an event occurs. For instance, the function
registerRadioEvent tells that a message has been received.
Its prototype is defined as follows:

void registerRadioEvent(uint8_t port, uint8_t *msg,
uint8_t length, void (*callback)(void));

This interface requires the user thread to provide a buffer
space for receiving incoming messages. After the kernel
copies the message to this buffer, it invokes the callback
function. Based on this mechanism, the previous reliable
communication example can be implemented as follows:
Part I: Application

1 bool wakeup = FALSE;
2 uint8_t currentThread;
3 currentThread = getCurrentThreadIndex();
4 registerRadioEvent(MYPORT, msg, length, packetReceived);
5 sleepThread(T_timeout);
6 unregisterRadioEvent(MYPORT);
7 if (wakeup == TRUE) {...}
8 else {...}

Part II: Callback function
9 void packetReceived()
10 {
11 _atomic_start();
12 wakeup = TRUE;
13 wakeupThread(currentThread);
14 _atomic_end();
15 }

We briefly explain this example. First, the thread listens
on MYPORT, and allocates a buffer for receiving incoming
packets (line 4). This thread then sleeps (line 5). When it
wakes up, it checks if it has been woken by the callback
function (line 7), or by a timeout event (line 8). The thread
then handles these two cases separately.
A potential risk of this model is race conditions, which

only exist between variables in user applications, because
the variables in the kernel are not directly accessible.
Hence, a programmer must ensure that every variable that
is accessed asynchronously by multiple threads is protected
by atomic operations. Otherwise, if a thread that is modify-
ing this variable gets preempted, and another thread modi-
fies this variable again, race conditions occur. One improve-
ment is to automatically detect potential race conditions in
the compiler, as the NesC compiler does.

5 Evaluation

5.1 LiteShell Performance Evaluation

We now evaluate the performance of LiteShell, focusing
on response time. In the following experiments, we classify
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Table 3. Shell Commands Classification
Command List
Local Commands pwd, echo, who, man, history

Network Commands
cp, rm, mkdir, touch
du, ps, kill, exec, ls
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Figure 6. Average Command Response Time
of LiteShell

representative shell commands into two categories: those
executed locally, and those communicating with nodes, as
listed in Table 3.
We observe that local commands are typically finished

within one millisecond. Therefore, it is the second category
of commands that affects users’ experience. We measured
the average response time of these commands by using a
script to execute each command 100 times, and recorded
the average response time of each command. The results
are shown in Figure 6.
As measured in this experiment, the average response

time of these commands is typically less than half a second.
While we can further optimize their performance by fine-
tuning the communication protocol, the current response
time is already quite acceptable. For example, our inter-
active performance is generally better than common experi-
ences in Web browsing.
One special command that deserves further experiments

is the cp command, whose response time depends on the
size of the file to be transferred over the air. We experi-
mented with different file sizes, and list the results in Fig-
ure 7. As illustrated in this figure, the transfer rate is accept-
able for common uses.

5.2 LiteFS Performance

To evaluate the performance of LiteFS, we focus on its
throughput. The experiment results are shown in Figure 8.
In this experiment, we wrote a simple application that re-
peatedly called the fread and fwrite APIs, and measured
the time to complete I/O operations. By default, we used
one file with 128K bytes, and experimented with different
read/write block sizes. LiteFS allows modifying the mid-

8000

10000

12000

14000

16000

d 
La

te
nc

y 
(m

s)

Copy Command Latency (Node to Base 
station)

Copy Command Latency (Base station 
to Node)

Copy Command Latency (Node to 
Node through Base station)

0

2000

4000

6000

8000

256 512 1K 2K 4K 8K

C
op

y 
C

om
m

an
d

File Size (bytes)

Figure 7. Average Copy Time using LiteShell

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Block Size (Bytes)

Write Throughput/Sequential

Write Throughput/Random

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Block Size (Bytes)

Read Throughput/Sequential

Read Throughput/Random

(a) Read Throughput of LiteFS (b) Write Throughput of LiteFS

Figure 8. LiteFS Throughput

dle of a file with the help of the fseek API. Therefore, we
performed both sequential and random reads and writes.
We observe a reading throughput up to 30 KBytes/s,

much higher than the writing throughput. Another obser-
vation is that when the block size is small, the random writ-
ing throughput degrades exponentially. The reason is that it
is very likely for a page-erase operation to occur for every
writing operation, because the file pointer has been modi-
fied to a random position. This is a form of thrashing, where
the cache of the serial flash (264-byte SRAM) experiences
excessive misses. Because of this phenomenon, the random
throughput of LiteFS is lower, compared to throughput re-
sults reported in the ELF file system [8], which followed a
different setting to test random throughput, where the file
pointer was modified only once and no thrashing occurred.

5.3 Comparison of Programming Envi-
ronments

We have implemented a suite of libraries for user pro-
gramming in LiteOS. To evaluate its performance, we select
21 benchmark applications shown in Figure 9. To compare
LiteOS and TinyOS, our choices of benchmarks are limited
to those available in standard TinyOS distributions (version
1.1.x). All LiteOS applications are compiled into the modi-
fied HEX format (lhex format). We do not choose the ELF
format because it has a much larger size (usually 5-10 times
larger) compared to the HEX format.
We used three metrics in the following experiments:

code length as measured in lines of code after removing
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Application Functionality

Simple applications
(demonstrations of
simple APIs, total: 11)

Blink, BlinkTask, CntToLeds, CntToLedsAndRfm,
CntToRfm, CountRadio , GlowLeds, GlowRadio,
ReverseUSART, RfmToLeds, SenseToLeds

Pong Two nodes exchange messages

Sense Sense the environment and report

SenseTask Sense the environment and report, using tasks

GenericBase Base station to receive messages

Oscilloscope Display data on PC

OscilloscopeRF Display data on PC, through the radio

SenseLightToLog Read sensors and store the value in flash

SenseToRfm Read sensors and report through the radio

SimpleCmd Basic command interpretation

Surge Basic multi-hop routing program

Figure 9. Benchmark Applications

all comments and blank lines, compiled number of bytes,
where we use default settings for both LiteOS and TinyOS,
and static RAM consumption of user applications3. We
didn’t include the LiteOS kernel in the comparison because
the functionalities it provides, such as its support for the
shell and file system, are not available in the TinyOS ver-
sion of benchmark applications. To make fair comparisons,
we only included user side applications, where TinyOS sys-
tem modules are not included for the analysis (we used the
module memory usage script in the contrib directory of
TinyOS to extract such modules).
When writing benchmark applications under LiteOS,

we implemented exactly the same functionalities as their
TinyOS counterparts that were measured. One excep-
tion is the Surge application, where we only implemented
the multi-hop spanning tree and data retrieval, while the
message queuing and command broadcast functionality in
the TinyOS version of Surge have not been implemented.
Therefore, we compared the LiteOS version to a partial
Surge application in TinyOS for fair comparison. Figure 10
shows the comparison results. Figure 10(a) shows the num-
ber of threads for each LiteOS application, while TinyOS
applications are all single-threaded. Given that LiteOS re-
moves event handlers, wiring, and interfaces, it is not sur-
prising that, as shown in 10(b), the source code sizes of
LiteOS applications are typically smaller than their TinyOS
counterparts. While such a reduction may not necessarily
mean that programming in LiteOS is easier, it is at least
promising for reducing the development cost of sensor net-
work applications.
Figure 10(c) shows the compiled code size (consump-

tion of program flash) comparison. Observe that while the
LiteOS images include system calls, their code sizes are
comparable to TinyOS, indicating that the LiteOS program-
ming model does not introduce too much overhead.

3We don’t compare stack usage because the stack consumption of
TinyOS is attributed to both system services and user applications. It is
hard to measure stack consumption for user applications alone in TinyOS
applications.
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Figure 10. Benchmark Evaluation

Figure 10(d) shows the static memory usage comparison.
Observe that several applications consume more memory in
LiteOS than in TinyOS, because their LiteOS versions are
multithreaded. In fact, there is a strong correlation between
the number of threads and the consumed RAM, by com-
paring figures (a) and (d), because extra threads consume
additional RAM for their own stacks. While it is possible
to reduce the number of threads for some applications us-
ing callback functions, we choose not to optimize this way
because we want to show that, based on the benchmarks,
the worst case RAM consumption of multithreaded applica-
tions is still acceptable: even the GenericBase application
with three threads consumes fewer than 200 bytes of RAM.
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6 Other Features of LiteOS

In this section, we describe three additional features f the
LiteOS platform. Detailed documentation of these features
is available at www.liteos.net.

6.1 File Assisted Communication Stacks

The design of flexible and powerful communication
stacks has been a critical challenge to sensor network ap-
plications. In LiteOS, we treat communication stacks, such
as routing and MAC protocols, as threads. Hence, differ-
ent communication protocols can be exchanged easily, and
dynamically loaded just like any user application.
To use a protocol, an application organizes the header of

packets in such a way that the communication protocol can
correctly parse it. Packets are then sent to the port which
the protocol is listening on. For example, a flooding proto-
col uses a different listening port compared to a multi-hop
routing protocol. In the following example, our multi-hop
routing protocol listens on port 10, and the application sends
a packet of 16 bytes through this protocol using the follow-
ing code sample:

//10 is the port number, 0 means local node protocol
//16 is the message length, and msg is the message pointer
radioSend(10, 0, 16, msg);

Our implementation of this multi-hop protocol (geo-
graphic forwarding) maintains a neighbor table of 12 en-
tries, and contains around 300 lines of code. Its binary im-
age consumes 1436 bytes of program flash, and 260 bytes
of RAM, including stack. Its overhead is so low that it can
co-exist with other protocols, such as flooding. The source
code of this protocol is available in LiteOS 0.3.

6.2 Dynamic Memory

LiteOS supports dynamic memory at the kernel level.
The dynamic memory is provided as library APIs (malloc
function and free function) to user applications through sys-
tem calls. The dynamic memory grows in the opposite di-
rection from the LiteOS stack, and resides completely in the
unused memory between the end of the kernel variables, and
the start of user application memory blocks. Therefore, the
size of dynamic memory can be adjusted after deployment
according to user applications’ needs.

6.3 Event Logging

Visibility is a key challenge for wireless sensor net-
work applications. Deployed on the extremely resource-
constrained mote platform, such applications may fail un-
expectedly, or exhibit behavior different from their intended
goals. To help understand why such problems occur, we de-
sign and implement an event trace logger in LiteOS, which
allows us to partially reconstruct application behavior after
execution, such as which path it took for an IF statement,

its invocation history of the kernel system calls, and the dy-
namics of its behavior across nodes.

Briefly speaking, the event logging service of LiteOS is
implemented as follows. We keep an internal buffer (its size
decided by the user) to record the most recent application
events. We only log one application at a time. Therefore,
we only need one byte for most events, up to 256 different
types, including all the system calls, certain kernel events
such as context switches and driver invocations, and ap-
plication specific events inserted by the user. Every time
an event triggers, a corresponding byte is written into the
buffer. When the buffer is full, we write its content into a
file stored in the external flash. Such recorded traces are
obtained after experiments and are translated into a recog-
nizable sequence of events. Therefore, the sensor node is
no longer a black box. Instead, we now have valuable in-
sight on why an application fails, and what we should do to
correct unexpected software glitches.

7 Perspective

In retrospect, several design choices become evident af-
ter finishing a prototype version of LiteOS. One advantage
of LiteOS is that it supports interactive use. We believe an
interactive system (e.g., one that offers an interactive shell
to users and programmers) leads to improved productivity
at development time. Our experiences using LiteOS con-
firm this thesis. How will LiteOS affect the way we interact
with sensor networks? With a graphical shell, it can serve
as a sensor network drive that can be mounted to a PC and
controlled over Web browsers. Sensor networks can then
become just another common peripheral.

Apart from promoting interactive use, there is a concep-
tual question on the need for LiteOS. In sensor networks,
a few other operating systems have already been imple-
mented. Why do we need yet another one? To better un-
derstand the differences and similarities between LiteOS
and other operating systems, we compare some of them in
Figure 11 for reference. The design of LiteOS is partially
inspired by Unix, as the title suggests. We believe that it
is precisely its affinity to UNIX that could make LiteOS
easier to be adopted by mainstream system programmers.
One goal of LiteOS is to hopefully offer an easy transition
path for those beginning sensor networks programmers who
are experienced in conventional systems programming, but
not proficient with event-based programming, wiring, and
state-machine abstractions of program execution. LiteOS
and the previous sensor network operating systems, such as
TinyOS, therefore, fill complementary needs. We hope that
this diversity brings us one step closer to making sensor net-
work programming attainable to system programmers with-
out steep learning curves.
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LiteOS TinyOS Mantis Contiki SOS
Current license GPL BSD BSD BSD Modified BSD

Website www.liteos.net www.tinyos.net mantis.cs.colorado.edu www.sics.se/contiki projects.nesl.ucla.edu/public/so
s-2x/doc/

Remote scriptable
wireless shell

Yes (on the base PC, Unix 
commands supported)

No (application specific shell 
such as SimpleCmd exists)

No (on-the-mote shell is 
supported)

No (on-the-mote shell is 
supported)

No

Remote file system interface
for networked  nodes

Yes No No No No

File system Hierarchical Unix-like Single level (ELF, Matchbox) No (will be available in 1.1) Single Level No

Thread support Yes Partial (through TinyThreads) Yes Yes (also supports ProtoThreads) No

Event based 
programming

Yes (through callback
functions)

Yes No Yes Yes

Remote Debugging(e.g.
watch and breakpoints)

Yes Yes (through Clairvoyant) Partial (through NodeMD) No No

Wireless reprogramming Yes (application level) Yes (whole system image No (will be available in 1.1) Yes Yes (module level)
replacement)

Dynamic memory Yes Yes (in 2.0 or through
TinyAlloc for 1.x)

No Yes Yes

First publication/release 
date

2007 2000 2003 2003 2005

Platform support MicaZ and AVR series MCU Mica, Mica2, MicaZ, Telos, Tmote, 
XYZ, Iris (among others)

Mica2, MicaZ, Telos Tmote, ESB, AVR series MCU, certain 
old computers

Mica2, MicaZ, XYZ

Simulator Through AVRORA TOSSIM, PowerTossim Through AVRORA Netsim, Cooja, MSPSim Source level Simulator/ 
Through AVRORA

Note: [1] Only features in the current version of these operating systems as of the publication of this paper (April 2008) are compared
[2] Only open-source sensor network OS projects that have websites are compared
[3] All OS systems can be directly debugged using JTAG or GDB. Such comparison is not included. 

Figure 11. Comparison with Other Operating Systems

8 Conclusions

In this paper, we presented a software development plat-
form called LiteOS, and conducted its performance eval-
uation. We also presented performance results of several
benchmark applications. We are hopeful that the familiar
abstractions exported by LiteOS will make it valuable as a
new research platform, and appealing to a larger category
of systems programmers.
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