
1MAC Layer Abstraction for Simulation Scalability
Improvements in Large-scale Sensor Networks

Tian He†, Brain Blum∗, Yvan Pointurier∗, Chenyang Lu‡, John A. Stankovic∗, Sang Son∗
∗Department of Computer Science, University of Virginia

†Department of Computer Science and Engineering, University of Minnesota
‡Department of Computer Science and Engineering, Washington University in St. Louis

Abstract— It is risky to implement a large-scale wireless sen-
sor system without predicating its behavior beforehand through
simulation, an indispensable step toward the final system. Since
in wireless simulation, over 90% simulation time is spent on
the characterization of the MAC layer behaviors, abstraction at
the MAC layer becomes the key to the scalability of wireless
sensor network simulations. In this work, we employ an abstract
simulation mode, established by online data collection, to describe
the MAC behaviors efficiently. Observing that the abstract sim-
ulation mode becomes inaccurate when network traffic changes
significantly, we adopt a hybrid approach. We switch between the
abstract simulation mode and full simulation mode in response
to the traffic changes. Statistics are collected online under full
simulation mode to update the abstract simulation mode to be
used. In evaluation, we demonstrate that our approach is 9 times
faster than the original simulation with a loss of accuracy less than
10% in the end-to-end delay and 1% in the number of messages
successfully transmitted across the network.

I. INTRODUCTION

With the advance of sensor network research, numerous
protocols have been proposed recently. Validation and analysis
of these protocols are very important for system designers to
make right decisions to meet application requirements. One
method available for validation and analysis is mathematical
modeling. Unfortunately work in mathematics is limited due
to the complex, dynamic, and unpredictable nature of these
systems as they scale to thousands of devices. One can also
explore new protocols for sensor networks directly with the
physical devices (e.g., mica2). Problems occur again with the
complexity and scale of these networks. The sensor devices
that exist today provide a limited subset of the functionality
and scale. Due to the practical limitations of mathematical
analysis or physical network implementations, simulation is an
important tool for researchers in this field, at least during the
initial stage of the system design. Aside from just providing a
means of representing models where it was previously impos-
sible or just not practical, simulation also allows fast evolution
of protocols without the significant effort of reworking a math-
ematical analysis or reloading code onto thousands of physical
motes. The need for simulators capable of modeling these large,
complex, and seemingly limitless networks grows every day.
Although many simulators have been built to date (ns-2 [8],
GloMoSim [20], SSF [18], SensorSim [16], TOSSIM [10],
SENSE [3], J-Sim [6], ATEMU [15], SENS [19], TOSSF [14]),

the scalability of these tools is not satisfactory. For example
ns-2, currently the most popular network simulator, suffers an
order of magnitude performance penalty by invoking the Tcl
interpreter during a simulation run and occupies approximately
gigabytes memory to simulate thousands of nodes. This limita-
tion in scalability is a problem as networks being tested grow
and simulators are left with the task of modeling the incredibly
complex behavior of these large systems.

One method of improving the scalability of network simula-
tors is through model abstraction. The goal of model abstraction
is to sufficiently reduce the complexity of a model, without
suffering (too great) a loss in accuracy. With this thought in
mind, our work is an attempt to study the feasibility of using
abstraction as a solution to the problem of scalability. Specifi-
cally, we are targeting to MAC layer abstraction, because based
on our empirical profiling results, over 90% simulation time is
spent on the characterization of the MAC layer behaviors.

The originality of our approach lies in three aspects: First,
to the best of our knowledge, all prior work on data collection
for abstraction occurs off-line prior to simulation. In contrast,
our abstraction is established on-line by analyzing the data
collected from a full simulation mode. This approach provides
a high fidelity than off-line static abstractions. Second, we
dynamically switch the granularity of the simulation based
on the feedback from the traffic rate monitor. This approach
embraces the accuracy gain from the detailed simulation and
speedup from high-level abstraction. Third, our approach is
independent of upper layer implementations. Different network
protocols and applications can run on top of our implementation
seamlessly. we demonstrate that our approach is 9 times faster
than the original simulation with a loss of accuracy less than
10% in the end-to-end delay and 1% in the number of messages
successfully transmitted across the network.

The rest of paper is organized as follows. In section II,
we discuss research to date that has pursued similar goals.
Specifically we look at different solutions to scalability and
identify the uniqueness of our solution. In section III we discuss
the rationale behind our abstraction and the basic ideas behind
our solution. Section IV provides detail on our implementation
within the GloMoSim framework and section V follows with
results and analysis. Section VI inspects the unresolved issues
that needs to be addressed in the future work. We conclude in
section VII.



II. STATE OF THE ART

In search of a solution to augmenting scalability in wireless
network simulators, we looked at prior work in two general
areas of network simulation research. The first, achieving
simulation scalability, gave us insight into prior strategy and
potential solutions to help guide us towards our ultimate attempt
at a MAC layer abstraction. The second, simulation validation,
helped us understand the important aspects and techniques to
validate our ultimate solution. Prior research in both of these
areas are discussed in this section.

A. Scalability

To solve the scalability problem, modern research on net-
work simulation has taken two major approaches: parallel sim-
ulation and simulation abstraction. The first, parallel simulation,
has been implemented in architectures such as DaSSF [18]and
GloMoSim [20] and has proven adequate in speeding up
simulations on a limited scale. [11], [13] and [20] discuss the
application and results of implementing parallel and distributed
simulation across several processes to achieve speedup. The
biggest advantage of parallel simulation is that speedup is
gained without sacrificing the accuracy and granularity of the
simulation. This research on parallel simulation environments
and techniques is complementary to our work.

The second approach, called model abstraction, is the focus
of our work. [1], [4] and [17] outline fundamental goals and
tradeoffs to consider when simulating a network layer abstrac-
tion. Additionally these papers provide important insights into
understanding the effects of model abstraction and testing for
possible simulator invalidation. [5] looks at two abstraction
techniques: centralized computation and abstract packet dis-
tribution. Centralized computation saves memory consumption
and time by centrally computing protocol states to reduce the
workload and complexity of performing these computations
for every simulated node. Abstract packet distribution avoids
link-by-link packet transmission by scheduling packets directly
at the receiving end. This second technique is similar to our
work in that it eliminates potentially unnecessary details during
packet transfer. In our work we implement a similar, but less
aggressive technique that results in a more detailed and hence
more accurate abstraction. Hybrid simulation, as implemented
in SensorSim [16], is another approach to achieving speedup
through abstraction. This approach utilized data collected from
a real system to apply statistical data to simulation models. Our
approach is different from this technique in the sense that we
use adaptive simulation granularity from fine detailed packet-
level simulation and apply it to coarse abstract-level simulation.
[1] uses a fluid-based approach to speedup simulation. In this
solution, speedup is achieved by coarsening the representation
of network traffic from a packet level granularity to a flow level
granularity where closely related packets are substituted with a
single packet. [12] abstracts details of an 802.11 MAC Protocol
by substituting probabilistic packet arrival data and statistical
packet arrival times to remove the details of the 802.11 MAC

protocol contention phase. This research most closely resembles
our own with the exception that data collection occurs off-line.
This limitation prevents researchers from applying statistical
data to situations that have not been previously encountered and
makes dynamic traffic patterns difficult to model. Our research
addresses this limitation by performing online data collection
by monitoring traffic patterns to determine when simulated
abstraction is appropriate.

B. Validation

Aside from the work designing and implementing our ab-
straction, we also studied model validation to better understand
the overall effect and validity of our research. Validation tests
such as the chi-square goodness of fit test [9] can be used
to test whether the simulated model reflects the real situation.
[7] and [4] discuss issues and techniques for model validation
and analysis. Although various methods and techniques are
proposed and discussed in these papers, our primary focus is
on comparing the simulated results of our abstraction with the
results of the high granularity simulation [12]. Since differ-
ent networking scenarios have different impacts on simulated
results, a limited set of case comparisons are not enough to
claim the validation of any model. Rigorous model validation,
specifically as it applies to abstraction, is left as an area for
future research.

III. METHODOLOGY OVERVIEW

Accurately modeling wireless networks on the scale of
hundreds of thousands of nodes has been and will remain
a challenging problem for research. Despite the effects of
Moore’s law it remains impractical to handle simulations of
large-scale networks over reasonable periods of simulation time
to collect precise experimental data.

A. Design Goals

The array of simulators developed to date provide varying
levels of detail, accuracy, scalability, modularity (flexibility),
etc. Unfortunately the more detailed a simulation becomes,
the less capable it is of scaling to large complex networks.
It is crucial to decide what level of detail can be sacrificed
in exchange for simulation speed and scalability. Since in the
wireless scenario, nearly 90 ∼ 95% of simulation time is spent
modeling details of the MAC and below, abstracting these layers
can provide a large speedup while preserving the accuracy
of upper-layer behavior. The higher level protocols are ideal
for our abstraction because they are not concerned with MAC
layer detail so long as the packet transmission delay remains
consistent with that of a detailed model’s behavior. More
specifically, this work attempts to solve the speedup problem
by abstracting out MAC layer implementation detail for the
MAC protocols (e.g.MACAW [2]) in GloMoSim [20]. While
the specific abstraction we implement is under GloMoSim, our
concept of MAC layer abstraction is generic and can be applied
across other simulators.

2



The goals of our work are four fold. 1) Primarily we want
to increase the speed of the simulation, in turn increasing the
potential for scaling to very large network models. 2) We also
need to validate the results of our abstracted implementation
against a more detailed and correctly implemented simulator.
3) Slightly less important but along the lines of validation is the
need to fully understand the effects of our abstraction on the
model being simulated. The importance of understanding both
the positive and negative impacts of our abstraction allows us to
continue to refine our technique and potentially apply it to other
layers or on other MAC layer protocols in future research. 4)
Finally our fourth goal is to identify additional bottlenecks in
simulations in hopes of addressing these bottlenecks in future
work.

B. Model Assumptions

We assume that the current wireless simulators (e.g. Glo-
MoSim [20], ns-2 [8]), prior to our modifications, is a valid
representation of the MAC layer and therefore the baseline
simulation is used as a means of comparison. Although the
success of our abstraction does not hinge on a valid initial
implementation, we assume a valid model so that similar im-
plementations on other validated simulators can expect similar
results. For our design we also impose the assumption of
relatively consistent network traffic. This assumption is made
to ensure that enough time is spent abstracting MAC layer
behavior. We discuss the relaxation of this assumption later.
Currently our model assumes that the simulated network is
static or with a low mobility. With a high mobility, it is difficult
to characterize the dynamics of radio propagation and its effect
on our abstraction, so further investigation on high mobility is
left for future work.

C. Overview of Detailed MAC Layer Simulation

Before discussing specifically how we added abstraction
to the MAC layer simulation, it is important to understand
certain aspects of the MAC layer simulation. To illustrate
the simulation process, here we use GlmoSim [20], a typi-
cal discrete wireless simulator, as an example. We note this
paper is described in the context of GloMoSim, however
the design idea can be applied in other discrete simulators
as well. GloMoSim was developed as a modular library of
components that contribute to an extensible, robust, and dy-
namic simulator for wireless networks. By isolating nodes’
communication layers into independent modules, GloMoSim
allows the researcher to “plug and play”different protocols (i.e.
protocols that they develop and implement) without concern for
the inner workings of other architectural layers. To handle the
overall organization of the simulator, GloMoSim implements
a main module responsible for instantiating and organizing
nodes, scheduling messages between modules, and tracking
the exchange of messages within the simulation. The most
important responsibility of the main component is to invoke
calls to specific modules as appropriate to control the overall

sequential flow of events throughout the simulation. This flow
of control is handled by scheduling and passing messages
which represent events in the simulation. A message, as defined
by GloMoSim, has a multitude of purposes. For example,
a message used for simulating communication between the
network and radio layer not only encompasses the application
payload, but also contains any header information that previous
layers (application, transport, network, etc..) have attached to
this payload. For communication messages, this mimics the way
packets are packaged in the OSI seven-layer architecture. Aside
from their obvious use for communication, messages are used to
schedule node timeouts, handle mobility, or provide any form of
communication between modules during simulation. To better
understand the use of messages within GloMoSim we provide
a simplified example of a packet being sent into the simulated
environment. When node A’s network layer has a packet to
send over a single hop, the network layer schedules a message
(encompassing the packet and upper layers’ header information)
to the MAC layer. The simulator core stamps this message with
a time of delivery and returns to the main sequential flow in
the main module. When the simulation time for this message
arrives, the main module looks at its type and passes it to the
appropriate node’s MAC layer. Upon receiving the message, the
MAC layer further decodes the type of MAC layer message so
that it can be handled appropriately. In this situation, the MAC
layer recognizes that it is the beginning of a new exchange
to the network, so it initiates several more messages. These
messages are also scheduled to take place at specific simulation
times and are later handled by the main module when it
becomes appropriate. The subsequent message scheduled is a
notification of message propagation from the Radio layer. This
message results in every node within the simulator receiving the
propagated message and scheduling messages for overhearing,
responding when appropriate, backing off, etc. As you can see
from this significantly simplified example, due to the broadcast
nature of wireless communication, a packet being sent out into
the network involves the scheduling of two to possibly 20 or
more GloMoSim internal messages per simulated node. This
overhead in terms of simulation time escalates when a network
has hundreds of thousands of nodes.

D. Architectural Solution

To improve simulation scalability for this described archi-
tecture, we attempt to abstract a layer of the previously defined
GloMoSim architecture to reduce the number of messages
exchanged during a simulation. Due to the fact that many
sensor network simulations attempt to understand network,
transport, or even application layer behavior, our abstraction
argues that the details of how MAC layer message exchange
takes place are not quite important so long as the overall
transmission behavior of the model is maintained. Specifically
this allows us to abstract the MAC layer and therefore reduce
the MAC layer messages being modeled to speed up the overall
simulation time. As shown in Figure 1, our solution adds four
essential modules and one orthogonal module to the GloMoSim

3



simulator. The four essential modules are a Data Collector
module, an Abstraction Model Builder, a Traffic Monitor and A
Mode Switcher. The orthogonal module is simply the addition
of data collection for model validation. To better understand
these changes, Figure 1 shows an architectural schematic of
how our changes fit into a simulator architecture.

 Controller Protocol stack

Traffic Monitor

Model Switcher

MAC / Radio

Simulation Model

MAC / Radio

Abstract model

Network layer

Transportation Layer

Application layer
E2E Performance

monitor

Model validation

Data Collector

Model builder

switch

Fig. 1. Architecture for MAC layer Abstraction

The description of this architecture is as follows.

• Data Collector: In Figure 1, the Data Collector module is
used to monitor and collect information on the detailed
and complete exchange of packets as specified in the
protocol. The Data Collector is actively collecting data
when simulator is in the Full Simulation Mode. During this
mode the simulator functions as previously implemented
by the GloMoSim developers. By collecting MAC layer
message data during the simulation, we attempt to use this
collected data to apply a statistical model that removes this
MAC layer message exchange.

• Model Builder: Upon switching to Abstract Simulation
Mode, the Model Builder utilizes information previously
collected by the Data Collector to determine an appli-
cable statistical model for our abstraction. Currently the
Model Builder implements a simple statistical history-
index model, described in section IV-B. Once a switch
is made, the Model Abstract Simulation Mode utilizes the
statistical model to abstract the message exchange with a
predicted delay and corresponding probability of success-
ful packet arrival at the receiving node. This abstraction
significantly reduces the simulation time.

• The Traffic Monitor and Mode Switcher: they are pro-
vided to actively monitor and respond to simulated traffic
flow during a simulation. These modules monitor packet
rates in the network and utilize a threshold-based method
of deciding when to switch from Full Simulation Mode to
Abstract Simulation Mode and back. The combined effort
of these modules is referred to as Toggling.

• Model Validation Module: The fifth module in our
implementation, data collection for model validation, is

implemented across the End-to-End Performance Monitor
and the Model Validation Unit. Currently our End-to-
End Performance Monitor collects statistics on end-to-
end message delay and the Model Validation unit has not
been fully implemented. The current solution is discussed
further in section IV-D and work with online Model
Validation and the addition of a feedback mechanism for
dynamic optimization of abstraction parameter is left for
future work.

It is important to note that our MAC layer abstraction subse-
quently abstracts the details of the radio layer for all packets.
This happens as a result of the packets no longer being sent
as a radio signal. Instead, packets are directly passed to the
receiving nodes’ routing layer avoiding both the MAC and radio
layer altogether.

E. Abstraction Parameters

The mode switch can be tuned by changing up to three
abstraction parameters. 1) The initial stride is the number of
packets that are monitored at the beginning of a simulation
during Simulation Mode. When this number of packets has been
simulated, the mode switches to Abstract Simulation Mode (on
figure 1 the switch position would be to the right). 2) The
heartbeat period controls the frequency of traffic monitoring.
The “packet arrival rate”is the rate at which (unicast) packets
are transmitted from the network layer to the MAC layer
for all simulated nodes. Each time a heartbeat is issued, we
compare the arrival rate in the time period that just finished
with the arrival rate in the previous time period. If (the absolute
value of) this ratio exceeds a threshold (our third abstraction
parameter), the packet arrival rate is considered fresh and we no
longer consider past data applicable to the current abstraction
and a switch back to full simulation mode is needed. The
abstraction parameters: (i) initial stride, (ii) heartbeat period
and (iii) threshold, are static during a simulation run and easily
modifiable. Intuitively, a longer initial stride, shorter heartbeat,
and smaller threshold result in a more accurate, and therefore
longer simulation. This tradeoff is discussed in section V-A.

IV. IMPLEMENTATION

Our initial approach to abstracting a MAC layer protocol
expose us to the design and code of various simulators. After
looking into ns-2 [8], GloMoSim [20], SSF [18], and the
TinyOs simulator [10], we eventually choose GloMoSim due
to its ease of understanding, relatively good performance, and
modularization of layers.

As stated before, our MAC layer abstraction toggles between
two different modes during a simulation. The Full Simulation
mode implements the detailed packet exchange as previously
implemented by GloMoSim. The only change to the previous
implementation is the collection of data to be used in the
Abstract Simulation Mode. The Abstract Simulation Mode
reduces the number of messages exchanged during simulation
and therefore has a vast impact on the overall simulation time.

4



To switch between modes we implemented what we call a
Toggle feature. The final piece of our implementation involves
data collection for analyzing the effect of our abstraction on
end-to-end delay and packet loss for the models chosen. These
four components are described in detail below.

A. Data Collection

In Full Simulation mode the simulation runs exactly as it
had previously been implemented by the GloMoSim designers.
For the purposes of this paper we are going to assume that
this original design was correct and can therefore be used as
the baseline for our analysis. The only difference in Full Sim-
ulation mode is that we have inserted several data structures in
combination with a fair amount of logic to eavesdrop and collect
data for the detailed simulation as it runs. This eavesdropping
takes place in both the MAC layer, Radio layer. For example,
the main body of the simulation ruling MACAW protocol [2]
goes as follows : When the network layer has a packet to be
sent to its next hop, the MAC layer is notified of this packet
and a RTS is scheduled. At this point we collect the time in
which the RTS was initiated and the node in which the RTS
is destined and we set the sending nodes state as SENDING
RTS and the receiving nodes state as AWAITING RTS. From
here on the Data Collection component tracks the exchange of
packets between nodes, updates the node’s state accordingly,
and sets variables within the Data Collection structure that
records how long the exchange took and whether or not the
exchange was successful. Any collisions with other RTS, CTS,
Data packets or other noise are handled by the simulation and
recorded as appropriate. Finally when this MAC layer exchange
has completed the nodes state is reset and its collection data
index is updated as appropriate.

B. Model Abstraction

At some point during the Data Collection portion of our
simulation, the toggle feature of our implementation realizes
that enough data has been collected and it is time to switch to
abstraction. The implementation of the toggle feature follows
this description of the Abstract Simulation model. The Abstract
Simulation Mode is used to significantly reduce the number of
messages sent during the simulation and therefore its goal is
to reduce the overall simulation time. We do this by applying
the data collected during the Full Simulation mode to provide a
statistical approach to generalize data flow through the network.
This is possible under fairly regular traffic patterns or sending
intervals per node. An example application is a temperature
sensing application where nodes report temperature readings
to a base station every second. We statistically determine the
send times and whether or not a packet successfully arrives
by generating a random number in the range of the number
of data exchanges previously collected. Using this random
number, we index the data structure where this information
resides. If the index into our data structure points to a suc-
cessful exchange then we use the time of this exchange and

directly send our current packet to the network layer of the
receiver with a set delay appropriate to the time it would have
taken (statistically speaking) for this packet to arrive. This
time includes the radio transmission time, radio propagation
time, overhead time incurred during message exchange between
layers, and any back-off that occurred due to collisions in
the network. If our index points to a data packet that had
previously been dropped, we drop this packet accordingly.
These dropped packets statistically model packet loss in the
model. While our abstraction methodology is fairly simple, it
works for several reasons. Primarily we assume fairly constant
traffic which allows us to look at behavior from the past to
determine current behavior. Although this assumption seems
stringent, it is relaxed by applying strict monitoring of aggregate
packet rate by our toggle component which can be modified by
changing the abstraction parameters. As you will see, the worst
case scenario for our simulation is when the smooth traffic
assumption is relaxed and nodes sporadically send messages
changing the networks aggregate packet rate. In this scenario
our model realizes that the changing rate requires fresh data and
continues to toggle back to Full simulation mode with Data
Collection. When this happens the simulation runs as it had
prior to our implementation with the exception that we incur
the additional cost of data collection and therefore see slight
performance loss.

AbstractionData 
Collection

(initial state)

 Initialization stride simulation done
 Constant packet arrival rate

 Not enough data collected for a node
 Variable packet arrival rate 

Fig. 2. Phase Transition

C. Toggling Between Modes

The problem of switching between Full Simulation mode and
Abstract Simulation Mode is handled by a toggle component
that is responsible for monitoring traffic flow and data collec-
tion. The state transition diagram for our Toggling component is
shown in figure 2 and a visual representation of the Toggling be-
havior is provided in figure 3. Specifically the toggle component
functions as follows. While in Full Simulation mode the toggle
component monitors the total number of data packets collected.
When the total packets collected reaches some threshold, (the
abstraction parameter previously discussed) the toggle compo-
nent modifies a state parameter which tells the MAC layer to
use our Abstract Simulation Model as implemented.

Once the simulation is running in Abstract Simulation Mode,
the toggle component begins to monitor the aggregate packet
transfer rate provided by the network layer of every node in the
network. The heartbeat counter is used to periodically check
the aggregate rate of messages sent by comparing the total
number of messages sent between the current time and the

5



last heartbeat with the total number of messages sent between
the two prior heartbeats. Because the time between heartbeats
remains constant this value provides a rate. At each heartbeat
these two rates are compared and if the difference between
them exceeds some threshold (one of the abstraction variables
previously mentioned) then the aggregate send behavior is
determined to have changed significantly enough to warrant
switching back to Full Simulation mode. Another case where
our mode switches from Abstract Simulation Mode to Full
Simulation Mode is when the model is in Abstract Simulation
Mode and a node for which we do not have enough statistical
data wants to send a packet. At this point we switch modes so
that statistics for that node can be appropriately collected. Note
that this deeply impacts the performance of the simulation as
all nodes switch to Full Simulation Mode simultaneously. In
our design we choose to implement the Toggling feature as
a network parameter (as apposed to a node parameter) since
nodes in abstraction do not send packets and as a result would
invalidate data collected for other nodes simultaneously. One
additional challenge we face in our implementation is when the
toggling mechanism is invoked during a packet exchange in Full
Simulation mode. Due to the complexity of a more thorough
solution, our current implementation simply drops the packet
in transit. For our simulation, these lost packets are rare and as
a result do not have significant impact on our results.

Fig. 3. A hybrid Approach with Toggling

D. End-to-End Data and Model Validation

The final modification to GloMoSim is building a mech-
anism to collect information for comparison and validation
purposes. GloMoSim provides information specific to each
layer implemented in the simulation but unfortunately this
information is not detailed enough to satisfy our needs. Our
modification involves an addition to a component of the simula-
tor that collects the end-to-end delay for all packets successfully
sent through the network. By collecting the end-to-end delay
for each packet between specific nodes, we are not only able
to get the average and standard deviation of the end-to-end
transfer time, but the node to node data loss (for our CBR
implementation) allowing us to ensure that the MAC layer
appropriately handles collisions and therefore congestion in the
network. Since the end-to-end delay statistics are a necessary

component for validating our abstraction, but are not necessary
for the abstraction itself, we take measure to ensure that this
additional code does not affect our speedup analysis. Fortu-
nately since this code is necessary for our comparison between
models, we implement these changes in both the original and
abstracted simulators to provide consistent results.

V. EVALUATION

In the evaluation, nodes in a sample network are uniformly
placed in a field of 1000m x 1000m, in which 10 CBR
flows between 30 nodes are transmitted during 900 seconds.
Because these flows have random start times (0 to 2 seconds),
random starting and end points (fixed for the duration of the
simulation), and random rates (2 to 1000 packets per second),
some parts of the network are more active than others and
the load on each node changes with time. By using several
CBR flows with randomness in their parameters, we create a
more general load for the network. To test the effects of our
abstracted simulator on the model previously described we run
the model several times with each simulated run taking place on
different architectures of the GloMoSim simulator. We maintain
a seed value of 1, allowing pseudo random numbers generated
during the simulation to be consistent between each architecture
simulated. The simulation times for the architectures described
below are compared in Figure 4.

0

10

20

30

40

50

60

70

80

90

Run 1 Run 2 Run 3 Run 4 Run 5a Run 5b

T
im

e 
o

f 
ru

n
 (

se
co

n
d

s)

Fig. 4. Simulation Time under Different Runs

In a first run, we test the original GloMoSim architecture
and measure the overall simulation time 1 We use this value as
our reference time. For the remainder of our paper, we refer to
this and the subsequently described runs as run 1, run 2, etc.
In a second run, we use a modified version of the GloMoSim
architecture that includes end-to-end delay data collection for
all packets correctly transmitted at the application level. This
architecture is also addressed as the “original simulation”. In
a third run, we use our fully modified version of GloMoSim
with Toggling deactivated so that the simulator never enters
our Abstract Simulation Mode. This simulation is used to
determine the cost of online data collection. In a fourth run,
we use our fully modified version of GloMoSim with Toggling
and Data Collection deactivated and the simulator initially

1the simulations were run on a PC AMD Athlon 1.3 GHz with 768 MB of
memory.

6



set to Abstract Simulation Mode. This architecture provides
data on the maximum possible speedup. Finally in a fifth run
(run 5a and run 5b), we use our fully modified version of
GloMoSim as we have intended it to function with two different
thresholds. We gather end-to-end delays for all packets correctly
transmitted at the application level. We also call this run the
“abstracted run”.

A. Abstraction vs. implementation trade-off

To understand the effect of our abstraction on simulation
time, we have run the five architectures previously described to
obtain time comparisons for each architecture. As we can see
from Figure 4, if the overhead of the end-to-end delay collector
(run 2) remains low (2%), the overhead due to the data collector
(run 3) is relatively high (30%). Fortunately, our assumption
that most of the time spent in simulation is a result of MAC
and radio layer details proves to be true. If messages from these
layers were delivered directly from the network layer of a node
to the network layer of the receiving node, simulation time
would be 24 times faster. As a result, the overhead introduced
by our implementation can be counterbalanced by the speedup
incurred through abstraction. For our abstraction the simulation
(run 5b) was 9 times faster than the original simulation and
only 40% slower than the fastest possible run (run 4). This
speedup occurred with a loss of less than 10% accuracy in the
end-to-end delay and a 1% loss in the number of messages
successfully transmitted across the network.

B. Accuracy vs. time trade-off

We assess the accuracy of our abstraction by monitoring a
flow consisting of several hops through the simulated network.
We choose to use multiple hops due to the fact that it allots more
room for discrepancy between our simulated abstraction and
the original GloMoSim architecture. In addition to assessing
simulation times between architectures, we also run our model
over varied threshold values as previously described. In these
cases the initialization stride is 2000 packets and the heartbeat
period is 2 seconds with the threshold varied at 2% (case 5a)
and 5% (case 5b).

C. Threshold Comparison

Figure 5 shows us end-to-end delays, the number of mes-
sages that arrive along our chosen flow, and the overall simu-
lation time for both the original simulation and our abstracted
run (run 2, run 5a, run 5b). We can see that the end-to-end
delays viewed by the application layer help to validate our
abstraction (less than a 10% difference). From this figure we
can also see a tradeoff between end-to-end delay accuracy
and simulation time as a result of the different values for our
threshold parameter. This is the result of an increased threshold
allowing more variance in traffic rate prior to switching back
to Full Simulation mode. This greater threshold results in less
switching and therefore a slight decrease in accuracy with a
significant increase in speedup. Figure 6 and Figure 7 depict

this behavior by plotting end-to-end packet delay as a function
of the packet sent for both threshold values. The packet sent
can also be looked at as a time parameter for this figure.

0

20

40

60

80

100

120

End to end delay
(10^-7 second)

Number of messages
(hundreds of packets)

Simulation time (s)

Original

With abstraction (threshold = 0.02)

With abstraction (threshold = 0.05)

Fig. 5. Model Comparison (run 2, run 5a, run 5b)

0

50

100

150

200

250

300

1 501 1001 1501 2001 2501 3001 3501
Packet number

E
n

d
 t

o
 e

n
d

 d
el

ay
 (

m
ic

ro
se

co
n

d
)

Original
With abstraction

Fig. 6. End-to-End Delay for Threshold = 0.02

0

50

100

150

200

250

300

1 501 1001 1501 2001 2501 3001 3501

Packet number

E
n

d
 t

o
 e

n
d

 d
el

ay
 (

m
ic

ro
se

co
n

d
)

Original

With abstraction

Fig. 7. End-to-End Delay for Threshold = 0.05

From these results we can see the importance of fine tuning
our three abstraction parameters. These parameters allow for
the adaptation of the simulator to more appropriately fit the
model in simulation. Although we currently modify these pa-
rameters off-line, this issue could be re-solved by profiling the
simulator or implementing an auto-profiling and auto-adaptation
mechanism to handle parameter modification online. To do this
the simulator would run an initial phase during which it tries
to find optimal parameter values. The simulator could then
change these parameters dynamically to adjust the quality of
the abstraction. Ultimately, the end user could provide a single
parameter (i.e. a value between 0 and 10) with 0 meaning

7



optimize for speed and 10 meaning optimize for accuracy at
the expense of speed. This could be implemented using a
feedback control loop in the simulator with the speed and
accuracy references as inputs. Note this is a second level of
auto-adaptation as we already provide a mechanism for the
modified simulator to respond automatically to load variations.
Further discussion of online parameter optimization is left for
future work.

VI. FUTURE WORK

Due to space constraints, several directions remain both
unexplored and under explored. The following ideas and issues
are left for future work:

• In our implementation we have only tested/validated our
abstraction for small models implemented on MACA using
CBR (constant bit rate). For further validation and to test
the true success of our model we must continue to run
tests on larger, more complex, and more dynamic models
to better understand the effects of our abstraction.

• For our first Abstract Simulation Model we simply used
a random index into an array of collected data to deter-
mine send time and the probability of a successful data
exchange. This simple model abstracts data when traffic
flow remains fairly constant and switches to data collection
when traffic flow changes. The loss of speedup incurred
by switching back to data collection could be reduced by
applying a system identification model that more aptly
handles dynamic traffic flow in our abstraction.

• Automatic model validation is another area left open
for future work. In our implementation we used simple
mathematical validation and manual control of abstraction
parameters to determine the accuracy and effect of our
abstraction. It is conceivable that feedback control and
dynamic adjustments could be implemented to manipulate
the abstraction parameters and optimize speedup online.

• Finally, our first iteration involved extending the MACA
protocol as implemented by GloMoSim. Future work could
involve similar abstraction to other MAC layer protocols
such as 802.11 or MACAW to determine the extensibility
of our design.

VII. CONCLUSION

Research on protocols for wireless ad-hoc sensor networks
continue to reach new limits. To fully understand the impact of
these protocols researchers must be able to simulate networks
of hundreds of thousands to potentially millions of nodes.
A major problem of current wireless network simulators is
their inability to simulate networks of this scale. Research to
date has taken several approaches to solving this problem. In
this paper we present the novel design, implementation, and
results of an online algorithm to switch the simulator between
a Full Simulation Mode during which data are collected, and
an Abstract Simulation Mode, which uses the collected data
to abstract the simulator’s MAC layer. This innovative design

is implemented on the GloMoSim simulator to specifically
abstract the MACA protocol and can easily be ported to
work across other protocol layers on a variety of simulators.
Our design can be utilized to speed up future simulations
studying transport, network, or application layer protocols. In
the evaluation, we achieved 9X speedup at the cost of only 10%
loss in end-to-end delay accuracy combined with a negligible
difference in the number of messages correctly exchanged
through our abstraction. While these results are promising they
are by no means the limit of this design. Future work on
optimizing our design includes implementing alternate abstract
simulation models and extending our work to include mobility
and the more adequate handling of dynamic network behavior.

REFERENCES

[1] J. Ahn and P. Danzig. Packet network simulation: Speedup and
accuracy versus timing granularity. In IEEE/ACM Transactions on
Networking, pages 743–757, 1996.

[2] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: A media
access protocol for wireless lan. In the SIGCOMM ’94 Conference on
Communications Architectures, 1994.

[3] G. Chen, J. Branch, M. J. Pflug, L. Zhu, and B. Szymanski. SENSE: A
Sensor Network Simulator. Advances in Pervasive Computing and
Networking,Springer: 249-267, 2004.

[4] J. Heidemann and et. al. Effects of Detail in Wireless Net-work
Simulation. In SCS Multiconfer-ence on Distributed Simulation, pages
3–11, 2001.

[5] P. Huang, D. Estrin, and J. Heidemann. Enabling Large-scale
Simulations: Selective Abstraction Approach to the Study of Multicast
Protocols. In USC/ISI, USC, 1998.

[6] J-SIM. The J-SIM Project. Available at http://www.j-sim.org/.
[7] D. B. Johnson. Validation of Wireless and Mobile Network Models and

Simulation. In DARPA/NIST Workshop on Validation of Large-Scale
Network Models and Simulation, 1999.

[8] Kevin Fall and Kannan Varadhan. The ns Manual. Available at
http://www.isi.edu/nsnam/ns/.

[9] J. L.Devore and et.al. Probability and Statistics for Engi-neering and the
Sciences. In 5th Edition ISBN 0-534-37281-3 Duxbury Press New York,
NY, 2003.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In First ACM
Conference on Embedded Networked Sensor Systems (SenSys 2003),
November 2003.

[11] J. Liu. Performance Prediction of a Parallel Simulator. In PADS’99,
1999.

[12] J. Liu, D. M. Nicol, L. F. Perrone, , and M. Liljenstam. Towards high
performance modeling of the 802.11 wireless protocol. In In WSC
2001, 2001.

[13] T. Mineo and et. al. Impact of Channel Models on Simu-lation of Large
Scale Wireless Networks. In MSWiM, 1999.

[14] L. F. Perrone and D. Nicol. A Scalable Simulator for TinyOS
Applications. In Proceedings of the Winter Simulation Conference,
2002, 2002.

[15] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir.
ATEMU: A Fine-grained Sensor Network Simulator. In SECON’04,
2004.

[16] A. S. S. Park and M. B. Srivastava. SensorSim: A Simulation
Framework for Sensor Networks. In MSWiM 2000, 2000.

[17] A. F. Sisti and S. D. Farr. Model Abstraction Tech-niques: An Intuitive
Overview. In Air Force Research Laboratory/IFSB, 2000.

[18] ssfnet. The SSFNET Manual. Available at
http://www.ssfnet.org.

[19] S. Sundresh, W. Kim, , and G. Agha. SENS: A Sensor, Environment
and Network Simulator. In Proceedings of 37th Annual Simulation
Symposium, 2004, 2004.

[20] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel
simulation of large-scale wireless networks. In the 12th Workshop on
Parallel and Distributed Simulations, 1998.

8


