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Abstract. Navigation of mobile wireless sensor networks and fast target

acquisition without a map are two challenging problems in search and

rescue applications. In this paper, we propose and evaluate a novel Gra-

dient Driven method, called GraDrive. Our approach integrates per-node

prediction with global collaborative prediction to estimate the position of

a stationary target and to direct mobile nodes towards the target along

the shortest path. We demonstrate that a high accuracy in localization

can be achieved much faster than other random work models without

any assistance from stationary sensor networks. We evaluate our model

through a light-intensity matching experiment in MicaZ motes, which

indicates that our model works well in a wireless sensor network envi-

ronment. Through simulation, we demonstrate almost a 40% reduction

in the target acquisition time, compared to a random walk model, while

obtaining less than 2 unit error in target position estimation.

Key words: Wireless Sensor Network, Navigation, Localization, Prob-

abilistic Model, Rescue

1 Introduction

Wireless sensor networks have gained extensive attention in many applications
such as tracking, differentiated surveillance, and environment monitoring [1–3].
Moreover, the hybrid systems of mobile objects (e.g. Robots) and sensor net-
works create new frontiers for civilian and military applications, such as search
and rescue missions in which the background environments are inaccessible to
humans. A heterogeneous searching team consisting of robots and a wireless sen-
sor network has greater advantage, considering its distributed computation and
navigation capability achieved through the cooperation of embedded wireless
sensor networks.

Although the applications of mobile sensor networks keep diversifying, sev-
eral underlying capabilities remain fundamental and critical. In this work, we
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focus on the target acquisition – finding the locations of stationary targets us-
ing mobile sensor nodes. The challenging problem we address in this work is to

navigate a team of mobile sensor nodes toward the stationary targets fast and ac-

curately while consuming the least amount if energy and other resources. In this
emerging research arena, most research groups employed static wireless sensor
networks to navigate the mobile sensor nodes. Tan in [4] used distributed static
sensor networks to collect the data and execute local calculations to generate
a path for a mobile sensor network to move toward the goal. Although the in-
network calculation implemented in that project was quite efficient in creating
the shortest routing path, the additional requirement of a stationary distributed
sensor network sets a barrier for rescue applications, because of the high cost
to cover a large geographic area with a large number of sensors. Other research
groups [5] proposed gradient methods in which the mobile wireless sensor nodes
move toward the gradient direction assuming that targets carried the most inten-
sive strength of interested signals. However, in all of their implementations, the
assistance of a stationary wireless sensor network was assumed to be available in
generating a local signal distribution map. A probabilistic navigation algorithm
is presented in [6], where a discrete probability distribution of vertex is intro-
duced to point to the moving direction. This algorithm computes the utilities
for every state and then picks the actions that yield a path toward the goal with
maximum expected utility. The shortcoming of this method is that it requires
the arrival of a mobile sensor node to localize the target position and significant
communication overhead is introduced by the iteration process.

2 Contribution

In this paper, we propose to compensate those deficiencies by incorporating a
prediction model of real-time processes into a mobile sensor network sensing and
navigation architecture. We are interested in the mutually beneficial collabora-
tion of the algorithms described above but seek to reduce the costs and provide
faster target localization. The novelty of our approach is the seamless integration

of a per-node prediction model with a global prediction model. The per-node pre-
diction model guarantees that a mobile node can acquire the position of a target
alone, while the global prediction significantly reduces the navigation overhead
and time, if collaboration among the nodes is available. Specifically, the main
contributions of our prediction models are:

– Our model provides more meaningful description of individual sensor read-
ings in term of accuracy and confidence.

– Our model works with a single mobile sensor node as well as a swarm of
mobile sensor nodes. In the latter case, the sensor nodes have the ability to
share local information in order to draw a global picture, which helps each
sensor node to acquire the target along a significantly shorter path.

– The in-network prediction algorithm enables faster yet accurate target po-
sition acquisition: sensor nodes would be required to reach the target only
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when the model prediction is not accurate enough to satisfy the require-
ment with an acceptable confidence. This allows a significant reduction in
navigation energy.

The remainder of this paper is organized as follows. Section 3 defines the
assumptions. Section 4 overviews the design. In Section 5, we present the in-
network per-node prediction model. Section 6 describes target acquisition in the
context of global prediction and the corresponding mobile sensor node navigation
protocol. Section 7 presents empirical data obtained from the MICAZ platform
as well as simulation results. Finally, in Section 8, we present our conclusions
and future works.

3 ASSUMPTIONS

Our design is based on two assumptions: network connectivity and the self-
localization of mobile wireless sensors.

– Connectivity: First, wireless sensor nodes in the network are assumed to
be able to ensure connectivity. Individual mobile sensor nodes deployed in
large area is likely to lose connection to a central base station, if the routing
information is not updated. Therefore, it is desirable to maintain connections
across a team of mobile sensor nodes while minimizing power consumption
and allowing the sensor nodes to achieve their individual goals.

– Node Self-Localization: The second assumption hinges on the localization
availability for a mobile wireless sensor network. If a mobile sensor node en-
ters an unknown area, it must be able to specify its own location dynamically
without a map. This location can be obtained either through GPS such as
used in ZebraNet [7] and VigilNet [3]. It can also use a dynamic localization
scheme [8] that adjusts the estimated location of a node periodically based
on the recent observed motion.

4 OVERVIEW OF PREDICTION MODEL

The objective of our GraDrive target acquisition scheme is to predict the lo-
cation of stationary targets within allowable uncertainty (or a confidence level)
dictated by a rescue plan. To illustrate the design of GraDrive, we start our de-
scription with a rescue scenario shown in Fig. 1. Here we note that our method
is independent of this rescue application and can be applied in other scenarios
as well.

– Objective: The control center (base) disseminates a search objective to a
mobile sensor network with two parameters, error tolerances and confidence

level of the target, specifying the quality of target acquisition. For exam-
ple, the objective would be locating a target within 2 meters with at least
95% confidence. The tolerance levels for each mobile sensor nodes can vary
correspondingly in case different nodes are designed for different purposes.
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Fig. 1. The Architecture schematic of GraDrive

– Individual Prediction Model: Once the search objectives are received by
the mobile nodes, individual node decides their most efficient way to locate
the potential target with the requested confidence individually, using the
per-node prediction model. It starts to move toward the direction in which
it anticipates the fastest path to reach the confidence.

– Collaborative Prediction Model: In addition to its own plan and naviga-
tion, sensor nodes also report back to a base station, where all the individual
nodes’ readings and plans are collected and computed to create a global map
and an uncertainty area. If computation results show probability increase by
certain interval, e.g.5% to its previous state computation, the base station
will disseminate the global prediction value over the network so that each
sensor nodes in network can update their model. In other words, the predic-
tion result based on collaborative information overrules the results from the
individual prediction model.
As demonstrated in Fig. 2 from (A) to (D), the individual sensor node con-
tinuously predicts the target position with increasing probability and move
toward the target, the uncertainty area where the target is located shrinks
through collaboration among mobile sensor nodes. If collaborative proba-
bility calculated reaches the dictated objective, a success of rescue plan is
achieved. The position it reports is the exact target position specified. Com-
pared to other static sensor node navigation plans, the prediction results
computed by our model still provide considerably more information than
MobileRobot [6] and SafeRobot [9].

5 GRADRIVE MODEL DETAILS

In this section, we formally describe our per-node prediction model to estimate
the position of a stationary target with certain confidence. This per-node pre-
diction model forms the basis for global collaborative prediction described in
Section 6. We note even though we consider an unknown area with multiple
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Fig. 2. Collaborative Prediction Scheme of GraDrive

targets, the searching for separate targets is independent to each other as long
as the field (RSSI) generated by one target doesn’t overwhelm that generated
by others. Therefore in the remaining of paper, we focus on only single target
acquisition problem.

5.1 Prediction Problem Formulation

Conventionally, we begin with a value-prediction problem, which creates a Re-
ceived Signal Strength Indicator F (θ) over a parameter set θ. For example, if
θ = (d, t, v), RSSI is related to d, the distance between a mobile sensor node
and the target, t, the time of sampling, and v, the speed of mobile sensor nodes.
This model can be established by getting consecutive sensing readings (system
states) when a mobile sensor node moves. Typically, the number of parameters
in θ is much less than the number of states collected and changing one parameter
changes the estimated value of many states. To approximate our model appropri-
ately, we seek to minimize the mean squared error over some distribution, P , of
the inputs.There are generally far more states than components in θ. The flexi-
bility of the function estimator is thus a scarce resource. Better approximation at
some states can be gained generally only at the expense of worse approximation
at other states.
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5.2 Distance Prediction Model

In GraDrive, we extend the familiar one-dimensional normal probability den-
sity function known as Gaussian distribution to two variants multidimensional
distribution. The predicted distance from sensor nodes’ current position to pre-
dicted target position can be queried or estimated from the model. The mul-
tidimensional Gaussian distribution function over two attributes, trust interval
and RSSI, can be expressed as a function of two parameters: a 2-tuple vector
of means, µ, and a 2 × 2 matrix of covariances,Σ. Further, we assume the trust
interval set by a rescue team is independent of the RSSI received, which means
the trust interval of the predicted distance estimation Ti to the mean of historic
results µ doesn’t change dynamically along the searching process. The two di-
mensional distribution can be separated for description purposes. Without loss of
generality, it is assumed that the predicted distance d is disproportional to RSSI,
that can be expressed as d = r1/RSSI + r2, where r1 and r2 are two adaptive
parameters that can be determined before the searching process. We note here
other RSSI attenuation models can be used here as well without invaliding our
approach. We then use historical data or experience data to construct the mod-
els, providing r1 and r2 at each RSSI value appropriately. Besides offering the
predicted distance, a probability model associated the d is also constructed to
provide confidence of the prediction, e.g. given a predicted distance of 2 feet, the
confidence for this prediction is 95%. The models must be trained before it can
be used, a general limitation for probabilistic model. The accuracy of the model,
therefore, relies on the accuracy of data used to train it. Once the initial model is
constructed, each sensor nodes can query the predicted distance map from saving
model and come up with a confidence value. One distribution of the distance d
against the confidence p over one RSSI is a Gaussian distribution. Suppose that
rescue team have set a trust interval of Ti, given the distribution of distance over
one RSSI, we can get the points di that satisfied that P (di)−P (u) <= Ti. Here
we emphases that if the trust interval is too small, the amount of data needed
to train the model will increase exponentially.

5.3 Signal Strength Distribution Prediction Model

Besides obtaining the distance d information based on measured RSSI, we can
further refine the RSSI distribution Model. This distribution model can then
be used to navigate the mobile sensor network toward the target at a shortest
path. The central element in our approach is to construct a prediction model
that represents attributes as accurate as possible in a mobile sensor network.
As we discuss above, if the predicted RSSI distribution function depends on
parameters including distance d and confidence or probability p, the function
can be expressed as F (d, p) considering d and p’s distribution are independent.
If we do the Tylor expansion on function F , a polynomial function of attributes
d and p is achieved, shown as

F (d, p) = f(d0, d1, d2...)f(p) (1)
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where di is the function of distance variable d. To reduce the computation
energy consumption, only second order polynomial is considered in our case,
which offers a 3-tuple vector of D = [d0, d1, d2]:

d0 = c0

d1 = 1/(d + c1)
d2 = 1/(d2 + c2)

(2)

where c1, c2, c3 are constants used to avoid singularity when d = 0. Now we can
define our gradient distribution function into a simple format as:

F = D • A • p where A = [a0, a1, a2] (3)

Equation 3 is our probabilistic gradient distribution prediction function for
attributes of d and p. suppose that each sensor nodes observe the value of at-
tribute Dj to be dj , we now input sensing reading into a vector of Dj. Thus the
vector D is extended as a matrix.

If enough sensing samplings are provided, we can apply non-linear Least
Square Fitting to estimate the parameters A. For nonlinear least squares fitting
to our undetermined parameters, linear least squares fitting may be applied
iteratively to a literalized form of the function until convergence is achieved.
Since we can anticipate the power type of fit and have decided initial parameters
chosen for our models, the nonlinear fitting has good convergence properties.

In general, the computation of the matrix does cost a large amount of the
wireless nodes’ energy. The solution in GraDrive is to simplify the prediction
distribution function as above, given that prediction function computation can
be distributed over the network with collaboration of its neighbors or the data
to be delivered back to a base station where stronger computation ability and
energy are normally not limitations. If this is the case, the base station creates a
gradient distribution map globally using a weighted average method as a function
of probability and predicted distribution. This kind of global information is sent
back to each individual node involved in application.

6 TARGET LOCALIZATION USING THE

COLLABORATIVE PREDICTION MODEL

Based on the per-node prediction model, the mobile sensor nodes can infer the
position of target (x, y) and the associated confidence value p. This information
is then used to perform global predictions. Specifically, we propose to use a
probability-weighted average model for global collaborative prediction, due to
its high efficiency and low cost characteristics. The simple rational behind our
method is that the sensor nodes having a higher probability are much closer to
the intended target.

Generally, if the predicted target location provided by sensor nodes n1, n2, ..., nk,
are (x1, y1), (x2, y2), ..., (xk, yk) associated with probability value p1, p2, ...pk. The
estimated position of the target is given as:
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k
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i=1

pkxk

k
P

i=1
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k
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pkyk

k
P

i=1

pk

(4)

6.1 Collaborative Navigation and Prediction Protocol

With per-node and global prediction models established, we are now ready to
describe how the sensor nodes navigate using these two models.

Initially, sensor nodes enter an intended region with certain moving speeds,
moving directions and trust intervals. It should be noted that different mobile
sensor nodes could have different moving speed or initial moving direction. After
the entrance, the mobile sensor nodes continue to detect the RSSI in its sensing
range. The detected RSSI readings are an important input for training the model
it is assigned initially. Thus they use a default navigation plan, which is to keep
moving forward unless they detect a smaller sensing reading. During the moving
process, nodes themselves perform per-node prediction calculation to construct
the local RSSI map as described in Section 5.3. Meanwhile, the sensor nodes
estimate their distance to the target position according to the sensing RSSI,
randomly pick one prediction within its trust interval. The predicted target
location information is forwarded back to a base station. To prevent excessive
energy consumption in communication, the frequency of updates can be specified
in advance. As long as the global picture is not available, individual sensor nodes
navigate according to the per-node prediction model. However, if the base station
notifies the sensor nodes that it has constructed a global RSSI distribution with
certain confidence, each sensor node will combine the information with its current
model together and change its direction toward the gradient direction. This
process will be repeated until the target position has been discovered locally or
at the base station within acceptable confidence.

6.2 Default Navigation Plan when Global Prediction Unavailable

If initially there is no global picture constructed by the base station with ac-
ceptable confidence, or if there is only one separated node in the network for
rescue plan, or if the network is partitioned or unable to deliver the data, the
mobile sensor nodes fall back to the per-node prediction model. Given its cur-
rent sensing reading, it compares with previous readings stored in memory at
each motion step. After getting a smaller sensing reading, it rotates 90 degrees
clockwise. The reason for that is that the target position is most likely located
perpendicularly to its previous moving direction.

7 EXPERIMENTS AND SIMULATION

7.1 Model Matching Experiment

In order to verify the feasibility of the proposed prediction model and parameter-
fitting algorithms, we have prototyped a light sensing system based on Berke-
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ley MICAZ modes. Even though it is stationary, the prediction model and
parameter-fitting algorithms can still be verified at the base station site which
can be transferred to individual sensor nodes and implemented. Light signal
strength is used as an example of RSSI to feed the model. One laptop equipped
with motherboard acts as the base station. A lamp works as a target and a series
of sensor nodes are deployed as shown in Fig. 3. The sensor nodes detect the
sensing reading and exchange the readings to their neighbors. The base station
calculates the parameters for the sensor nodes by using the least square fitting
method. Fig. 4 shows one set of data fitted by the prediction model. The distance
between two adjacent sensor nodes is equal and unified for matching purpose.
Since the received signal strength is not an accurate measurement, probability
approximation model comes into play. From the matching results, it is shown
that the least square method tries to reduce the deviation among the sensing
data collected. Other sets of data can also be collected and used to train the
model before it can be applied into the mobile sensor scenario.

Fig. 3. Model fitting experiment with light as source of signal and using Micaz nodes

in array to sense the signal strength

7.2 Simulation Setup

We have developed a program to verify the advantage of using our prediction
model to locate the target in a faster approach. In our simulation, a 200×200
m2 area is regarded as an unknown space with a target located at the center
and a distribution along the diameter is defined. Essentially, it would be any
random distribution that having a gradient toward the center. Each distance
unit is represented as the smallest unit that the mobile sensor nodes can travel
each time during simulation. The navigation algorithm is used to simulate the
mobility of objects. Initially, the mobile nodes are located at the edges of the
area. The initial direction is randomly picked by each mobile sensor node. If
some sensor nodes move outside the simulation region, they bounce their moving
direction back into simulation area. Under simulation, each mobile sensor node
moves at a constant speed in integer multiples of 1m/s. After each time unit (1
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second in our case), a node determines their next moving direction according to
our algorithm.
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Fig. 4. The predicted model with real sensing data

Fig. 5. Convergence time with node number for different models

7.3 Delay in Target Acquisition

We first experiment on comparing our algorithm (w/o global distribution calcu-
lation option) against Random Way Point Model. The simulation results (Fig.
5) suggest that even without a global distribution calculation mode turning on,
our default algorithm (rotating 90 degree counterclockwise) still provides 30%
faster estimation than the random way method. If global calculation mode is
on, then initially the sensor nodes still use default plan, but if the global signal
strength distribution is available, it moves faster than the default algorithm.
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Fig. 6. Convergence time with Node number under different required confidence level

7.4 Impact of the Confidence p

We also compare the impact of different required confidence level on the con-
vergence time as shown in Fig. 6. It is clear that if the required confidence level
goes beyond 90%, it will take much longer to simulate simply because it requires
at least 2 nodes to get very close to target position. It is reasonable to choose
a relative high confidence level e.g. 80% in order to balance accuracy and time
cost. 0

Convergence Time & Error Vs Moving Speed

0

10

20

30

40

50

60

1 2 3 4 5

Moving Speed ( m/s )

C
o

n
v

e
rg

e
n

c
e

 T
im

e

0

2

4

6

8

10

12

E
rr

o
r 

( 
m

 )

Covergence Time (s)

Error (m)

Fig. 7. Convergence time and Accuracy with different moving speeds of mobile sensor

nodes

7.5 Impact of the Target Speed

In Fig. 7, we further investigate the relationship between the moving speed of
sensor nodes and prediction accuracy of target location. The convergence time
correlated directly with moving speed of each sensor node since the average time
for sensor nodes to get closer to target is reduced. However, the accuracy of
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prediction gets worse if the speed increases because the minimum deviation for
the prediction is increased as well. Therefore the error continues to grow in the
prediction as node moves faster from its original location. In the situation of
high speed, accuracy error larger than 10 units is shown. To protect against
inaccuracies in the prediction model of mobile sensor nodes, a user must set a
limit for moving speed of sensor nodes.

8 CONCLUSION AND FUTURE WORK

In this paper we present a probabilistic prediction model for dynamic target
localization and evaluation of the localization algorithm. Our model does not
require any known map to determine the positions of potential targets. Also the
proposed gradient driven algorithm leads to a 40% reduction in time compared
to that of a random working model. The relationship between sensor density and
convergence time can be used as a reference of consideration for doing planning
of such a mobile sensor network. Even though the computation power could be
large, the error of the predicted target position can reach to almost zero and in
a short time (about only 47sec). As future work, we would like to implement our
algorithm on off-the-shelf hardware platforms. We would also need to design a
speed self-adjusting algorithm so that the sensor node has the ability to trade
off performance and cost.
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