
On-Demand Time Synchronization with

Predictable Accuracy

Ziguo Zhong

Computer Science & Engineering

University of Minnesota

Minneapolis, MN 55455

zhong@cs.umn.edu

Pengpeng Chen

Computer Science & Engineering

University of Minnesota

Minneapolis, MN 55455

pengpeng@cs.umn.edu

Tian He

Computer Science & Engineering

University of Minnesota

Minneapolis, MN 55455

tianhe@cs.umn.edu

Abstract—Time synchronization remains as a challenging task
in wireless sensor networks that face severe resource constraints.
Unlike previous work’s aiming at pure clock accuracy, this paper
proposes On-Demand Synchronization (ODS), a design to achieve
efficient clock synchronization with customized performance. By
carefully modeling the error uncertainty of skew detection and its
propagation over time, ODS develops a novel uncertainty-driven
mechanism to adaptively adjust each clock calibration interval
individually rather than traditional periodic synchronization, for
minimum communication overhead while satisfying the desired
accuracy. Besides, ODS provides a nice feature of predictable
accuracy, allowing nodes to acquire the useful information about
real-time qualities of their synchronization. We implemented
ODS on the MICAz mote platform, and evaluated it through test-
bed experiments with 33 nodes as well as simulations obeying real
world conditions. Results show that ODS is practical, flexible, and
quickly adapts to varying accuracy requirements and different
traffic load in the network for improved system efficiency.

I. INTRODUCTION

Time synchronization is one of the most fundamental and

widely employed middle-ware services in wireless sensor

networks (WSN) [10]. It allows nodes in the network to have

a common notion of time, either respect to a global refer-

ence or among themselves [9]. Accurate time synchronization

is critical for saving communication energy [26][28], pro-

moting localization accuracy [1][24], optimizing surveillance

coverage [18][34], extending network lifetime [14][15] and

improving system security [4]. However, due to extremely

limited resources at each low-cost sensor node (e.g., poor clock

quality, limited computation and communication capabilities,

ultra tight energy budgets, etc), time synchronization remains

as a challenging task in the WSN community.

Previous research in this field mostly focused on how to do

time synchronization for better clock accuracy (e.g., AD [33],

TSS [19], RBS [20], TPSN [21], FTSP [22], VHT [5], etc). In

spite of microsecond (µs) level accuracy achieved [5][7][22],

they are not designed to provide a precise and convenient

trade-off between service performance and energy efficiency,

which complicates their deployment for energy sensitive appli-

cations with different timing requirements. In practice, systems

depend on diverse synchronization qualities. For example,

the bridge surveillance project [18] demands tens-of-µs clock

accuracy for effective data acquisition; to detect jamming

attacks in the network [4], the deviation of a couple of mil-

liseconds (ms) is tolerable; while [1] demonstrated reasonable

localization results with 0.5 ∼ 7 ms synchronization accuracy.
Essentially, high clock accuracy is at the cost of extra energy

for communication [22] and measurements [31]. Therefore, we

argue that a generic synchronization design in WSN should be

application auto-adaptive for the best cost performance.

Realizing the limitations of prior work, this paper proposes

On-Demand Synchronization (ODS), a design to determine

when to do time synchronization for customized accuracy.

ODS applies the design philosophy of substituting energy

intensive wireless communication with local computation, so

as to lower the overall cost of the synchronization service.

By carefully modeling the error uncertainty of clock skew

estimation and its propagation over time, ODS introduces an

uncertainty-driven mechanism to adaptively adjust each clock

calibration interval individually, instead of traditional periodic

synchronization [3][6][20][21][22], for minimum communi-

cation overhead while satisfying the desired accuracy. In

addition, ODS provides a nice feature of predictable accuracy,

which enables nodes in the network to acquire the useful

information about the qualities (probabilistic confidence) of

their synchronization virtually at any time instance. In short,

the intellectual contribution of this paper includes:

• To the best of our knowledge, ODS is the first work

investigating on-demand synchronization for applications

with different or time-varying accuracy requirements.

• We derived closed-form uncertainty analysis for skew

and drift estimation, and proved that simply increasing

synchronization frequency may not be beneficial at all.

• ODS develops a novel uncertainty-driven mechanism for

adaptive clock calibration, which advances an important

step towards system efficiency and flexibility.

• The design is evaluated with implementation, measure-

ments and test-bed experiments. To reveal its performance

at scale, we also provide a simulation study.

The rest of the paper is organized as follows. Section II

explains clock uncertainty and its modeling. The major design

of ODS is presented in Section III, and Section IV reports

test-bed and simulation results. We overview related work in

Section V. And finally, Section VI concludes the whole paper

and proposes future research directions inspired by issues

discovered in our evaluation experiments.

2

II. UNDERSTANDING CLOCK UNCERTAINTY

In this section, we carefully studied the characteristics of a

real clock, including terminologies, empirical data and models

that will be adopted by the design part in Section III.

A. Clock Drift and Skew

A clock is simply composed of a periodic signal source

(e.g., a quartz oscillator or RC circuit) and a counter register

to record the number of periods elapsed [8]. Due to a com-

bination of factors in fabrication, signal sources at different

clocks output frequencies with small offsets from the desired

value [3][8]. As a result, clocks run at slightly different speeds

and accumulate offsets respect to the ideal clock and among

themselves, known as the clock drift phenomenon.

The slope of change in drift offset is defined as clock skew

(or drift rate in some literatures [9]). To give an example, the

skew of clock A respect to a reference clock B, denoted as

SB
A , can be calculated with

SB
A =

τA − τB
τB

(1)

where τA is the interval measured by clock A for τB elapsed

at clock B. |τA − τB| is the drift offset, and if clock A runs

faster than clock B, we have τA > τB ⇒ SB
A > 0, otherwise,

SB
A < 0. Skew is evaluated in ppm (parts per million) and

normally ranges from±5 ppm to ±100 ppm [35]. For instance,

SB
A = 20 ppm indicates that clock A runs approximately 20 µs

faster than clock B for every 1 second.

We carried out initial experiments on MICAz motes to

examine the drift behaviors of their 32.768 KHz clocks wildly

used for timekeeping [5]. Inspired by RBS [20], a sender

node’s periodic radio broadcasting was utilized as a global

signal for 1-hop receivers that logged time gaps between con-

secutive packets. The experiment included 1000 transmissions

and collected 25809 effective samples from 32 receivers. Fig.1

shows the clock skew (mean value with 3σ confidence range)

of each receiver node respect to the sender, telling that nodes

have diverse skews within the range of ±20 ppm.

Another important aspect of a real clock is that it exhibits

both long term and short term instabilities [11][39]. In other

words, SB
A in Eq.1 is essentially a function of time SB

A (t). In
addition to natural component aging [35], working conditions

such as temperature, power supply, air humility, etc [11][36],

and jitter noise [3][11] affect clocks in low-cost embedded

devices like Berkley motes. Our data shows that even when

the environment was maintained relatively stable (e.g., temp.

at 24∼27◦C, VCC at 3.37±0.05 V), nodes demonstrated

fluctuating skews over time. For example, the top two curves in

Fig.3 depict filtered skew values for node 1 and 30 in previous

experiment for a period of 15000 seconds, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
−20

−10

0

10

20

 Node ID

 S
k
e
w

 (
p

p
m

)

Fig. 1. Skew Measurements for 32 MICAz Nodes

0 500 1000 1500 2000 2500 3000

32.7675

32.768

32.7685

32.769

 VCC = 2.302 V VCC = 3.376 V VCC = 5.506 V

 (a) Clock Frequency Measured at 3 Different Voltages

 Time Elapsed (s)

 F
re

q
.
(K

H
z
)

0 500 1000 1500 2000 2500 3000
−15000

−10000

−5000

0

 µ
s
 = − 7.98 ppm

 σ
s
 = 5.54 ppm

 µ
s
 = − 2.06 ppm

 σ
s
 = 3.85 ppm µ

s
 = + 0.21 ppm

 σ
s
 = 2.62 ppm

 (b) Clock Drift

 Time Elapsed (s)

 D
ri

ft
s
 (

µ
s
)

Fig. 2. Clock Frequency and Drift Measurements

More observable, Fig.2 shows the logged frequency of the

32.768 KHz oscillator on a MICAz under different VCC volt-

ages with a Tecktronic DPO 4054 oscilloscope. From Fig.2(a),

we can see that the clock frequency slightly increased as VCC

went from 2.302 V to 5.506 V. Accordingly in Fig.2(b), the

drift offset respect to the ideal clock (the oscilloscope in this

case) stopped enlarging after 2000 s, when the skew turned to

be positive (average skew us = +0.21 ppm).

A real clock features random and dynamic skew. However,

it is far from formidable and we consider that continuous skew

estimation is possible and beneficial for dual reasons:

• First, clock skew varies slowly and is bounded. Today’s

low-cost oscillators have already provided a low aging

factor (e.g., ±3 ppm/year [35]) and a small temperature

coefficient (e.g., ±0.035 ppm/◦C2 [35]), not to mention

TCXO (temperature compensated oscillator). In Fig.2,

despite measurement noise, we can observe that the skew

difference between 2.302 V and 5.506 V is less than

10 ppm. Note that these two voltages are almost the lower

and upper operation limits of the chip [32].

• Second, clock skew solely determines the drift offset that

accumulates from instant skew over time, as exampled in

Fig.2(b). In other words, if we can detect the clock skew,

we are able to estimate and predict potential drift offset,

which enables highly efficient time synchronization with

predictable accuracy.

To prepare for effective clock offset estimation, skew and

drift modeling are firstly discussed in the following.

B. Skew and Drift Modeling

Clock skew varies dynamically as a stochastic process [39].

Among multiple models observed by previous research [3][5]

[8][38], we employed the WGN (white Gaussian noise) ran-

dom walk model [8][3] as a tough case example studied in this

paper. The uncertainty introduced by this model is statistically

higher than the wildly used constant-rate model [38]. Thus,

it covers the scenario of networks deployed in outdoor harsh

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
−2

−1

0

1

2

3

 Skew records for node 1

↓
 Skew records for node 30

↑

 Model with σ
η
 = 10

−9

↓

 Model with σ
η
 = 10

−8

↓

 Time Elapsed (s)

 S
k
e
w

 (
p

p
m

)

Fig. 3. Clock Skew over Time

3

environments. Note that the concept of ODS is independent of

specific skew model and can be applied with various scenarios.

As a continues-time process, the skew of clock A respect

to the reference clock B at time t0+ t, denoted as SB
A (t0+ t),

is modeled to be evolved from that at time t0 as follows

SB
A (t0 + t) = SB

A (t0) +

∫ t

0

η(u)du (2)

where η(u) ∼ N (0, σ2
η) and E[η(u)η(v)] = σ2

η · δ(u − v)

δ(x) is the Kronecker’s delta: δ(x) = 1, if x = 0; δ(x) = 0,
otherwise. t0 and t0 + t are reference time readings.

The above model takes both intrinsic clock frequency (base

skew) and clock instability (random step noise) into consider-

ation. In Eq.2, a bigger σ2
η for η(u) indicates worse stability of

the clock. Note that the value of σ2
η is associated with the step

size du of the random walk. In fact, when using the ideal clock

as reference, σ2
η equals 2·AV RA(du), where AV RA(du) is the

Allan Variance (AVRA) [39], a standard metric for describing

clock instability. In practice, the value of ση can be obtained

from multiple sources: (i) frequency tolerance provided by

oscillator specifications [35]; (ii) measurements reported in

previous literatures [8][39], and (iii) pre-deployment system

profiling [38]. To give an example, Fig.3 plots modeled skew

processes as two bottom curves in the figure, where ση = 10−8

and 10−9 were generated for du = 1 s.
With clock skew SB

A (t), the accumulated drift offset tdrift
between A and B from t0 to t1 (t1 ≥ t0) can be expressed as

tdrift =

∫ t1

t0

SB
A (t)dt (3)

This drift model is quite general and it subsumes other skew

models [7]. For example, for the constant-rate skew model [8]

assuming only instant Gaussian noise with SB
A (t), the offset

in Eq.3 degrades to the linear drift model in [10][38].

III. ON-DEMAND SYNCHRONIZATION

In this section, we present the design of ODS that features

application-oriented performance and predictable accuracy.

A. Overview

We consider node A as being synchronized to a reference

node B with an accuracy of ǫ, if the error associated with A’s
estimation about the clock offset between itself and B is less

than ǫ with a high probability p at any time instance. Note that

this definition allows both clock alignment based synchroniza-

tion (i.e., adjusting clocks to be equally [9][21][17][22]) and

timescale transformation among node in the network [9][10].

Under this definition, ODS functions in an on-demand manner,

by accepting real-time configuration (ǫ, p) from the application

layer. For example, a combination of ǫ = 1 ms, p = 99.7%
requires the offset estimation error to be less than 1 ms with

a confidence probability of at least 99.7%.

The synchronization service is abstracted as two phases:

(i) the detection phase, during which nodes refresh their time

information by exchanging time-stamped messages [21][28];

(ii) the dormant phase, as intervals between detection phases.

It is easy to understand that nodes obtain the highest synchro-

nization confidence right after each detection phase. However,

this confidence of accuracy degrades gradually in the following

dormant phase because of the accumulated uncertainty from

dynamic clock skew and previous detection errors.

From the above observation, we conclude that the key for

achieving time synchronization with desired accuracy while

reducing redundant cost is to repeat the detection phase right

on time, not too early and not too late. Given a requirement

(ǫ, p), ODS adaptively regulates the duration of the following

dormant phase after each detection, based on the error uncer-

tainty of skew estimation, so that the required accuracy can

be quickly satisfied with minimum traffic overhead.

In the following, we firstly use pairwise synchronization

to convey ideas. Then, Section III-E extends the design to

the multi-hop scenario. Unless noted otherwise, we denote the

reference time at node B as t and the corresponding clock

reading at node A as tA(t); x̂ and x̃ are used to express the

estimator and error residual for a variable x, respectively.

B. Clock Skew Detection and Estimation

Skew detection serves as the first step towards on-demand

synchronization because clock drift is resulted from temporal

accumulation of skew. While drift offset can be measured with

bounded error uncertainty [2][7][20][22], estimating instant

clock skew is far more challenging for its time-varying na-

ture. In this section, we propose an instant skew estimator

with explicit uncertainty range, by analyzing errors of skew

detection with different sampling intervals.

Suppose that at time t0 node B sent a message to node

A about its clock reading, and later node A obtained another

timestamp t1 from node B, as illustrated in Fig.4. As a result,

node A can acquire two pieces of information: (i) the time

elapsed at the reference, denoted as ∆t = t1 − t0; and (ii) the

drift offset between two nodes during this interval as

t̂drift = (tA(t
′

1)− tA(t
′

0))− (t1 − t0) (4)

where tA(t
′
0) and tA(t

′
1) are sampled clock readings at node

A upon receiving B’s messages t0 and t1 , respectively.

Node A

Ref. Node B
t

tA

t0

t0

tA (t0)
d0

t1

tA (t1)
d1

~

~

’ ’

t1

Fig. 4. Uncertainty in Drift Offset Detection

t̂drift is written as an estimator because detections of tA(t
′
0)

and tA(t
′
1) are subject to multiple non-deterministic delays

and noise along the “critical path” of communication [12][22].

We consider the additive result of all sources of delays

and noise as a random variable d following approximately

normal distribution, based on the central limit theory [13] and

empirical observations from previous research [22][5], as

d ∼ N (µd, σ
2
d) (5)

where µd and σ2
d are determined by hardware/software perfor-

mance, and can be profiled before network deployment. Then,

4

t̂drift in Eq.4 can be rewritten as

t̂drift = tdrift + (d1 − d0) (6)

where d1 and d0 are independent delays for tA(t
′
1) and tA(t

′
0),

respectively. From Eq.5 and 6, we can conclude that t̂drift is
an unbiased estimator for tdrift with error variance 2σ2

d.

Based on the offset detection t̂drift for interval ∆t, node A
can obtain a new estimation about its clock skew respect to

the reference node B at t1 (according to Eq.1) as

ŜB
A (t1) =

t̂drift
∆t

(7)

The error of ŜB
A (t1) actually comes from two aspects: (i) the

detection error of t̂drift; and (ii) the dynamic fluctuation of

clock skew during ∆t, which is depicted as SB
A (t) in Fig.5.

tt0 t1

)(ˆ
0tS

B

A

)(ˆ
1tS

B

A

)(1tS
B

A

)(tS B

A

∆t

Skew

Fig. 5. Error of Skew Detection

The true value of the accumulated drift during the interval

∆t equals the area under the solid curve SB
A (t) in Fig.5.

Thus, ŜB
A (t1) obtained from Eq.7 essentially estimates the

average value of SB
A (t) during ∆t, marked as a dashed line.

Therefore, ŜB
A (t1) could have dynamic offset errors from its

true value SB
A (t1) as depicted in the figure. We give the

following theorem about this estimation.

THEOREM 1. ŜB
A (t1) in Eq.7 is statistically unbiased for

the stochastic process SB
A (t), namely

E[ŜB
A (t1)] = E[SB

A (t1)] (8)

where E[· · ·] is the expectation. And its error variance is

σ2
ŜB
A
(t1)

=
2σ2

d

∆t2
+

∆t

3
· σ2

η (9)

where σ2
d is the error variance of time detection in Eq.5; σ2

η

is the step variance of the random walk skew in Eq.2; and ∆t
is the interval of the last dormant phase.

PROOF. Let S̄B
A be the true average skew during ∆t. t̂drift

is an unbiased estimator for tdrift, so we have

E[ŜB
A (t1)] =

E[t̂drift]

∆t
=

tdrift
∆t

= S̄B
A (10)

On the other hand, from Eq.2, 3 and 10, we can obtain that

S̄B
A ·∆t = SB

A (t0) ·∆t+

∫ t1

t0

∫ t

t0

η(u)dudt (11)

Eq.11 and 2 combined give an expression for SB
A (t1) as

SB
A (t1) = S̄B

A − 1

∆t

∫ t1

t0

∫ t

t0

η(u)dudt+

∫ t1

t0

η(u)du (12)

which tells E[SB
A (t1)] = S̄B

A . So with Eq.10, we have Eq.8.

From Eq.7 and 12, the error residual of ŜB
A (t1) is

S̃B
A (t1) = SB

A (t1)− ŜB
A (t1) =

tdrift − t̂drift
∆t

+X (13)

where X =

∫ t1

t0

η(u)du− 1

∆t

∫ t1

t0

∫ t

t0

η(u)dudt

Then, its MSE (mean square error) is

E[S̃B
A (t1)

2] =
2σ2

d

∆t2
+ E[X2] (14)

becasuse E[(t̃drift)
2] = 2σ2

d, E[X] = 0, and t̂drift, X are

independent. For E[X2], by transformation we can have

E[X2] = E

[

(
∫ t1

t0

η(u)du

)2
]

+

E

[

(

∫ t1

t0

∫ t

t0
η(u)dudt

)2
]

(∆t)2

−
2E

[

∫ t1
t0

η(u)du ·
∫ t1
t0

∫ t

t0
η(u)dudt

]

∆t
(15)

We proved in Appendix A.1 that E[X2] = ∆t
3 · σ2

η . Thus,

σ2
ŜB
A (t1)

= E[S̃B
A (t1)

2] =
2σ2

d

∆t2
+

∆t

3
· σ2

η

This finishes the proof. �

Theorem 1 provides the support and rationale behind Eq.7

for instant skew estimation. It also reveals that the performance

of the estimator is determined by three factors:

• Quality of time detection, evaluated by σd;

• Stability of the clock, described by ση;

• Duration of previous dormant phase, i.e., interval ∆t.

Fig.6(a) and 6(b) give example patterns of σ2
S against ∆t

for different values of σd and ση , respectively. For each curve,

σ2
S firstly gets reduced along the ∆t axis. This is because

the first term 2σ2
d/∆t2 in Eq.9 diminishes quickly with a

larger ∆t. After reaching a turning point, σ2
S enlarges with

increasing∆t, since the second term ∆t·σ2
η/3 dominates Eq.9

at this stage. From a system perspective, skew fluctuation is

10
2

10
3

10
4

10
5

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

 ∆ t (s)

 σ
2 s
 (

[s
/s

]2
)

ση = 10−9

σ
d
 = 160 µs

σ
d
 = 80 µs

σ
d
 = 40 µs

σ
d
 = 20 µs

σ
d
 = 10 µs

σ
d
 = 5 µs

σ
d
 = 1 µs

(a) σ2
S vs. ∆t under different σd

10
2

10
3

10
4

10
5

10
−18

10
−16

10
−14

10
−12

10
−10

 ∆ t (s)

 σ
2 s
 (

[s
/s

]2
)

σd = 20 µs

σ
η
 = 1×10

−8

σ
η
 = 3×10

−9

σ
η
 = 1×10

−9

σ
η
 = 3×10

−10

σ
η
 = 1×10

−10

σ
η
 = 3×10

−11

σ
η
 = 1×10

−11

(b) σ2
S vs. ∆t under different ση

Fig. 6. The Error Uncertainty for Instant Skew Estimation

5

10
2

10
3

10
4

10
5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

 t (s)

 σ
2 o
ff
s
e
t (

[s
]2

)

ση = 10−9, ∆ t = 1000

σ
d
 = 160 µs

σ
d
 = 80 µs

σ
d
 = 40 µs

σ
d
 = 20 µs

σ
d
 = 10 µs

σ
d
 = 5 µs

σ
d
 = 1 µs

(a) σ2
t̂offset

vs. t under different σd

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 t (s)

 σ
2 o
ff
s
e
t (

[s
]2

)

σd = 20µs, ∆ t = 1000

σ
η
 = 1×10

−8

σ
η
 = 3×10

−9

σ
η
 = 1×10

−9

σ
η
 = 3×10

−10

σ
η
 = 1×10

−10

σ
η
 = 3×10

−11

σ
η
 = 1×10

−11

(b) σ2
t̂offset

vs. t under different ση

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

 t (s)

 σ
2 o
ff
s
e
t (

[s
]2

)

σd = 20µs, ση = 10−9

∆ t = 10000 s

∆ t = 5000 s

∆ t = 2000 s

∆ t = 1000 s

∆ t = 500 s

∆ t = 200 s

∆ t = 100 s

(c) σ2
t̂offset

vs. t under different ∆t

Fig. 7. Theoretical Error Uncertainty for Clock Offset Estimation

limited when∆t is small, so the offset detection error becomes

relatively large respect to the tiny drift. This explains why σd

is decisive in the left part of Fig.6(a). On the contrary, if ∆t is
considerable, the detection error is comparatively negligible,

and the estimation performance is mostly affected by clock

instability ση , as verified by the right part of Fig.6(b).

C. Predicting Clock Uncertainty

With estimated skew, nodes are allowed to predict their drift

offsets during the dormant phase. We analyze the uncertainty

of such prediction in this section, which paves the way for the

key mechanism of uncertainty driven clock calibration.

Based on the detection at t1, node A can predict its clock

offset respect to the reference node B for time t1+ t, denoted
as t̂offset(t1 + t), with

t̂offset(t1 + t) = ŜB
A (t1) · t+ t̂offset(t1) (16)

where t̂offset(t1) = tA(t
′

1)− µd − t1 (17)

Here, t̂offset(t1) is the estimated clock offset between two

nodes at time t1, and µd serves as an unbiased estimator for

the delay d1. Eq.16 has been widely used [38][6][3], however,

what we are interested in is its error uncertainty.

THEOREM 2. The offset prediction using Eq.16 is unbiased

with error variance satisfying

σ2
t̂offset(t1+t)

= σ2
d +

2σ2
d

∆t
· t+ σ2

ŜB
A
(t1)

· t2 + σ2
η

3
· t3 (18)

where ∆t is the length of previous dormant phase in Eq.7.

PROOF. The true value of t̂offset(t1 + t) in Eq.16 is

toffset(t1 + t) =

∫ t1+t

t1

SB
A (u)du + (tA(t

′

1)− d1 − t1) (19)

From Eq.19, 16 and Eq.2, its residual can be expressed as

t̃offset(t1 + t) = S̃B
A (t1) · t+

∫ t1+t

t1

∫ t1+u

t1

η(v)dvdu − d̃1

where d̃1 = d1 − µd and S̃B
A (t1) = ŜB

A (t1)− SB
A (t1). d̃1 and

S̃B
A (t1) are zero mean Gaussian, thus we have

E[t̃offset(t1 + t)] = E

[
∫ t1+t

t1

∫ t1+u

tt

η(v)dvdu

]

= 0 (20)

Namely, t̂offset(t1 + t) is an unbiased estimator.

From t̃offset(t1 + t), we have its error variance as

σ2
t̂offset(t1+t)

= σ2
ŜB
A
(t1)

· t2 + E[Y 2] + σ2
d

−2t ·E[S̃B
A (t1) · d̃1] (21)

where Y =

∫ t1+t

t1

∫ t1+u

t1

η(v)dvdu

It is proved in Appendix A.2 that E[Y 2] =
σ2
η

3 · t3, and

E[S̃B
A (t1) · d̃1] = − σ2

d

∆t
. As a result, we reach

σ2
t̂offset(t1+t)

= σ2
d +

2σ2
d

∆t
· t+ σ2

ŜB
A
(t1)

· t2 + σ2
η

3
· t3

This finishes the proof. �

Insights into Eq.18 tells that σ2
d captures errors in original

offset detection; σ2
ŜB
A

(t1)
·t2 collects skew estimation error over

time; σ2
η · t3/3 evaluates the uncertainty from dynamic skew

fluctuation; and 2σ2
d · t/∆t includes additional error due to the

correlation between offset and skew detections.

Fig.7 shows impacts of σd, ση and ∆t to the offset estima-

tion, respectively. As shown in Fig.7(a), a smaller σd brings

in less prediction uncertainty, especially when t is small. As

t increases, this benefit becomes less significant because the

cubic term of t dominates Eq.18 with clock instability ση .

Fig.7(b) verifies this analysis and indicates that ση acts as the

deterministic factor as t grows.

Different from σd and ση , ∆t does not have a monotonic

impact to the offset prediction. As shown in Fig.7(c), among

various ∆t values, the lowest curve is given by ∆t = 2000 s.

Ironically, a short ∆t (e.g., 100 or 200 s) is more harmful than

a long ∆t (e.g., 5000 or 10000 s), indicating that calibration

at high frequency may not be helpful at all. This interesting

phenomenon is caused by the fact that the error of skew

estimation could get amplified when ∆t is tiny in Eq.9. The

“V-shaped” curves in Fig.6 nicely confirms this observation.

Theorem 2 contributes dual benefits to the synchronization

service. First, it enables a quantitative evaluation about the

quality of synchronization. At any time, a node can not only

estimate its clock offset, but also be ware of the error range

of this estimation. Namely, a real-time predictable accuracy.

In addition, based on this theorem, the synchronization can be

conveniently optimized for the desired accuracy performance,

as explained in the following.

6

D. Uncertainty Driven Clock Calibration

To guarantee the required accuracy (ǫ, p), the error in offset

estimation should always be less than ǫ with probability p.
Namely, σt̂offset

must satisfy the following inequality

n · σt̂offset
≤ ǫ, where n =

√
2 · erf−1(p) (22)

n obtained from the inverse Gaussian error function erf−1 is

the confidence interval (error range) for probability p [27]. For

example, if p = 99.7%, n = 3 for the 3σ error range.

Clock uncertainty escalates quickly as time elapses in the

dormant phase. To meet Eq.22, the dormant phase after the

kth detection has a maximum length T (k) that is the solution

of Eq.22 and Eq.18 combined as follows

f(T) =

(

ǫ√
2 · erf−1(p)

)2

(23)

where f(T) = σ2
d +

2σ2
d

∆t
· T + σ2

Ŝ(k)
· T 2 +

σ2
η

3
· T 3

In general, synchronization can be accomplished by adopting

an uncertainty driven mechanism for clock calibration in Fig.8.

Detection Phase (k)

driftt̂

)(kt∆
)(ˆ kS),(pε

Dormant Phase (k)

)(kT
Resync.

1+= kk

Fig. 8. Uncertainty Driven Clock Calibration

In the kth detection phase, t̂drift and ∆t(k) contribute a

skew estimation Ŝ(k). Then, for the desired accuracy (ǫ, p),
a duration limit T (k) is set for the following dormant phase,

and the expiration of T (k) triggers a new round of calibration.

Note that a new detection is not necessarily to happen only

upon T (k) time out. When the accuracy condition is changed,

or data traffic occurs, on which timestamps can be piggy-

backed with little overhead [28], the dormant phase terminates

immediately. In those cases, ∆t(k + 1) 6= T (k).
To summarize, we list operations in detection phase k as

Algorithm 1. Line 1 extracts reference time tk from time-

stamped message M and samples its local counterpart t′k.
Line 2 clears the timer if it did not fire for T (k − 1). Line
3 calculates the drift offset based on Eq.4. Line 4 estimates

the instant skew and its error variance from Eq.8 and 9. Then,

line 5 gives T (k) based on Eq.23. Finally, line 6 sets a new

Algorithm 1 ODS Operations at Detection Phase k

Input: (ǫ, p), tk−1, t
′

k−1, M

Output: T (k), tk, t
′

k, Ŝ(k), σ
2
Ŝ(k)

1: [tk, t
′

k] = timeSampling(M);

2: timerClear(T (k − 1));
3: [∆t(k), t̂drift] = preCompute(tk, t

′

k, tk−1, t
′

k−1);

4: [Ŝ(k), σ2
Ŝ(k)

] = skewEstimate(∆t(k), t̂drift);

5: T (k) = errorPredict(σ2
S(k), (ǫ, p));

6: timerSet(T (k));
7: return [tk, t

′

k, Ŝ(k), σ
2
Ŝ(k)

];

timer with T (k) and line 7 returns parameters for real-time

offset prediction and future calibration. To initialize, Ŝ(0) is

set to be 0 ppm as an unbiased hypothesis, and σ2
Ŝ(0)

gets

overestimated as S2
max where Smax is the maximum skew

from the oscillator datasheet [35].

E. Discussion on Multi-Hop ODS

ODS can be conveniently extended for multi-hop synchro-

nization without major theoretical modification. We explain in

this section with an example shown in Fig. 9.

Suppose that at time tR, the reference node disseminated a

time-stamped message. An 1-hop node received this message

at tR+d1, and applied Algorithm 1 for clock calibration. After

delay τ1, the 1-hop node took over the synchronization task by

sending out newly estimated reference time t̂R(1) together with

its error variance σ2
t̂R(1)

obtained from Theorem 2. Then, the 2-

hop node can also apply Algorithm 1 for clock calibration, by

simply merging the uncertainty of delay d2 and that of t̂R(1)

as the overall error uncertainty of its reference time detection,

i.e., d′(2) = σ2
d +σ2

t̂R(1)
in Fig.9. This process repeats till hop

n as shown in the figure.

,t̂R(2))(R
σ 2

t̂

Reference

Hop 1

Hop 2

....

Hop (n-1)

Hop n

d1 τ1

Rt

τ2
d2

τn-1

dn

= d

2σσd ′(1)
2

= d

2σσd ′(2)
2

+
(1)R

σ 2

t̂

,t̂R (1) (1)R
σ 2

t̂

2

= d

2σ +
R

σ 2

t̂ (n-2)

= d

2σ +

t̂R (n-1)

= d

2σ +
R

σ
2

t̂ (k-1)
σd ′(k)
2

= Theorem2
R

σ
2

t̂ (k)
()σd ′(k)

2 ,τk

σd ′(n-1)
2

σd ′(n)
2

,
)(R

σ 2

t̂ n-1

)(R
σ
2

t̂ n-1

Fig. 9. Error Uncertainty of Multi-hop Reference Time Delivery

In general, we have the accumulated error uncertainty for

reference time detection at hop k as

σ2
d′(k) = σ2

d + σ2
t̂R(k−1)

(24)

The uncertainty of the reference time sent out at hop k is

σ2
t̂R(k)

= Theorem2(σ2
d′(k), τk) (25)

The above two equations reveal that the performance of multi-

hop synchronization is affected by (i) the number of hops for

reference time delivery, and (ii) delays at each hop.

By forwarding the reference time with its error variance,

each node can perform skew estimation and offset prediction

as that in the 1-hop scenario by requesting updated reference

time from its neighbors when necessary. The feature of pre-

dictable accuracy from ODS also allows nodes to effectively

fuse time information obtained from different neighbors [30].

On the other hand, multi-hop ODS enables the node as global

reference to be aware of the upper bound of clock errors in

the network, according to the number of hops and worst-case

delays to the most remote nodes. This information provides

important guidance for efficient timestamp dissemination.

IV. EVALUATION

We implemented ODS on the MICAz mote platform and

evaluated with multiple experiments. To reveal its performance

at scale, we also report a simulation study in this section.

7

0 50 100 150 200 250 300
0

50

100

150

200

 Elapsed Time (min)

 S
y
n
.
E

rr
o
r

(µ
s
)

Number of Samples = 35987

Max 99.7% Error = 161.8 µs

Mean 99.7% Error = 81.4 µs

Std 99.7% Error = 25.9 µs

Max Error

Mean Error

Fig. 10. The Maximum and Mean Synchronization Errors Among 32 MICAz Nodes (ǫ = 200 µs, p = 99.7%, σd = 15.26 µs, ση = 3× 10−9)

A. Testbed Experiments

The ODS design was developed as a middle-ware module

in the TinyOS framework as shown in Fig.11, where arrows

indicate data and command flows among modules. To avoid

intrinsic delays of TinyOS, low-level instructions were widely

used. The kernel ODS task includes 39 lines of NesC code that

was complied to 1710 byes of ROM and 68 bytes of RAM.

Fig. 11. Implementation of ODS with TinyOS

Considering that multi-hop synchronization heavily depends

on assumptions of network topology, routing matrix, traffic

load, etc, we focused on 1-hop ODS in the experiment to

investigate its actual performance. Note that multi-hop design

can be unified with the 1-hop ODS framework equivalently

from our discussion in Section III-E.

Error Performance

In this experiment, 32 nodes were deployed on an in-door

test-bed to synchronize with a BS, as shown in Fig.12. Nodes

targeted an accuracy demand of ǫ = 200 µs, p = 99.7%. We

measured σd = 15.3 µs and configured ση = 3 × 10−9.

To get the true real-time synchronization errors, the BS also

periodically broadcast a special type of packets that were

used by normal nodes only as samples for calculating clock

prediction errors logged into their flash memory.

Fig.10 illustrates the maximum and mean errors of 32 nodes

during an interval of 5 hours (300 minutes). This figure tells

that (i) the maximum errors were kept less than 200 µs all

the time, except for initialization and two impulses of outliers;

(ii) the max-error curve demonstrated an interesting “ZigZag”

pattern along the x-axis, which is reasonable because clock

errors escalate statistically over time during the dormant phase

while get pushed back upon detections.

Fig. 12. ODS Evaluation with an Indoor Testbed

As marked in Fig.10, the maximum 99.7%-error range

among nodes were 161.8 µs, which is smaller than the

required 200 µs, indicating that ση = 3 × 10−9 was actually

an overestimation. In addition, a std. of 25.9 µs reveals that

nodes had diverse error performance. Both findings suggest

that in-field real-time ση calibration could be very helpful in

practical systems, which we put as part of our future work.

Behaviors under Varying Accuracy

ODS features quick adaption for varying accuracy. In this

experiment, we emulated a scenario that at the first stage

of about 150 minutes, nodes were required to have a high

accuracy (200 µs) for localization purpose; after that, nodes

maintain a lower accuracy (500 µs) for energy efficiency.

Fig.13 plots calibration intervals (i.e., the length of dor-

mant phases) of a node in the test. We can see that (i) at

the beginning of the first stage, ODS gradually reached an

optimal calibration interval for the 200-µs accuracy; (ii) upon

accuracy change, ODS swiftly shifted to lengthened calibration

intervals, which is attributed to the well estimated clock skew

as well as its error uncertainty at the first stage.

0 50 100 150 200 250 300 350 400
0

1000

2000

 ← Change of Syn. Accuracy

 ε = 200 µs

 p = 99.7 %
 ε = 500 µs

 p = 99.7 %

 Elapsed Time (min)

 C
a

l.
 I

n
te

rv
a

l
(s

)

Fig. 13. ODS with Varying Accuracy Requirements

0 50 100 150 200 250

Baseline

Traffic

ODS Syn. ← Change of Traffic Load

 Elapsed Time (min)

Fig. 14. ODS with Varying Traffic

Behaviors under Varying Traffic

ODS enables full utilization of data traffic in the network, so

that dedicated beacon traffic for synchronization can be saved.

In this experiment, we emulated two levels of traffic load under

identical accuracy requirements, and conducted two tests: (i)

ODS without utilizing the data traffic; and (ii) ODS with time-

stamp-piggybacked data traffic.

In Fig.14, “Baseline” shows beacon traffic employed in case

(i); “Traffic” gives the trace of data traffic; and “ODS Sync.”

depicts beacon packets in case (ii). We can see that “ODS

Sync.” used much less beacons than “Baseline”. For example,

with relatively high traffic load, “ODS Sync.” even did not

cost ultra packets for synchronization. We further analyzed

the impact of traffic in the following with simulations.

8

0.8x 0.9x 1.0x 1.1x 1.2x 1.3x 1.4x 1.5x
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 A
c
c
u

ra
c
y
 V

io
la

ti
o

n
 P

ro
b

a
b

ili
ty

 (
%

)

 Factor of Overestimation

 (1 − p) = 0.3%
 ↓

 Ideal ση est. ←

6000

6400

6800

7200

7600

8000

8400

8800

9200

 N
u

m
b

e
r

o
f

S
y
n

c
.

B
e

a
c
o

n
s

Probability of Accuracy Violation

Synchroniation Beacon Traffic

Fig. 15. Impact of ση Estimation

0.4x 0.8x 1.2x 1.6x 2.0x 2.4x 2.8x 3.2x
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 A
c
c
u

ra
c
y
 V

io
la

ti
o

n
 P

ro
b

a
b

ili
ty

 (
%

)

 Factor of Overestimation

 (1 − p) = 0.3%
 ↓

 Ideal σd est. ←

6000

6400

6800

7200

7600

8000

8400

8800

9200

 N
u

m
b

e
r

o
f

S
y
n

c
.

B
e

a
c
o

n
s

Probability of Accuracy Violation

Synchronization Beacon Traffic

Fig. 16. Impact of σd Estimation

10
−4

10
−3

10
−2

0

1000

2000

3000

4000

5000

6000

7000

8000

 Phase I II III

 Traffic Propability Q

 N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

Beacons for Random Traffic

Beacons for Periodic Traffic

Data Traffic

Fig. 17. Impact of Different Traffic

B. Simulation Study

ODS was also evaluated with extensive simulation. Due to

space constraints, we only reported results for issues of biased

parameter estimation and diverse traffic load in this section.

We developed an event-driven simulator that maintains n
separate skew/time frames for systems with n nodes. To satisfy

long simulated durations (≥ 108 s) and precise uncertainty ac-

cumulation (≤ 10−24) simultaneously, the MAPM library [37]

was applied for 64-digit calculation precision. Table I lists

default simulation configurations, and all statistics reported are

mean values averaged over 50 runs for high confidence.

TABLE I
DEFAULT SIMULATION CONFIGURATIONS

ση σd Accuracy (ǫ, p) Skew Range Node Pair Duration

10−9 15.3 µs (500 µs , 99.7%) (±30) ppm 50 5000 hrs

Impact of ση Estimation

In this experiment, we investigated the impact of biased

ση estimation. Fig.15 plots mean values of the probability

of accuracy violation (left y-axis) and the number of syn-

chronization beacons (right y-axis) under different factors of

biased estimation, in steps of 0.05x. This figure tells that (i) in

ideal case (1.0x), the required sub-0.3% violation probability is

achieved; (ii) with increasing overestimation, the synchroniza-

tion accuracy gets improved with reduced violation probability,

but the overhead enlarges linearly; (iii) when underestimated,

the accuracy performance degrades quickly.

Impact of σd Estimation

In this experiment, we investigated the impact of biased σd

estimation, in steps of 0.2x. Curves in Fig.16 have similar

trends as that in Fig.15, except that the impact of biased σd

estimation is less significant than that of ση . By comparing

results in Fig.15 and Fig.16, we can conclude that effective

calibration for the environmental parameter ση plays an im-

portant role in practical systems using ODS.

Impact of Different Data Traffic

In this experiment, we investigated the impact of different

levels of data traffic. Two types of data traffic were tested

• Random Traffic: data traffic is generated randomly with

a probability of Q in every 10 seconds.

• Periodic Traffic: data traffic is generated periodically with

a cycle of 10/Q seconds.

As shown in Fig.17, by applying ODS, dedicated beacons

for clock calibration decrease smoothly with increasing Q
values for the random traffic. For periodic traffic, the situation

is more complex and deserves further explanation.

To better understand the impact of periodic traffic, we divide

Fig.17 along the x-axis into three regions as Phase I, II and

III. In phase I, beacons gets reduced slowly with increasing

periodic traffic as that for the random traffic. However, more

beacons are required with larger Q in phase II. This is because

at this stage traffic period is slightly longer than the optimal

clock calibration interval, and thus beacons always happen

(but be wasted) before another traffic. That’s why curves for

data traffic and beacons overlap in phase II. Finally, when

traffic period is shorter than the calibration interval, no beacon

is needed any more. This explains the sharp slope between

phase II and III, and a steady close-to-zero pattern in phase III,

showing that periodic traffic is extremely helpful for reducing

synchronization overhead at this stage with ODS.

V. RELATED WORK

Previous research on time synchronization in WSN mostly

focused on enhancing clock accuracy. To combat the non-

determinism along the critical path of wireless communi-

cation [12], RBS [20] proposed a receiver-receiver model

to eliminate sender-side delays. While TPSN [21] applied a

sender-receiver scheme to nullify propagation delay and used

MAC layer time-stamping to mitigate other delays. FTSP [22]

further advanced clock accuracy by marking multiple times-

tamps within one message to remove jitters in interrupt han-

dling. Recently, PulseSync [7] reveals that swiftly distributing

reference time is critical for multi-hop synchronization, since

errors accumulate exponentially with increasing delays. Unlike

their focusing on how to deliver reference time, ODS decides

when to conduct clock calibration for the desired accuracy.

On the other hand, researchers have also tried to study the

fundamentals of clock uncertainty [8][39] for better synchro-

nization accuracy. Many designs assumed constant-rate clock

models [9][38] and applied linear regression to estimate clock

skew [6][20][22][29]. Considering the unpredictable yet rate-

limited variation of clock drift, [7][19] employed bounded-

drift models [9] for the worst-cast analysis. Applying the

bounded-drift model is convenient but not energy efficient for

its overestimated clock instability. On the contrary, [5][36][31]

explored precise skew estimation with sensing aided calibra-

tion, which unfortunately depends on additional hardware [31]

and specific oscillators [5][36]. ACES [3] suggested skew

tracking with complex Kalman filtering and period-level sam-

pling adaption [21][29]. ODS differs from aforementioned

designs starting from the concept of on-demand accuracy that

makes the system more flexible, agile and efficient.

9

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present the first work for on-demand time

synchronization in wireless sensor networks. By applying an

uncertainty-driven mechanism, ODS adaptively adjusts each

clock calibration interval for the desired accuracy with mini-

mum communication overhead. Evaluation results demonstrate

that ODS is practical, efficient and flexible for different and

varying accuracy demands as well as diverse traffic load in the

network. It is also suggested that effective in-field ση calibra-

tion and optimization for periodic traffic are important aspects

for further investigation towards optimal system efficiency.

ACKNOWLEDGEMENT

Supported by NSF grants CNS-0917097, CNS-0845994,

CNS-0720465, InterDigital Inc., and McKnight Land-Grant.

REFERENCES

[1] G.Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
et al. Sensor Network-based Countersniper System. SenSys ’04.

[2] D.L. Mills. Internet Time Synchronization: The network Time Protocol.
IEEE Trans. on Communications, 39(10), 1991.

[3] B.R. Hamilton, X.L. Ma, Q. Zhao, J. Xu. ACES: Adaptive Clock
Estimation and Synchronization Using Kalman Filtering. MobiCom ’08.

[4] M. Pajic and R. Mangharam. Anti-jamming for Embedded Wireless
Networks. IPSN ’09.

[5] T. Schmid, P. Dutta, M. B. Srivastava. High-Resolution, Low-Power Time
Synchronization an Oxymoron No More. IPSN ’10.

[6] H.-S. W. So, G. Nguyen, J. Walrand. Practical Synchronization Tech-
niques for Multi-Channel MAC. MobiCom ’06.

[7] C. Lenzen, P. Sommer and R. Wattenhofer. Optimal Clock Synchroniza-
tion in Networks. SenSys ’09.

[8] The Science of Timekeeping. Hewlet Packard. Application Note 1289.
[9] K. Römer, P. Blum and L. Meier. Time Synchronization and Calibration in

Wireless Sensor Networks. In Handbook of Sensor Networks: Algorithms
and Architectures, Wiley & Sons, Hoboken, NJ, 2005.

[10] J. Elson, and K. Römer. Wireless Sensor Networks: A New Regime for
Time Synchronization. SigComm Comp. Com. Rev. 33(1), 2003.

[11] Cardinal Components Inc. Clock Oscillator Stability: Measuring Clock
Oscillator Frequency Stability. Applications Brief No. A.N. 1006.

[12] H. Kopetz and W. Ochsenreiter. Clock Synchronzation in Distributed
Real-Time Systems. IEEE Trans. on Computers, C36(8), 1987.

[13] Henk Tijms. Understanding Probability: Chance Rules in Everyday Life.
Cambridge University Press, 2004.

[14] P. Dutta, D. Culler and S. Shenker. Procrastination Might Lead to A
Longer and More Useful Lift. HotNets-VI ’09.

[15] T. He, P. A. Vicaire, T. Yan, L.Q. Luo, L. Gu, G. Zhou, et al. Achieving
Real-Time Target Tracking Using Wireless Sensor Networks. RTAS ’06.

[16] J. Elson, and D. Estrin. Time Synchronization for Wireless Sensor
Networks. IPDPS ’01.

[17] H. Dai, and R. Han. TSync: A Lightweight Bidirectional Time Synchro-
nization Service for Wireless Sensor Networks. ACM SigMobile Mob.
Comp. Commun. Rev. 8(1), 2004.

[18] S. Kim, S. Pakzad, D. Culler, J. Demmel, et al. Health Monitoring of
Civil Infrastructures using Wireless Sensor Networks. IPSN ’07.

[19] K. Rmer. Time Synchronization in Ad hoc Networks. MobiHoc ’01.
[20] J. Elson, L. Girod, and D. Estrin. Fine-grained Network Time Synchro-

nization Using Reference Broadcasts. OSDI ’02.
[21] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync Protocol for

Sensor Networks. SenSys ’03.
[22] M. Maróti, B. Kusy, G. Simon, and Á. Ldéczi. The Flooding Time

Synchronization Protocol. SenSys ’04.
[23] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion,

2nd Edition, Springer-Verlag 1994.
[24] Z. Zhong and T. He. MSP: Multi-Sequence Positioning of Wireless

Sensor Nodes. SenSys ’07.
[25] H. Stark, J. W. Woods, Probability and Random Processes with Appli-

cations to Signal Processing, 3rd Edition. Prentice Hall, 2002.
[26] A. El-Hoiyi, J.-D. Decotignie, and J. Hernandez. Low Power MAC

Protocols for Infrastructure Wireless Sensor Networks. EW ’04.

[27] Feller, W. An Introduction to Probability Theory and Its Applications,
V2, 3rd Edition, New York: Wiley, 1971.

[28] W. Ye, F. Silva and J. Heidemann. Ultra-low Duty Cycle MAC with
Scheduled Channel Polling. SenSys ’06.

[29] S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, et al. Estimating Clock
Uncertainty for Efficient Duty-cycling in Sensor Networks. SenSys ’05.

[30] P. Sommer, R. Wattenhofe. Gradient Clock Synchronization in Wireless
Sensor Networks. IPSN ’09.

[31] A. Rowe, V. Gupta, R. Rajkumar. Low-power Clock Synchronization us-
ing Electromagnetic Energy Radiating from AC Power Lines. SenSys ’09.

[32] ATMEL, 8-bit AVRr Microcontroller with 128K Bytes In-System
Programmable Flash, ATmega128/128L. Rev. 2467S-AVR-07/09.

[33] Q. Li, D. Rus. Global Clock Synchronization in Sensor Networks. IEEE
Trans. on Computers, 55(2), 2006.

[34] M. Ceriotti, L. Mottola, G. Picco, A. Murphy, S. Guna, M. Corra,
M. Pozzi, D. Zonta and P. Zanon. Monitoring Heritage Buildings with
Wireless Sensor Networks: The Torre Aquila Deployment. IPSN ’09.

[35] Product List of Seiko Instruments Inc. (SII), 2009. Online availalbe at
http://speed.sii.co.jp/pub/compo/quartz/productListEN.jsp

[36] T. Schmid, D. Torres, M. B. Srivastava. Demo Abstract: Low-power
High-precision Timing Hardware for Sensor Networks. SenSys ’09.

[37] M. C. Ring. MAPM, A Portable Arbitrary Precision Math Library in C.
C/C++ Users Journal. Nov. 2001.

[38] D. Veitch, S. Babu, and A. Pàsztor. Robust Synchronization of Software
Clocks Across the Internet. SigComm’ 04.

[39] D.W. Allan. Should the Classical Variance Be Used as a Basic Measure
in Standards Metrology? IEEE Trans. on I. M., 36, 1987.

APPENDIX

A.1 We drive Eq.15 in four steps:
(i) for the first term in Eq.15, we have

E

[

(
∫ t1

t0

η(u)du

)2
]

=

∫ t1

t0

∫ t1

t0

E[η(u)η(v)]dudv = σ2
η ·∆t

since E[η(u)η(v)] = δ(u− v) · σ2
η , according to Eq.2.

(ii) for the second term in Eq.15, let w(m) =
∫ t0+m

t0
η(u)du, then

E

[

(
∫ t1

t0

∫ t

t0

η(u)dudt

)2
]

=

∫ ∆t

0

∫ ∆t

0

E[w(m)w(n)]dmdn

w(m) is a standard Wiener Process[25], and has a covariance of
E[w(m)w(n)] = min(m,n) · σ2

η [23]. Considering that
∫ ∆t

0

∫ ∆t

0

min(m,n) · σ2
ηdmdn =

∆t3

3
· σ2

η (26)

We have that the second term equals ∆t
3

· σ2
η .

(iii) for the third term in Eq.15, we apply similar substitutions as

E

[∫ t1

t0

η(u)du ·

∫ t1

t0

∫ t

t0

η(u)dudt

]

=

∫ ∆t

0

E[w(∆t)w(m)]dm

where E[w(∆t)w(m)] = m · σ2
η since 0 ≤ m ≤ ∆t. As a result

∫ ∆t

0

E[w(∆t)w(m)]dm =

∫ ∆t

0

(m · σ2
η)dm =

∆t2

2
· σ2

η (27)

Therefore, the third term has a value of −σ2
η ·∆t.

(iv) combining results from (i), (ii) and (iii), we have

E[X2] = σ2
η ·∆t+

∆t

3
· σ2

η − σ2
η ·∆t =

∆t

3
· σ2

η

This finishes the proof. �

A.2 Following the same method in A.1 (ii), we can get

E[Y 2] = E

[

(∫ t1+t

t1

∫ t1+u

t1

η(v)dvdu

)2
]

=
σ2
η

3
· t3 (28)

For E[S̃B
A (t1) · d̃1], Eq.6 and 13 give

S̃B
A (t1) =

d0 − d1
∆t

+X (29)

d̃1 = d1 − µd, so we have

E[S̃B
A (t1) · d̃1] = E

[(

d0 − d1
∆t

+X

)

· (d1 − µd)

]

(30)

where X , d0 and d1 are independent and E[X] = 0. Thus, we have

E[S̃B
A (t1) · d̃1] = E

[

d0 − d1
∆t

· (d1 − µd)

]

= −
σ2
d

∆t
(31)

because E[d1d0] = µ2
d and E[d21] = µ2

d + σ2
d. �

