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a b s t r a c t

Fast target localization without a map is a challenging problem in search and rescue
applications. We propose and evaluate a novel gradient-based method which uses
statistical techniques to estimate the position of a stationary target. Mobile nodes can
then be directed toward the target using the shortest path. Moreover, localization can
be achieved without any assistance from stationary sensor networks. Simulation results
demonstrate nearly a 40% reduction in target acquisition time compared to a random
walk model. In addition, our method can generate a position prediction map which closely
matches the actual distribution in the field. Finally, experiments have been performed
using MicaZ motes which further validate our techniques.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, applications of wireless sensor networks have gained extensive attention in many areas such as tracking,
surveillance and environmental monitoring [1–3]. Moreover, hybrid systems of mobile objects (i.e., robots) and sensor
networks create new frontiers for civilian and military applications, such as search and rescue missions in which the
background environment is inaccessible to humans. Systems combining distributed computation and communication
together with navigational capabilities are likely to be widely deployed in the future.
The challenging problemwe address in this work is to rapidly and accurately navigate a team of mobile sensor nodes toward

a stationary targetwhile consuming the least amount of energy. Previously,most research groups have employed staticwireless
sensor networks to navigate the mobile sensor nodes. For example, Tan in [4] used a distributed static sensor network to
collect data and to execute local calculations. Based on this information, a path could be generated for a set of mobile nodes
to move toward a specific goal. Although the in-network calculation implemented in that project was quite efficient in
creating the shortest routing path, the requirement of an additional stationary distributed sensor network sets a barrier for
rescue applications because of the high cost to cover a large geographic area with a number of sensors. Another group [5]
has proposed gradient methods in which the mobile wireless sensor nodes move along the gradient direction toward a
target. However, in all of these implementations, the assistance of a stationary wireless sensor network was assumed to
be available in generating a local signal distribution map. A probabilistic navigation algorithm is presented in [6], where a
discrete distribution of vertices is introduced to point in the direction of movement. Their model is Markovian, in that the
next state of a robot depends only on the current state and current action. The navigation problem is modeled as a Markov
Decision Process inwhich the vertex is calculated by a value iteration algorithm. This algorithm computes the utility for each
state and then selects the actionwhich yields a path toward the goal having themaximumexpected utility. The shortcomings
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Fig. 1. Mobile sensor nodes enter a target area, maintaining communication with a base station.

of this method are that it requires the arrival of a mobile sensor node to localize the target position and it will introduce
significant communication overhead during the iterative process.
In this paper, we overcome these limitations by incorporating a prediction model of real-time processes into a mobile

sensor network architecture. We are interested in the mutually beneficial collaboration of the algorithms described above
but seek to reduce their costs and provide faster target localization. The novelty of our approach is the integration of a per-node
prediction model with a global prediction model. The per-node prediction model guarantees that a mobile node can acquire
the position of a target alone, while the global prediction significantly reduces the navigation overhead and time through
collaboration with other nodes.
Ourmodel provides amoremeaningful description andutilization of individual sensor information by taking into account

their accuracy and confidence level. Furthermore, our model works with a single mobile sensor node as well as a swarm of
mobile sensor nodes. In the latter case, the sensor nodes have the ability to share local information in order to draw a
global picture, which helps each sensor node to acquire the target along a significantly shorter path. Finally, the in-network
prediction algorithm enables faster yet accurate target position acquisition: sensor nodes would be required to reach the
target onlywhen themodel prediction is not accurate enough to satisfy the requirementwith an acceptable confidence. This
allows a significant reduction in navigation energy. A preliminary description of some of this work was presented in [16].
The remainder of the paper is organized as follows. In Section 2, we describe the basic structure of our prediction model.

Section 3 continues this discussion by providing themathematical details used in the design of the system. The collaborative
prediction algorithm is described in Section 4. Section 5 presents the experimental procedure that has been used to calibrate
themodel aswell as simulation results for the performance of our system. This is followed by a discussion of the optimization
issues involved and the lessons which have been learned in this study, as well as a discussion of related work. Finally, our
conclusions and future research objectives are given.

2. Prediction model structure

We assume that every sensor node can act as both a remote sensor and as a network relay. Several methods have been
proposed to accomplish this. For example, IGF [9] provides a routing scheme to maintain connectivity amongmobile sensor
nodes. In [10], back-up sensor nodes have been shown to provide extra energy-saving benefits aside from maintaining the
global network framework.
Furthermore, if a mobile sensor node enters an unknown area, it must be able to determine its own location, such as

through GPS, as in ZebraNet [7] and VigilNet [2]. Alternatively, a dynamic localization scheme [8] may also be used which
adjusts the estimated location of a node periodically based on its recent motion.
The main goal of our gradient-based target acquisition scheme (which we call GraDrive) is to predict the location of

stationary targets within an allowable uncertainty or confidence level. A typical scenario is depicted in Fig. 1. Our method
can be briefly described as follows: The control center (i.e, base station) disseminates a search objective to a mobile sensor
network with two parameters, the error tolerance and the confidence level of the target. These factors specify the desired
quality of the target acquisition process. For example, an objective could be to locate a target within 2 m with at least 95%
confidence. The tolerance levels for each mobile sensor node may be assigned on a per-node basis if different nodes have
been designed for different purposes. Once the individual nodes have received a request for target acquisition, each one
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Fig. 2. Collaborative prediction scheme of GraDrive.

determines the most efficient way to locate the potential target with the requested tolerance levels. This process occurs
individually at each mobile sensor node using a per-node prediction model. In particular, a node starts to move in the
direction which it anticipates is the shortest path to reach the target.
In addition to its own plan and navigation, sensor nodes also report back to the base station, where all the individual

nodes’ readings and plans are collected in order to create a global map and an uncertainty area. Then, the base station can
disseminate global prediction data over the network so that each sensor node can update its own model accordingly. Each
individual sensor node continuously predicts the target positionwith increasing accuracy as itmoves toward the target. This
process is illustrated in Fig. 2, where the progression from scene (A) to scene (D) shows how the area of uncertainty shrinks
as the mobile node approaches the target. Thus, our system uses dynamic, cooperative processes to direct its operation as
opposed to using a static navigation plan [6,11].

3. GraDrive model details

In this section, we formally describe our per-node prediction model to estimate the position of a stationary target with a
given confidence. This per-node prediction model forms the basis for global collaborative prediction described in Section 4.
In general, we allow an unknown area having multiple targets. However, the search for each separate target is independent
as long as the field generated by one target doesn’t overwhelm that generated by others. Therefore in the remainder of this
paper, we focus on only the single target acquisition problem.

3.1. Formulation

We begin with a value-prediction problem, which creates a Received Signal Strength Indicator (RSSI), F(θ), over a
parameter set θ . For example, if θ = (d, t, v), RSSI is related to d, the distance between a mobile sensor node and the target,
t , the time of sampling, and v, the speed of themobile sensor nodes. This model can be established by obtaining consecutive
sensing readings (system states) as a mobile sensor node moves. Typically, the number of parameters in θ is much less than
the number of states collected and changing one parameter changes the estimated value of many states. To approximate
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our model appropriately, we seek to minimize the mean squared error over some distribution, P , of the inputs. In our value-
prediction problem, the inputs are states which include sensor node position and predicted target position information. The
target function is the true RSSI Fπ , so the mean squared error (MSE) for an approximation F T , using parameter θ , is

MSE(θ) =
∑
pi(Fπi − F

T
i )
2 (1)

where pi is a distribution weighting the errors of different states. We need the distribution function because it is usually
not possible to reduce the error to zero for all inputs, as there are generally far more states than components in θ . Better
approximation at some states can be gained generally only at the expense of less accuracy for other states.

3.2. Remoteness prediction model

In GraDrive, we use a Gaussian distribution of two variables. The predicted distance from the sensor nodes’ current
position to the predicted target position can be queried or estimated from the model. The multidimensional Gaussian
distribution function over two attributes, trust interval and RSSI, can be expressed as a function of two parameters: a 2-
tuple vector of means, µ, and a 2 × 2 matrix of covariances, Σ . Further, we assume the trust interval set by a rescue team
is independent of the RSSI received, which means the trust interval of the predicted distance estimation Ti to the mean of
historic results µ doesn’t change dynamically during the search process. Without loss of generality, it is assumed that the
predicted distance d is inversely proportional to RSSI: d = r1/RSSI + r2, where r1 and r2 are two adjustable parameters
that can be determined prior to the searching process. We note that other RSSI attenuation models can be used here as well
without invaliding our approach.We then use historical or experimental data to construct themodels, providing appropriate
values of r1 and r2 at each RSSI value.
In addition to determining the predicted distance, a probability model is also constructed in order to provide the

confidence level of the prediction. For example, given a predicted distance of 2 feet, the confidence level for this prediction
may be 95%. The model must be trained before it can be used, which is a limitation of any probabilistic model. The accuracy
of the model, therefore, depends on the accuracy of data used to train it. Once the initial model is constructed, each sensor
node can query the predicted distance map and come up with a confidence value. One distribution of the distance d against
the confidence p over one RSSI is a Gaussian distribution. Suppose that a rescue team has set a trust interval of Ti. Given the
distribution of distance over one RSSI, we can find the points di which satisfy P(di)− P(u) ≤ Ti. Here we emphasize that if
the trust interval is too small, the amount of data needed to train the model will increase significantly.

3.3. Prediction model of signal strength distribution

Aside from obtaining the distance d information based on measured RSSI , we can further refine the RSSI distribution
model. This model can then be used to navigate the mobile sensor network toward the target on a shortest path. The central
element in our approach is to construct a prediction model that represents attributes as accurately as possible in a mobile
sensor network. As discussed above, if the predicted RSSI distribution function depends on parameters including distance
d and confidence or probability p, the function can be expressed as F(d, p). Assuming that the distributions for d and p are
independent, we then have:

F(d, p) = f (d0, d1, d2, . . .)f (p) (2)

where the di are related to the distance variable d. To reduce the energy needed to perform the computations, only a second-
order expansion is considered here, which leads to the 3-component vector D = [d0, d1, d2]:

d0 = c0
d1 = 1/(d+ c1)

d2 = 1/(d2 + c2)
(3)

where c1, c2, c3 are constants included to avoid having a singularity at d = 0. Now we can define our gradient distribution
function in the following compact format:

F = DAp where A = [a0, a1, a2]. (4)

Eq. (4) is our probabilistic gradient distribution prediction function given the attributes d and p. Suppose that each sensor
node observes the value of attribute Dj to be dj. We combine the input sensor values into a vector Dj. Then, a set of these
vectors is assembled into the matrix shown below:

D =

∣∣∣∣∣∣∣
d00 d10 d20
d01 d11 d21
· · · · · · · · ·

d0n d1n d2n

∣∣∣∣∣∣∣ . (5)



Author's personal copy

Q. Zhang et al. / Pervasive and Mobile Computing 5 (2009) 37–48 41

Fig. 3. Example of the probability weight average localization algorithm.

If enough sensor readings are provided, we can apply nonlinear least squares fitting to estimate the parameters A. To
accomplish this, linear least squares fitting may be applied iteratively to a linearized form of the function until convergence
is achieved. Since we can anticipate a power-law type of fit and already have selected initial parameters values for our
models, the nonlinear fitting process has good convergence properties.
Perpendicular least squares fitting proceeds by finding the sum of the squares of the actual deviations of a set of data

points to achieve the following minimum:

min
(∑ (

Fπi − (a0d0i + a1d1i + a2d2i)
)2)

. (6)

The square deviations from each sensing sampling point are therefore summed, and the resulting residual is then mini-
mized to find the best fit for the sensing reading. This procedure results in the outlying points being given disproportionately
large weight.
In general, the computation of such a matrix may consume a large amount of a wireless nodes’ energy. The solution in

GraDrive is to simplify the prediction distribution function as above, given that the prediction function computation can be
distributed over the network with collaboration of its neighbors or the data to be delivered back to a base station where
the computational ability and energy are normally not limitations. If this is the case, the base station creates a gradient
distribution map globally using a weighted average method as a function of probability and predicted distribution. This
kind of global information is then sent back to each individual node in the system.

4. Collaborative prediction in target localization

Based on the per-node prediction model, the mobile sensor nodes can infer the target position (x, y) and the associated
confidence value p. This information is then used to perform global predictions. Specifically, we propose to use a probability-
weighted average model for global collaborative prediction, due to its high efficiency and low cost. The rationale behind our
method is that the sensor nodes having a higher probability are much closer to the intended target. An example of this
model is illustrated in Fig. 3, where the position of the target is estimated within the triangle formed by the three per-node
prediction results.
Let the predicted target locations provided by sensor nodes n1, n2, . . . , nk be (x1, y1), (x2, y2), . . . , (xk, yk), with

probability values p1, p2, . . . , pk, respectively. The estimated position of the target is then given as:

X =

k∑
i=1
pkxk

k∑
i=1
pk

Y =

k∑
i=1
pkyk

k∑
i=1
pk

. (7)

4.1. Collaborative navigation for mobile sensor nodes

With per-node and global prediction models established, we are now ready to describe how the sensor nodes navigate
using these twomodels. There is no assumption that the sensor nodes know themap before entering. The flexibility provided
to themobile sensor nodes should not be an issuewhen considering our navigation protocol, because it is in general designed
for an active navigation application. We simply assume that the mobile sensor nodes can rotate at any angle at any position.
Algorithm 1 illustrates the proposed navigation plan for the mobile sensor nodes. This algorithm requires inputs from both
local sensor nodes and the base station. Local sensor nodes calculate their direction of movement by using local information
sensed by itself or global information broadcast by the base station.
Initially, sensor nodes enter a region of interest with certain speeds, directions and confidence intervals. It should be

noted that different mobile sensor nodes may have different speeds or initial directions. A default navigation plan is used,
which is to keepmoving forward unless a node detects a smaller RSSI reading. During themotion, nodes themselves perform
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Algorithm 1 Navigation of mobile sensor nodes and prediction
1: Suppose mobile sensor node A enters the unknown area with a random direction
2: Global prediction = N/A
3: repeat
4: Node A checks the sensed RSSI, stores the value and reports it to the base
5: if the confidence of global prediction> a certain threshold then
6: next navigation direction = the direction of global prediction;
7: else if Current Sensed RSSI> Last Sensed RSSI then
8: Keep moving;
9: else
10: Rotate counterclockwise 90◦ and keep moving;
11: end if
12: Predict the target location and associated confidence using RSSI
13: A base station collects all the predictions generated by individual nodes and merges them into a global prediction.
14: if The changes in global prediction> a certain threshold then
15: Disseminate the global prediction to all nodes.
16: end if
17: until Target Acquisition Confidence reaches the dictated objective
18: Report the target position;

per-node prediction calculations to construct the local RSSI map as described in Section 3.3. Meanwhile, the sensor nodes
estimate their distance to the target position according to the sensed RSSI, randomly selecting one prediction within its
confidence interval. The predicted target location information is forwarded back to a base station. To prevent excessive
energy consumption in communication, the frequency of updates can be specified in advance. As long as the global picture
is not available, individual sensor nodes navigate according to the per-node prediction model. However, if the base station
notifies the sensor nodes that it has constructed a global RSSI distribution with certain confidence, each sensor node will
combine the information with its current model and change its direction toward the gradient direction. This process will be
repeated until the target position has been discovered locally or at the base station within acceptable confidence.

4.2. Default navigation plan

If initially there is no global picture constructed by the base station with acceptable confidence, or if the network is
partitioned or unable to deliver the data, the mobile sensor nodes fall back to the per-node prediction model. Its current
sensor reading is compared with previous readings stored in memory at each motion step. If it detects a smaller RSSI, it
rotates 90 degrees clockwise as shown in Fig. 4, since the the target position is most likely located perpendicularly to its
previous direction of movement.

5. Experimental setup and simulation

5.1. Model fitting experiment

In order to verify the feasibility of the proposed prediction model and parameter-fitting algorithms, we have prototyped
a light sensing system based on Berkeley MicaZ motes, as shown in Fig. 5. Even though it is stationary, the prediction model
and parameter-fitting algorithms can still be verified at the base station site which can be transferred to individual sensor
nodes and implemented. Light signal strength is used as an example of RSSI to feed the model. One laptop equipped with
motherboard acts as the base station. A lamp is used as a target and a series of sensor nodes are deployed. The sensor nodes
detect the sensing reading and exchange the readings to their neighbors. The base station calculates the parameters for
the sensor nodes by using the least square fitting method. Fig. 6 shows one set of data fitted by the prediction model. The
distance between two adjacent sensor nodes is equal and unified formatching purposes. Since the received signal strength is
not an accurate measurement, the probability approximationmodel comes into play. From thematching results, it is shown
that the least squares method tries to reduce the deviation among the sensing data collected. Other sets of data can also be
collected and used to train the model before it can be applied to the mobile sensor scenario.

5.2. Simulation setup

Wehave developed a program to verify the advantage of using our predictionmodel to locate the target. In our simulation,
a 200×200m2 area is regarded as an unknown spacewith a target located at the center and an initial distribution is specified.
Essentially, it could be any random distribution that having a gradient toward the center. Each distance unit is represented
as the smallest unit that the mobile sensor nodes can travel in one unit of simulation time. The navigation algorithm is used
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Fig. 4. Default navigation plan for individual sensor node.

Fig. 5. Model fitting experiment with light as a signal source and using MicaZ motes in array to sense the signal strength.

Fig. 6. The predicted model with real sensing data.

to simulate the mobility of objects. Initially, the mobile nodes are located at the edges of the area. The initial direction is
randomly picked by each mobile sensor node. If a nodes reaches the boundary of the simulation region, it simply reverses
its direction to move back into the allowed area. Under simulation, each mobile sensor node moves at a constant speed in
integer multiples of 1 m/s. After a unit of time (1 s in our case) has elapsed, a node recomputes its direction of movement
according to the algorithm.
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Fig. 7. Convergence time with node number for different models.

Fig. 8. Convergence time as a function of the number of nodes for different required confidence levels.

5.3. Delay in target acquisition

We first compare our algorithm (without the global distribution calculation option) against a random way point model
(RWPM). The simulation results (Fig. 7) suggest that even without using the global distribution calculation, our default
procedure (i.e., rotating 90 degrees counterclockwise) provides 30% faster estimation than with the RWPM method. The
process operates even faster if the global information is available.

5.4. Impact of the Confidence p

We also compare the impact of different required confidence levels on the convergence time, as shown in Fig. 8. It is
clear that if the required confidence level goes beyond 90%, it will take much longer to simulate simply because it requires
at least 2 nodes to get very close to the target position. It is reasonable to choose a relatively high confidence level, e.g. 80%,
in order to balance accuracy and time cost.

5.5. Impact of the target speed

In Fig. 9, we further investigate the relationship between the speed of the sensor nodes and the prediction accuracy of
the target location. The convergence time correlated directly with the speed of each sensor node since the average time
for sensor nodes to get closer to the target is reduced. However, the accuracy of the prediction becomes worse if the speed
increases because the minimum deviation for the prediction is increased as well. Therefore, the error continues to grow in
the prediction as a node moves faster away from its original location. In the situation of high speed, an accuracy error larger
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Fig. 9. Convergence time and accuracy with different moving speeds of mobile sensor nodes.

Fig. 10. Examples of sensors prediction by using probabilistic model. (A) and (B) show the same node’s prediction at different locations. (C) and (D) show
another node’s prediction at different locations.

than 10 units is shown. To protect against inaccuracies in the prediction model of mobile sensor nodes, a user must set a
limit for the speed of sensor nodes.

5.6. Case study of global information distribution

Fig. 10 illustrates one example of the calculation of our predictionmodel. A sensor node starting far away from the target
location tends to have a conservative prediction and a low probability due to the low signal strength it detects. The predicted
probability increases nonlinearlywith the sensed signal strength. A similar example is obtained for another sensor node that
has a different direction of movement, as shown in Fig. 10(C) and (D). The prediction result for it tends to bemore aggressive
given its larger sensed signal strength. A rotation event is then triggered when it detects that the RSSI has become reduced.
A new prediction process starts immediately when using the default plan. The prediction results at this stage are processed
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Fig. 11. Example for global signal strength distribution and its prediction results calculated at the base station by combining prediction results from 2
sensor nodes. The plot on the left is the actual distribution while the one on the right is the prediction.

together at the base station, and a global signal strength distribution is generated as shown in Fig. 11. Compared with the
real distribution, it is a precise approximation in terms of the gradient direction and the target location prediction.

6. Optimization and lessons learned

This section describes the key optimizations that can be applied to the existing design and some insights obtained in the
course of this work.

6.1. Global strength signal distribution calculation

Our global signal strength distribution calculation is done by a central base station due to the required complex matrix
calculations. This process transfers most of the calculational burden to a central station where energy usually is not a
problem. However, it could potentially induce a significant delay if the search area is large. Thus, use of highly efficient
local calculations is an important characteristic of successful implementations of our model.

6.2. Accuracy of target localization

In our model, we assume that mobile sensor nodes can recognize their position through motion estimation. Then, they
use their localization information to estimate the target position. One problem is that we haven’t been able to reduce the
impact of high movement speeds on the accuracy of target estimation. Since we have found that a sensor node at low speed
can provide high accuracy of estimation, it is wise to reduce the speed of a sensor node as it gets close to the target position.

6.3. Mobile target acquisition

Although we have described our GraDrive algorithm in the context of a stationary target acquisition, we expect that
our design can be extended to a mobile target acquisition scenario as well. In the mobile target case, the global prediction
could be invalidated very quickly. Therefore, it is desirable to build amore accurate per-node predictionmodel to reduce the
communication overhead involving global updates. In addition, it is critical to analyze the resource requirements in terms of
communication and navigation overhead under different target speeds. More advanced group-based navigation protocols
must be developed to precisely identify the target location within a minimal amount of time.

7. Related work

RSSI has previously been used for estimating the distance between a sender and receiver. In the RADAR system [12], RSSI
is used to build a centralized repository of signal strengths at various positions and then dynamically determine the location
of a mobile unit. In [13], the localization problem is formulated as a real-time estimation in a nonlinear dynamic system and
a Robust Extended Kalman Filter is proposed to provide a solution. In [14], the limits of RSSI in terms of localization accuracy
and computational requirements are presented.
Several other methods for localization in mobile sensor networks have also been proposed. The use of a mobile beacon

with in-ranging is proposed in [17], in which the beacon uses GPS in order to determine localization information. An event-
based approach using static sensors and a small number of mobile robots has been described in [18]. Ref. [19] proposes the
use of mobile anchor points to implement a range-free system. A potential-based partitioning algorithm for localization in a
hybrid network consisting of fixed sensor nodes and mobile robots has been presented in [20,21]. The TARANTULAS system
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described a systemof sensors and actuators inwhich the static nodes provide landmarks for themobile nodes [22]. Amethod
using extremely low frequency magnetic fields for localization is presented in [23]. Ref. [24] uses acoustical techniques to
locate and track targets.
Navigation is another challenging topic in mobile wireless sensor networks. Most previously developed navigation

techniques require stationary sensor nodes that have already been deployed in the field. In the Flashlight System [15], the
sensor network models signal strength across an area by introducing an artificial field. The field strength is determined by
collecting navigational information from the sensors in the local region. Ref. [25] processes GPS and other information from
fixed points using a continuous-discrete extended Kalman filter to assist in robotic navigation. However, inmany navigation
cases such stationary auxiliary systems are not available. The navigation information gathered from a few local sensor nodes
does not fully utilize the computational capability of the entire distributed sensor network. The advantage of our approach
is that the combination of per-node and global prediction models can significantly reduce the inaccuracy existing in each
individual sensor node.

8. Conclusions and future work

In this paperwehave presented a probabilistic predictionmodel and algorithm for dynamic target localization. Ourmodel
does not require any map to determine the positions of the targets. Also, the proposed gradient driven algorithm leads to a
40% reduction in time compared to that of a random path model. The relationship between sensor density and convergence
time can be used as a guideline for planning the deployment of a mobile sensor network. While the computational energy
requirements may be significant, the error of the predicted target position can be driven to almost zero in a short period of
time. For our future work, we would like to design a speed self-adjusting algorithm so that a sensor node has the ability to
trade-off performance and cost.
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