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Abstract—Wireless power transfer technology is considered as
one of the promising solutions to address the energy limitation
problems for end-devices, but its incurred potential risk of
electromagnetic radiation (EMR) exposure is largely overlooked
by most existing works. In this paper, we consider the Safe
Charging with Adjustable PowEr (SCAPE) problem, namely,
how to adjust the power of chargers to maximize the charging
utility of devices, while assuring that EMR intensity at any
location in the field does not exceed a given threshold Rt. We
present novel techniques to reformulate SCAPE into a traditional
linear programming problem, and then remove its redundant
constraints as much as possible to reduce computational effort.
Next, we propose a distributed algorithm with provable approx-
imation ratio (1− ǫ). Through extensive simulation and testbed
experiments, we demonstrate that our (1 − ǫ)-approximation
algorithm outperforms the Set-Cover algorithm by up to 23%,
and has an average performance gain of 41.1% over the SCP
algorithm in terms of the overall charging utility.

I. INTRODUCTION

In recent years, wireless power transfer technology [1] has

been attracting great interests of industry and researchers. As

a commercialized and controllable technology, it is one of

the promising technologies to address the energy limitation

problems for end-devices such as RFIDs [2], sensors [3], cell

phones [4], laptops [5], vehicles [6] and unmanned planes [7].

Though there has emerged a variety of works dedicated

to energy efficiency issues with respect to wireless power

transfer technology [8]–[13], most of them overlooked the

potential risk of electromagnetic radiation (EMR) brought by

this technology. Exposure to high EMR, however, has been

widely recognized as a threat to human health. Its potential

risks include but not limited to mental diseases [14], tissue

impairment [15] and brain tumor [16]. In addition, there has

been solid evidence that pregnant women and children are

even more vulnerable to high EMR exposure [17] [18]. For

example, Gandhi et al. [18] found that children’s heads absorb

over two times of RF than adults, and their absorption of

the skull’s bone marrow can be ten times greater than adults.

These facts suggest the need for considering EMR safety when

applying wireless power transfer technology.

In this paper, we attempt to improve the overall charging

performance under EMR safety concern, where chargers can

continuously adjust their power level within an appropriate

range. Basically, our objective is to maximize the overall

charging utility of devices by adjusting the power of chargers,

while assuring that no location has EMR intensity exceeding

a given threshold.

Intuitively, this problem is quite challenging as the EMR

safety requirement is imposed on every point in the field,

which corresponds to an infinite number of constraints. To

make the problem tractable, we present an approximation

approach to reformulate the problem as a linear programming

problem with limited constraints, and also devise a novel

distributed approach to reduce the computational efforts of

the problem. After that, we develop a (1 − ǫ)-approximation

distributed algorithm to deal with this problem.

The main contributions of this paper are listed as follows.

• To the best of our knowledge, this is the first paper

considering the problem of maximizing the charging

efficiency of the network under EMR safety concern, by

adjusting the power of chargers. We formulate this prob-

lem as Safe Charging with Adjustable PowEr (SCAPE)

problem.

• We present an area discretization technique to help re-

formulating the problem into a traditional linear pro-

gramming (LP) problem. Further, we propose a novel

distributed redundant constraint reduction scheme to cut

down the number of constraints, and thus reduce the

computational efforts of the LP problem.

• We develop a distributed algorithm to deal with the

SCAPE problem, and prove that it achieves (1 − ǫ)-
approximation ratio.

• We build a testbed to evaluate the performance of our

algorithms. Experimental results show that our algorithm

successfully controls the maximal EMR in the field under

a given threshold Rt, and has an average performance

gain of 41.1% compared with the SCP algorithm. Further-

more, we also conduct comprehensive simulations. The

results show that our algorithm outperforms the Set-Cover

algorithm by up to 23%.

The remainder of the paper is organized as follows. We

review related work in Sec. II, and formally define the problem

in Sec. III. Sec. IV introduces a novel approach to reformulate

the problem, and Sec. V proposes a distributed method to

reduce its computational efforts. Next, we present an approx-

imation algorithm in Sec. VI. Sec. VII and Sec. VIII present

extensive simulation results and testbed experiment results to

validate our theoretical fingings, and Sec. IX concludes.



II. RELATED WORK

In this section, we briefly review related works studying

energy efficiency problems in wireless rechargeable sensor

networks with wireless power transfer technology, and that

considered EMR safety.

First, we concentrate on the works about how to deploy

static chargers to maximize the charging efficiency of sensor

nodes. For example, He et al. [8] considered the deployment

problem of chargers such that static or mobile rechargeable

tags can receive sufficient power to keep continuous operation,

while the required number of chargers can be minimized. Dai

et al. [9] [13] further improved the solution by taking into

consideration practical issues such as battery constraints of

tags. In [10], Chiu et al. studied the problem of maximizing

the survival rate of end-devices with prior knowledge of the

mobility model of sensor nodes. Liao et al. [11] adopted a

more practical charging model by assuming that the coverage

area of a charger is a cone, and considered the placement prob-

lem of chargers in three-dimensional space. Their objective is

to minimize the number of deployed chargers while assuring

that all sensor nodes are covered.

All the above schemes did not consider EMR safety during

charging process. [19] is the first and only work, as far as we

know, to study the energy efficiency problem under concern

of EMR safety. We emphasize that this work is fundamentally

different from that of [19] in the following aspects. First of

all, [19] considered a simplified charger scheduling model in

which chargers can be only in either of the on/off states, while

we assume that the power of chargers is adjustable in this

paper. Second, the proposed algorithm in [19] is essentially

a centralized algorithm. In contrast, the algorithm presented

in this paper is a distributed one. Third, though the algorithm

in [19] has been proved to outperform the optimal solution

for the problem with a relaxed EMR threshold (1 − ǫ)Rt, it

is, however, not an approximation algorithm since it relaxes

the EMR constraints. Conversely, our distributed algorithm

provably achieves an approximation ratio of (1− ǫ).

III. PROBLEM STATEMENT

A. Preliminaries

Suppose that there is a set of n identical stationary wireless

power chargers S = {s1, s2, . . . , sn} and m rechargeable de-

vices O = {o1, o2, . . . , om} distributed on a two-dimensional

plane. The devices can harvest wireless power originated from

the chargers and thus maintain normal working.

We assume that all the chargers can continuously adjust its

power level from 0 to a maximum power. When a charger

works at the maximum power, the received power P (d) by a

device with a distance d from the charger can be quantified

by an empirical model [8], i.e.,

P (d) =

{

α
(d+β)2 , d ≤ D

0, d > D
(1)

where α and β are known constants determined by the

hardware of the charger and the receiver, as well as the

environment. Because of the hardware constraint, the received

power from the charger decreases dramatically as the distance

increases, and the energy field far away from the charger will

be too small to be received by a node. We characterize this

property by using D to denote the farthest distance a charger

can reach, as Eq. 1 illustrates.

We define adjusting factor xi (0 ≤ xi ≤ 1, i = 1, . . . , n)
as the ratio of the current adjusted power to the maximum

allowed power for the charger si. Therefore, the power a

device received from a charger with distance d and adjusting

factor xi can be expressed as P (d)xi. Besides, we assume the

wireless power originating from multiple chargers received by

a receiver is additive [8].

We assume that each charger is aware of its location.

Two chargers are neighbors to each other if and only if

their coverage areas intersect. Formally, we denote by N(si)
the set of neighbors of the charger si. Each charger can

simultaneously communicate with their neighbors wirelessly

during charging process [20] [21], which implies that the

wireless communication range is at least twice the charging

range, i.e., 2D. This assumption is practical since the effective

charging distance for most off-the-shelf products is usually

short, e.g., less than 10m for TX91501 power transmitters

produced by Powercast [3], while the wireless communication

range for chargers is typically larger than 20m.

For the charging utility model, we define the charging utility

to be proportional to the charging power, namely

u(oj) = C1

n
∑

i=1

P (d(si, oj))xi, (2)

where d(si, oj) is the distance from the charger si to the device

oj , and C1 is a predetermined constant.

We adopt the EMR model which is proposed and exper-

imentally verified by [19]. That is, the intensity of EMR

is proportional to the received power there, i.e., e(d) =
C2P (d)xi where d is the distance and C2 is the constant to

capture the linear relation. Assuming EMR is also additive,

the accumulated EMR at a location p is thus

e(p) =
∑

si∈S

e(d(si, p)) = C2

∑

si∈S

P (d(si, p))xi. (3)

A summary of the notations in this paper is given in Table

I.

B. Problem Description

With the aforementioned models, we describe and mathe-

matically formulate our problem in this subsection.

In order to control the EMR level over the field, we establish

an appropriate EMR threshold Rt and require that EMR at

any point p in the field should not exceed Rt. By Eq. 3, this

requirement can be formally expressed as

∀p ∈ R
2, C2

∑n

i=1
P (d(si, p))xi ≤ Rt.



TABLE I
NOTATIONS

Symbol Meaning

si, S Charger i, charger set
oj , O Device j, device set
P (d) Received power from distance d

D Farthest distance a charger can reach
d(si, oj) Distance from charger si to device oj
d(si, p) Distance from charger si to point p
u(oj) Charging utility of device oj

e(d), e(p) EMR from distance d, EMR at point p
xi Adjusting factor of charger si
Rt Hard threshold of EMR safety

N(si) Neighbor set1 of charger si
1 Two chargers are neighbors to each other if and only if

their coverage areas intersect.

Area Discretization and 

Problem Reformulation
SCAPE

Distributed Redundant 

Constraint Reduction

Sec. IV Sec. V Sec. VI

-Approximation 

Distributed Algorithm

Fig. 1. Illustration of SCAPE workflow

On the other hand, our objective is to maximize the overall

charging utility from all devices, namely,
∑m

j=1 u(oj). By Eq.

2, we have
∑m

j=1
u(oj) = C1

∑n

i=1
(
∑m

j=1
P (d(si, oj)))xi.

To sum up, the Safe Charging with Adjustable PowEr

problem (SCAPE) can thus be defined as follows

(P1) max C1

∑n

i=1
(
∑m

j=1
P (d(si, oj)))xi

s.t. ∀p ∈ R
2, C2

∑n

i=1
P (d(si, p))xi ≤ Rt,

0 ≤ xi ≤ 1 (i = 1, 2, . . . , n). (4)

It is very challenging to solve SCAPE seeing from the above

formulation. The constraint in SCAPE is imposed on every

point on the plane, which means that there is indeed an infinite

number of constraints. We will introduce the overview of our

solution to address this problem below.

C. Overview of Our Solution

To convey the main idea of the scheme in this paper, we

first present an overview of our solution.

The workflow of our solution is illustrated in Fig. 1. First of

all, in view of the challenge caused by the infinite number of

constraints in problem P1, we propose a novel area discretiza-

tion method to partition the field into a limited number of

sub-areas. By expressing the EMR safety requirement in each

of these sub-areas as a constraint, we reformulate the original

intractable problem P1 into a classical linear programming

problem (Sec. IV). Next, we discuss how to implement the area

discretization method in a distributed manner. As the number

of obtained linear constraints explodes with the network scale

and the granularity of area discretization and leads to high

computational efforts, we develop a distributed algorithm to

identify and reduce the redundant constraints at the second step

(Sec. V). Finally, we propose a distributed algorithm to address

the problem, which provably achieves (1 − ǫ)-approximation

ratio (Sec. VI).
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Fig. 2. Illustration of plane discretization

IV. AREA DISCRETIZATION AND PROBLEM

REFORMULATION

In this section, we first introduce an area discretization

method to reduce the number of constraints from infinite to

finite, and thereby reformulate our problem into a traditional

linear programming problem. Finally, we discuss how to

implement this method in a distributed manner.

A. Area Discretization

In this subsection, we will demonstrate how to discretize

the 2D area based on a piecewise constant approximation of

e(d).
To begin with, we use multiple piecewise constant segments

ε(d) to approximate the EMR function e(d). We intelligently

control the number of segments K and their end points

ℓ(1), ..., ℓ(K) (ℓ(0) = D, ℓ(K) = D) such that the ap-

proximation error is less than a given small number ǫ. After

that, we draw concentric circles with radius ℓ(1), ..., ℓ(K)
for each charger, respectively. The approximated EMR from

the charger at any point between adjacent circles should be

uniform. Finally, the whole network plane is partitioned into

multiple sub-area faces, which are shaped by these circles.

Taking Fig. 2 as an example. The EMR function e(d) is ap-

proximated by 2 piecewise constant segments with endpoints

ℓ(1) and ℓ(2). Then, given 3 chargers on the plane, we draw 2

concentric circles for each of them, and therefore, the network

plane is partitioned into 13 sub-area faces, including the outer

face with no EMR. For each sub-area face, such as Fq in

Fig. 2, the approximated EMR at any point within it from

each charger should be constant.

We define the following approximation of EMR and bound

its approximation error.

Definition 4.1: Setting ℓ(0) = 0, ℓ(K) = D, and ℓ(k) =
β((1 + ǫ)k/2 − 1), (k = 1, ...,K − 1), the piecewise constant

function ε(d) can be defined as

ε(d) =















e(ℓ(0)), d = ℓ(0)

e(ℓ(k − 1)), ℓ(k − 1) < d ≤ ℓ(k) (k = 1, ...K)

0, d > D.
(5)

Note that ǫ is a given error threshold.

Theorem 4.1: With ε(d), the approximation error of EMR

is subject to
ε(d)

e(d)
≤ 1 + ǫ, (d ≤ D). (6)



We proceed to bound the approximation error of EMR in

each sub-area face, as well as the number of sub-area faces.

Let ε(p) be the approximated EMR of any position p in the

face Fq , namely, ε(p) =
∑n

i=1 εqixi, ∀p ∈ Fq , where εqi is a

constant that denotes the approximated EMR stemming from

the charger si in the face Fq . Then, we have the following

theorem.

Theorem 4.2: The approximation error of any position p in

the face Fq satisfies

ε(p)

e(p)
≤ 1 + ǫ, ∀p ∈ Fq. (7)

Proof: Clearly, we have
ε(p)
e(p) =

∑
n
i=1

εqixi∑
n
i=1

e(d(si,p))xi
. Com-

bining Eq. 6, the result follows.

Theorem 4.3: The number of sub-area faces Z satisfies

Z = O(N2ǫ−2). (8)

Proof: By Def. 4.1, we can derive that the number of

divided sub-areas K is given by K =
⌈

ln(e(0)/e(D))
ln(1+ǫ)

⌉

, which

means K = O(ǫ−1). Besides, it is clear that the number of

all concentric circles is NK. Based on the classical results

of [22], the number of sub-area faces formed by NK circles

satisfies Z ≤ (NK)2 −NK + 2. The result follows.

B. Problem Reformulation

After the approximation procedures introduced above, we

reduce the number of constraints in P1 from infinite to finite.

As a result, SCAPE is reformulated as

(P2) max C1

∑n

i=1
(
∑m

j=1
P (d(si, oj)))xi

s.t. C2

∑n

i=1
Pqixi ≤ Rt, (q = 1, . . . , Z)

0 ≤ xi ≤ 1, (i = 1, 2, . . . , n). (9)

This is a typical linear programming problem. Mathemati-

cally, it can be solved by integer programming solvers such

as CPLEX [23]. However, the number of the faces will

explode with a large network size and a small value of ǫ.
To tackle this challenge, it is desirable to develop distributed

algorithms to address the problem. Before going into the

details of distributed algorithms, we need to implement the

area discretization method in a distributed manner.

C. Distributed Implementation of Area Discretization

Recall that chargers are assumed to know its location a

priori. Each charger can exchange the location information

with its neighbors, and thereby discretize its covered disk area

accordingly. After that, each charger will obtain a list of linear

constraints, and neighboring chargers must share at least one

constraint as they have intersection sub-areas.

V. DISTRIBUTED REDUNDANT CONSTRAINT REDUCTION

In this section, we investigate how to identify and remove

redundant linear constraints in a distributed way to reduce

the computational effort. In particular, we propose a two-

step algorithm to deal with this problem. We note that this
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Fig. 3. Illustration of an example of constraint reduction

algorithm is only performed once after the deployment of

chargers, and it doesn’t need the knowledge of position or

charging power of devices. Therefore, its computational time

is amortized over time and thus is negligible.

By redundant constraints, we mean those constraints whose

presence does not alter the optimum solution. We refer the

reader to [24] for the formal definition of redundant con-

straints. As the existing algorithms for redundant constraint

reduction, such as [25] and [26], are centralized and thus

cannot be directly applied to our scenarios, we develop our

own distributed algorithm inspired by [25] [26].

In our settings, each charger maintains a list of linear

constraints which corresponds to the sub-area faces it cov-

ers, and neighboring chargers must share at least one linear

constraint. In general, our goal is to collaboratively reduce the

redundant constraints among chargers such that the number of

the aggregated linear constraints (which merges the identical

linear constraints between neighbors) is minimized.

Due to space limit, we just sketch our Distributed Redun-

dant Constraint Reduction (DRR) algorithm. Basically, the

distributed algorithm consists of two stages. The first stage

is to locally remove trivial constraints which can be always

satisfied. Then, the charger selectively collects neighboring

linear constraints from neighbors which don’t involve itself

(a charger sj is said to be involved in a linear constraint if

and only if the coefficient of xj in this constraint is positive),

and employs linear programming method to further remove its

redundant constraints. In particular, to identify the redundant

constraints, the left-hand side of each constraint is optimized

subject to the remaining constraints. The optimal value is then

compared with the right-hand side value of the corresponding

constraint to decide whether it is redundant or not.

Taking Fig. 3 as an example. The whole area is partitioned

into 9 sub-area faces after area discretization for two chargers

s1 and s2. Suppose the EMR threshold Rt = 5, the approx-

imated charging power in inner and outer sub-areas is 4 and

2 respectively. We thus obtain 9 linear constraints as listed in

Fig. 3. At the first stage of DRR, the constraint 1, 2, 3, 4, 7
and 8 are identified as trivial constraints and removed at both

chargers as they can always be satisfied.

Next, both chargers broadcast their constraints to each

other. The charger s1, for example, finds that all the received

constraints involve itself, and therefore it neglects all of them.

Next, for the rest constraints, such as the constraint 5, it

maximizes 4x1 + 2x2, the left side of this constraint, subject

to the constraints 6 and 9. The optimal value is 4.5, which is

smaller than 5. Therefore, the constraint 5 can be removed. So

does the constraint 6. Finally, only the constraint 9 remains.
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2D

2D

Fig. 5. Illustration of the coverage
relationship

We disclose the performance of the algorithm in the fol-

lowing theorem by comparing it to its centralized version,

which conducts the two-step scheme based on the complete

knowledge of all constraints coming from all chargers.

Theorem 5.1: The DRR algorithm achieves the same per-

formance as the corresponding centralized version in that the

aggregation of its obtained linear constraints is identical to

that of the centralized algorithm.

Proof: We omit the details of the proof to save space.

Fig. 4 shows the performance of our DRR algorithm in

terms of ǫ and Rt by adopting the same parameter setting as

that in Section VII-C1. In Fig. 4(a), the original aggregated

number of constraints generally increases with a decreasing ǫ,
and rises to 4629 when ǫ = 0.1. In contrast, the number of

reduced constraints of DRR algorithm is substantially smaller

than the original number of constraints, e.g., it is only 348

when ǫ = 0.1, nearly 7.52% of the original one. Moreover,

it is exactly equal to that produced by the corresponding

centralized algorithm. Further, Fig. 4(b) shows that the average

number of constraints possessed by individual chargers is

nearly proportional to the aggregated number of constraints.

Besides, Fig. 4(c) shows that the number of reduced con-

straints of DRR algorithm or centralized algorithm decreases

steadily when Rt becomes larger, and drops to 0 when

Rt = 0.045 since Rt is even bigger than the maximum

possible EMR over the plane. In contrast, the original number

of constraints remains unchanged.

VI. (1− ǫ)-APPROXIMATION DISTRIBUTED ALGORITHM

In this section, we discuss how to develop a (1 − ǫ)-
approximation algorithm.

To begin with, we divide the whole area into uniform

squares with size 2D ∗ 2D, where D is the disk radius of

chargers’ coverage area. Since each charger is aware of its

location, it can easily classify itself into a specific regular

square given a global reference anchor point. Apparently, by

applying this partition method, the chargers in non-adjacent

squares will not have their coverage areas intersected. By

”adjacent”, we mean two squares share at least one end point.

Fig. 5 shows an example where four squares are adjacent to

each other.

As shown in Fig. 6, we group m ∗m squares into a larger

grid, which we call m-grid for short. For simplicity, suppose

that the whole area can be divided into an integral number of

m-grid (if it is not the case, we can add phantom squares to

2m D

2m D

2D

Fig. 6. Illustration of overall partition

achieve this goal). In Fig. 6, there are 6 m-grids enclosed by

blue dotted boundaries after grouping.

To decompose P2 into minor ones and solve them in a

distributed manner, we can selectively turn off some chargers

such that the entire area can be separated into several sub-

areas. Fig. 6 shows an example that the chargers located in

those white strips are switched off, then the whole area is re-

partitioned into 12 sub-areas, each of which contains at most

m∗m squares. Specifically, we require that each m-grid adopt

the same select-and-turn-off policy, namely, turning off all the

chargers located at the i-th row and the j-th column of the

m-grid. We use a two-tuple 〈i, j〉 to denote such policy. Fig.

7 demonstrates two different policies, 〈4, 4〉 and 〈6, 6〉. By the

policy 〈4, 4〉, for example, all the chargers at the 4-th row and

the 4-th column should be turned off. Fig. 6 illustrates the

ultimate result when each m-grid adopts the policy 〈4, 4〉.
Consequently, in each partitioned sub-area, such as those

12 sub-areas in Fig. 6, we can apply a local linear pro-

gramming method to determine the powers of the chargers

inside independently of other sub-areas. This is because the

nearest distance between any sub-areas is at least 2D, which

is sufficient to avoid the influence of EMR from chargers in

other sub-areas. If no confusion arises, we call these newly

formed sub-areas as new m-grids for simplicity.

So far, our problem has been boiled down to two sub-

problems, namely, how to determine the size of an m-grid
(i.e., m) and how to determine the select-and-turn-off policy

adopted in each m-grid. In general, for the first subproblem,

we will prove that m only relates to the error threshold ǫ,
and has nothing to do with the present device distribution. In

contrast, the second subproblem should be addressed based on

the knowledge of device locations and their charging utility.



Algorithm 1 The Near Optimal Algorithm at Sink Node

INPUT The error threshold ǫ.
OUTPUT The select-and-turn-off policy.

Initialization Phase

1: Let m = ⌈ 2(2+
√

4−ǫ/2)

ǫ/2
⌉, broadcast it to all chargers to build

m-grids.

Working Phase

1: Require all square heads of squares to compute and report its
local charging utility, then collect all the charging utility from
all squares.

2: Find the select-and-turn-off policy with the least overall perfor-
mance loss, and send the policy to all square heads.

2m D

2m D

2D

4, 4

6,6

Fig. 7. Illustration of m-grid

In particular, we establish a sink node to collect the charging

utility of all squares, find the select-and-turn-off policy with

the least overall performance loss, and disseminate the final

solution to all squares. By intelligently choosing the policy

with the least performance loss, we can achieve a factor of

(1− ǫ) of the optimum.

We present the details of the near optimal algorithms

performed at the sink node and at the square heads, which

serves as an agent between the sink node and the devices in

their square, in Alg. 1 and Alg. 2, respectively. In general,

in the initialization phase, the sink node decides the size of

m-grids, namely m = ⌈ 2(2+
√

4−ǫ/2)

ǫ/2 ⌉, and broadcasts them

to all chargers, which construct m-grids accordingly. We will

prove that such a value of m contributes to achieving (1− ǫ)
approximation ratio. Note that linear constraint extraction and

redundant constraint reduction, together with square partition,

have already been done before this procedure at square heads

in all squares.

Next, the working phase mainly includes two stages. At the

first stage, the sink node collects all necessary information

from all square heads, and thereby determines the select-and-

turn-off policy with the least overall performance loss and

sends it out. For the second stage, after receiving the policy,

each square head reassigns itself to a new m-grid. And in

each new m-grid, a head is elected to facilitate the local

computation of the linear programming problem.

Note that the distributed algorithm conducted in chargers

that are not square nodes is simply to report information to

square heads, receive command and adjust power accordingly.

Theorem 6.1 reveals the performance of the distributed

algorithm.

Theorem 6.1: The distributed algorithm achieves (1 − ǫ)
approximation ratio.

Algorithm 2 The Near Optimal Algorithm at Square Heads

INPUT The location, the maximum received powers of its covered
devices.

OUTPUT The objective power.

Initialization Phase

1: Use area discretization technique with error threshold ǫ/2 to
extract linear constraints, then apply DRR algorithm to reduce
redundant constraints.

2: Classify itself into a specific square, and elect a local square
head.

3: Receive the parameter m from the sink node, and classify itself
into a m-grid.

Working Phase

1: When receiving the request from the sink node to report local
charging utility, disseminate the request to other chargers in this
square, and collect all the information from them.

2: Compute the local optimal solution in this square, send it to the
sink node.

3: Receive the command from the sink node. If the command is to
turn off the chargers in this square, disseminate the command
to each charger in this square, turn itself off. Otherwise, assign
itself to a new m-grid according to the received command, and
elect a local head of the m-grid.

4: if It is the m-grid head then
5: Disseminate the request for information to other square heads

in this m-grid, and collect all the information from them.
6: Compute the local optimal solution in this m-grid, send it to

square heads in this m-grid. Adjust its power according to
the optimal solution.

7: else
8: When receiving the request from the m-grid head to report

the related information, send it to the m-grid head.
9: Receive the command from the m-grid head, disseminate it

to all chargers in the square, and adjust its power according
to the command.

10: end if

Proof: We prove this theorem in the Appendix for a better

flow of the paper.

We remark that, the election of m-grid heads at Step 3

in Alg. 2 can be done in the initialization phase to save the

real time computational cost and reduce delay. This calls for

enumeration for all possible m2 number of formation of new

m-grids in advance, and the space to store computed results.

Moreover, Alg. 2 can be adapted to be fully distributed by

removing the notion of sink node, square head and m-grid
head, and letting chargers exchange information with their

neighbors round by round until all the required information

is collected, and then computing the optimal solution. Such

an adapted algorithm is, apparently, more robust, but is more

computationally demanding.

Suppose the charger deployment density in the field is

bounded, then for typical charger networks we have the

following theorem. Note that n is the number of chargers.

Theorem 6.2: The number of execution rounds of the near

optimal algorithm is O(log n).

VII. SIMULATION RESULTS

In this section, we first present simulation results to evaluate

our proposed algorithms in terms of error threshold ǫ, charger

number, EMR threshold Rt and delay. After that, we give
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insights of how the distribution of chargers affects the overall

charging utility.

A. Evaluation Setup

Unless otherwise specified, we use the following evaluation

settings. Assume there are 400 chargers and 104 devices

uniformly distributed over a 1000m∗1000m 2D square area.

Moreover, we set α = 100, β = 100 and D = 20 for the

charging model, C1 = 1 for the EMR model and C2 = 0.001
for the utility model. The error threshold is ǫ = 0.4, and the

EMR threshold is Rt = 0.018. Moreover, every point on the

simulation curves stands for the average value of 100 instances

with different random seeds and device deployments.

B. Baseline Setup

As currently there is no algorithm available for safe charg-

ing with adjustable power, we introduce two algorithms for

comparison. The first algorithm borrows the idea of Set-

Cover. After collecting the information from all chargers,

this algorithm greedily picks the charger which covers the

maximum number of devices, and adjusts its power as large

as possible while assuring the EMR safety, until no further

addition of chargers is possible considering the EMR safety.

Then, it broadcasts the results to all chargers.

The second algorithm is a lightweight algorithm. In this

algorithm, each square head simply gathers the information

locally in the square, computes the optimal solution, and

then cuts down the power of each charger in the solution

to 1/4. The obtained solution must satisfy the EMR safety

requirement by similar analysis in the proof to Theorem 6.1.

In addition, we approximate the optimal solution by parti-

tioning the area in a fine-grained way and solving the obtained

linear programming problem in a centralized way.

C. Performance Comparison

1) Impact of Threshold ǫ: We first investigate the influence

of the error threshold ǫ on the overall utility. As depicted

in Fig. 8, the overall utility of the optimal solution remains

unchanged and is equal to 35.4 as ǫ grows, while that of the

other three algorithms decreases steadily. Specifically, our near

optimal solution is always larger than (1 − ǫ) of the optimal

value, and outperforms that of the Set-Cover algorithm by

nearly 4% on average. Such small performance gap between

these two algorithms is due to the fact that the charger

distribution in this case is relatively sparse and most chargers

are isolated from others, and therefore, the outputs of the

two algorithms are very similar. The lightweight algorithm

performs the worst because of the huge potential utility loss

when it cuts down the computed power to 1/4.

Further, we observe that the achieved utility of the near

optimal solution experiences a drop when ǫ = 0.7. This is

because the specified size of m-grid is bigger than the network

size when ǫ < 0.7, and thus there is no need for m-grid
partition, and no further performance loss will occur. The case

is the opposite for ǫ ≥ 0.7.

2) Impact of Charger Number: We proceed to examine

the influence of the charger number on the overall utility.

To reduce the computational time, we reduce the field size

to 200m ∗ 200m and the number of devices to 400, and

set ǫ = 0.8. In Fig. 9, it can be seen that the performance

gap between the optimal algorithm and the near optimal

solution, as well as the Set-Cover algorithm, is pretty small

when the number of chargers is small. This is because with

a sparse distribution, most of the chargers can be set to its

maximum power without hurt the EMR safety for all these

three algorithms. Nevertheless, the gaps between the three

algorithms become conspicuous with more chargers deployed.

The near optimal solution has an performance gain of up to

23.0% over the Set-Cover algorithm, and its performance loss

compared with the optimal solution is no more than 13.5%,

much less than 80% allowed by Theorem 6.1. Again, the light

weight algorithm has the worst performance.

3) Impact of EMR Threshold Rt: We are also interested

in the impact of the EMR threshold Rt on the overall utility.

As illustrated in Fig. 10, not surprisingly, the overall utility

of all algorithms grows with an increasing Rt. Note that we

set ǫ = 0.2. The near optimal algorithm also outperforms the

Set-Cover algorithm. Overall, the optimal solution is nearly

0.7% higher than that of our near optimal algorithm, which

in turn enjoys a performance gain of up to 7.2% over the

Set-Cover algorithm. Furthermore, when Rt exceeds 0.035,

all the charger can be tuned to its maximum power while

guaranteeing the EMR safety, and thereby the overall utility

of the optimal, near optimal and Set-Cover algorithms reach

the maximum value 38.8. Similarly, the lightweight algorithm

keeps the utility value of 9.7 when Rt exceeds 0.025.

4) Impact of Network Size on Delay: We study the impact

of network size on the overall delay in this part. We fix the

density of chargers to be 1/400, set ǫ = 0.4, and let the

communication radius be twice the charging radius, i.e., 40. In

Fig. 11, we can see that the delay of the lightweight algorithm
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Fig. 12. Illustration of non-uniform distributions and results

keeps constant, since it only requires local communication

within a square. In contrast, the delay of the Set-Cover

algorithm increases nearly proportional to the logarithm of

the network size, which is mainly due to the algorithm’s data

collection and solution dissemination processes.

For the near optimal algorithm, the slope of the curve is

twice that of the Set-Cover algorithm when the number of

chargers is smaller than 1600, and is the same otherwise. This

is because the size of m-grids is precisely 1600. Therefore,

if the number of chargers exceeds 1600, since the number

of required computation steps in a m-grid is constant, the

increment of delay only depends on the first stage of data

collection and dissemination process.

D. Insights

In this section, we provide insights of how the distribution of

chargers affects the overall charging utility. Suppose there are

50 chargers deployed in a 200m∗200m field, and 400 devices

uniformly distributed in the same field. We consider three

kinds of distributions, i.e., uniform distribution, 2D Gaussian

distribution and 1D Gaussian distribution. By 2D Gaussian

distribution, both of the x-coordinate and y-coordinate of a

charger are randomly selected from a Gaussian distribution

with µ = 100 and σ = 100/3. Compared with 2D Gaussian

distribution, the only difference of 1D Gaussian distribution is

that its x-coordinate is uniformly selected among [0 200]. Fig.

12(a) illustrates examples of them.

As shown in Fig. 12(b), all the utility of three distributions

first increases rapidly and then smoothly, and finally becomes

constant since all the chargers are adjusted to their maximum

power. An interesting observation is that the utility achieved

for the uniform distribution is first superior to that correspond-

ing to the other two distributions, and soon becomes inferior

to them. This is because when Rt is small, the chargers with

uniform distribution have larger average distance between each

other, and thus are allowed to tune their power to a greater

value while assuring EMR safety, which results in a higher

utility. In contrast, with a large Rt, the chargers are able

to adopt a larger power, even the maximum power, without

violating the EMR safety, and therefore, the number of covered

devices becomes the dominant factor affecting the overall

utility. Note that, there are a number of chargers located near

the boundaries of the field in the uniform distribution case,

whose charging area inevitably covers the region outside the

field. This coverage waste thus leads to a loss of the overall

utility. In contrast, the chargers for the other two distributions

are more concentrated, and thus results in a smaller coverage

waste as well as a larger overall utility.

Furthermore, for the same reasons, the performance for the

1D Gaussian distribution case is below that of the 2D Gaussian

distribution given a large Rt.

VIII. FIELD EXPERIMENTS

In this section, we build testbed and conduct field experi-

ments to verify our theoretical findings.

A. Testbed

Generally, we use the same testbed as that in [19]. The

testbed consists of 8 TX91501 power transmitters produced

by Powercast [3] [27], and 2 rechargeable sensor nodes. We

place the chargers on the vertices and middle points of edges

of a 2.4m ∗ 2.4m square area, and one wireless rechargeable

sensor node at the center of the square area, and the other to

the right side of the first one with distance 0.4m, as illustrated

in Fig. 13. Also shown in this figure are a laptop and an

AP connecting to it. The AP is responsible to collect the

information of received power from the sensor nodes, and then

send it to the laptop.

Note that TX91501 power transmitters are actually direc-

tional, whose charging region can be modeled as a sector with

angle 60◦ and radius 4. We tune the orientations of charger 1

to 8 as 296.56◦, 296.56◦, 243.44◦, 26.56◦, 153.44◦, 63.44◦,
116.56◦ and 116.56◦, respectively. Apart from this, as the

power of TX91501 power transmitters is not adjustable, we

put a piece of copper foil tape with proper length and width

in front of chargers, and adjust its position and bending angle

such that the received power and EMR at locations further than

the tape are nearly uniformly cut down to a desired level.

B. Adapted Algorithm and Comparison Algorithm

In consideration of the charging features of the TX91501

power transmitters, we make necessary modifications to our

algorithms to accommodate this case. We omit the details to

save space. Second, we let the two sensors sample the charging

power from each charger at the beginning of the algorithm

to reduce the model error and make our algorithm robust

to environmental variation. We then perform our algorithms

based on the sampled values.

We compare our algorithm to the SCP algorithm, a cen-

tralized algorithm proposed in [19] that addresses the similar

problem, except that the power of chargers is assumed to be

not adjustable.

C. Experimental Results

As shown in Fig. 14, we compare the utility computed

based on sampling value with real utility under three different

values of Rt for both SCAPE and SCP algorithms. Note

that the charging utility is the summation of that of the two

sensor nodes. It can be observed that the computed utility
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of both algorithms is always larger than the real utility, but

the performance gap is no more than 8.7%. Besides, when Rt

decreases from 125 to 105, the achieved real utility of the SCP

algorithm drops by 33.9%, while that of the SCAPE algorithm

reduces only 6.0%. On average, the SCAPE algorithm is

41.1% better than the SCP algorithm.

We set Rt as 125µW/cm2, compute the adjusting factors

for the charger 1 to 8, i.e., 1, 0.60, 1, 0.72, 0.78, 1, 0.75 and 1,

and put pieces of copper foil tape in front of the charger 2, 4,

5 and 7 correspondingly. We measure the EMR values at 9∗9
grid points of the square region except the locations of charger

2, 4, 5 and 7 since the power there is not properly adjusted. We

plot the results in Fig. 15, and observe that the EMR peaks

at the location of charger 1 and is equal to 122µW/cm2,

which is less than Rt. This fact validates the correctness of

our SCAPE algorithm. Note that, though the EMR value at the

locations of the charger 2, 4, 5 is missed, it can be deduced

that they won’t exceed Rt too by the surrounding EMR values.

IX. CONCLUSION

In this paper, we have studied the problem of how to

adjust the power of chargers to maximize the overall charging

utility while guaranteeing the EMR safety. We employed novel

techniques to reformulate the problem and further reduce

its computational efforts. We then presented a distributed

algorithm with approximation ratio (1 − ǫ) to address the

problem. Finally, we conducted both extensive simulations and

field experiments to validate our theoretical findings.

Due to its distributed nature and consideration of compu-

tational effort throughout the design process, our proposed

scheme could be easily incorporated into real systems. In

our future work, we will take other practical concerns into

consideration, such as fairness of charging.
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APPENDIX

A. Proof of Theorem 6.1

Proof: Denote by gkij the square located at the i-th row

and j-th column of the k-th m-grid. At Step 2 of Working

Phase in Alg. 2, each square gkij computes the optimal local

charging utility, which we denote by uk
ij . Let Ũ∗ be the optimal

overall charging utility for the problem P2, it is easy to see
∑

k

∑

j

∑

i

uk
ij ≥ Ũ∗. (10)

Obviously, there are m2 different select-and-turn-off poli-

cies for all m-grids. For a given policy 〈i, j〉, the overall

performance loss is

Lk
ij =

∑

i′=i

uk
i′j′ +

∑

j′=j

uk
i′j′ − uk

ij . (11)

Therefore, the overall performance loss of the network is

Lij =
∑

k

Lk
ij =

∑

k

(
∑

i′=i

uk
i′j′ +

∑

j′=j

uk
i′j′ − uk

ij). (12)

Next, we investigate the summation of the performance loss

for all possible select-and-turn-off strategies, which can be

formally expressed as
∑

i

∑

j

Lij =
∑

i

∑

j

(
∑

k

(
∑

i′=i

uk
i′j′ +

∑

j′=j

uk
i′j′ − uk

ij))

= (2m− 1)
∑

k

∑

j

∑

i

uk
ij . (13)

Subsequently, we intend to disclose the relationship between
∑

k

∑

j

∑

i u
k
ij and Ũ∗. We first present the following simple

yet important observation.

Observation A.1: Any point in the field can only be covered

by chargers from at most 4 squares.

Fig. 5 illustrates an example of this observation. When a

point, marked in a yellow star in the figure, located in the up-

left corner of a square, it can only be covered by the chargers

from this square, along with those from the adjacent three

squares as depicted.

Based on Observation A.1, we suppose the EMR at a point

p consists of four parts, i.e., ε1, ε2, ε3 and ε4 from chargers

in 4 adjacent squares (εi = 0 if there is no EMR from that

square). Obviously, we have ε1 ≤ Rt, ε2 ≤ Rt, ε3 ≤ Rt

and ε4 ≤ Rt. As a result, if we reduce the power of each

charger in the field to 1/4, the corresponding aggregate EMR

at p satisfies ε(p) = 1/4 ∗ (ε1 + ε2 + ε3 + ε4) ≤ Rt, which

means the reduced power is a feasible solution. Consequently,

the overall charging utility becomes 1/4∗∑k

∑

j

∑

i u
k
ij after

power reduction. Since Ũ∗ is optimal, we have

1/4 ∗
∑

k

∑

j

∑

i

uk
ij ≤ Ũ∗. (14)

Combining Eq. 13 and Eq. 14 gives
∑

i

∑

j

Lij ≤ 4(2m− 1)Ũ∗. (15)

Finally, according to the pigeonhole principle, we claim that

there must exist a policy 〈i, j〉 that has the performance loss

Lij ≤
4(2m− 1)

m2
Ũ∗. (16)

In practice, we can compute all the possible value of Lij

and pick out the least one, then it must conform to Inequality

16. This is done at Step 2 of Working Phase in Alg. 1.

After obtaining the least Lij and thereby determining the

policy 〈i, j〉, the sink sends the policy to the whole network.

Chargers acting as square heads received the command either

turns off itself as shown at Step 3 of Working Phase in Alg.

2 for square heads, or participates in electing m-grid head

and performing a local linear programming algorithm within a

new m-grid. Suppose the summation of the obtained charging

utility of all newly formed m-grids is U . It is obvious that

U + Lij ≥ Ũ∗. (17)

Combining Eq. 16 and Eq. 17, we have

U ≥ (1− 4(2m− 1)

m2
)Ũ∗. (18)

Given an arbitrarily small value of ǫ, we set

m = ⌈2(2 +
√

4− ǫ/2)

ǫ/2
⌉, (19)

as at Step 1 of Initialization Phase in Alg. 1, we then have

U ≥ (1− ǫ/2)Ũ∗. (20)

Further, let U∗ be the optimal overall charging utility of the

original problem P1. Suppose that the adjusting factor for the

charger si is x∗i in the optimal solution. We then have

C2

∑n

i=1
P (d(si, p))x

∗

i ≤ Rt

for any point p.

Suppose the point p is inside the face Fq . By Eq. 7, the

approximated EMR at p after area disretization satisfies

ε(p) = C2

n
∑

i=1

Pqix
∗

i ≤ (1 + ǫ/2)C2

n
∑

i=1

P (d(si, p))x
∗

i .

Note that we set the error threshold for area discretization to

ǫ/2. It immediately follows

C2

n
∑

i=1

Pqi
x∗i

(1 + ǫ/2)
≤ C2

n
∑

i=1

P (d(si, p))x
∗

i ≤ Rt,

which implies
x∗

i

(1+ǫ) is a feasible solution for the problem P2.

Since Ũ∗ is the optimal solution for P2, we thus have

Ũ∗ ≥ C1

∑n

i=1
(
∑m

j=1
P (d(si, oj)))

x∗i
(1 + ǫ/2)

≥ 1

(1 + ǫ/2)
C1

∑n

i=1
(
∑m

j=1
P (d(si, oj)))x

∗

i

≥ 1

(1 + ǫ/2)
U∗ ≥ (1− ǫ/2)U∗.

(21)

Combining Eqs. 20 and 21, we have

U ≥ (1− ǫ/2) ∗ (1− ǫ/2)U∗ ≥ (1− ǫ)U∗. (22)

This completes the proof.


