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Abstract—Monitoring personal locations with a potentially untrusted server poses privacy threats to the monitored individuals. To this

end, we propose a privacy-preserving location monitoring system for wireless sensor networks. In our system, we design two in-

network location anonymization algorithms, namely, resource and quality-aware algorithms, that aim to enable the system to provide

high-quality location monitoring services for system users, while preserving personal location privacy. Both algorithms rely on the well-

established k-anonymity privacy concept, that is, a person is indistinguishable among k persons, to enable trusted sensor nodes to

provide the aggregate location information of monitored persons for our system. Each aggregate location is in a form of a monitored

area A along with the number of monitored persons residing in A, where A contains at least k persons. The resource-aware algorithm

aims to minimize communication and computational cost, while the quality-aware algorithm aims to maximize the accuracy of the

aggregate locations by minimizing their monitored areas. To utilize the aggregate location information to provide location monitoring

services, we use a spatial histogram approach that estimates the distribution of the monitored persons based on the gathered

aggregate location information. Then, the estimated distribution is used to provide location monitoring services through answering

range queries. We evaluate our system through simulated experiments. The results show that our system provides high-quality

location monitoring services for system users and guarantees the location privacy of the monitored persons.

Index Terms—Location privacy, wireless sensor networks, location monitoring system, aggregate query processing, spatial

histogram.
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1 INTRODUCTION

THE advance in wireless sensor technologies has resulted
in many new applications for military and/or civilian

purposes. Many cases of these applications rely on the
information of personal locations, for example, surveillance
and location systems. These location-dependent systems are
realized by using either identity sensors or counting
sensors. For identity sensors, for example, Bat [1] and
Cricket [2], each individual has to carry a signal sender/
receiver unit with a globally unique identifier. With identity
sensors, the system can pinpoint the exact location of each
monitored person. On the other hand, counting sensors, for
example, photoelectric sensors [3], [4], and thermal sensors
[5], are deployed to report the number of persons located in
their sensing areas to a server.

Unfortunately, monitoring personal locations with a
potentially untrusted system poses privacy threats to the
monitored individuals, because an adversary could abuse
the location information gathered by the system to infer
personal sensitive information [2], [6], [7], [8]. For the
location monitoring system using identity sensors, the sensor
nodes report the exact location information of the monitored
persons to the server; thus using identity sensors immedi-
ately poses a major privacy breach. To tackle such a privacy
breach, the concept of aggregate location information, that is, a

collection of location data relating to a group or category of
persons from which individual identities have been removed
[8], [9], has been suggested as an effective approach to
preserve location privacy [6], [8], [9]. Although the counting
sensors by nature provide aggregate location information,
they would also pose privacy breaches.

Fig. 1 gives an example of a privacy breach in a location
monitoring system with counting sensors. There are
11 counting sensor nodes installed in nine rooms R1 to R9,
and two hallwaysC1 andC2 (Fig. 1a). The nonzero number of
persons detected by each sensor node is depicted as a number
in parentheses. Figs. 1b and 1c give the numbers reported by
the same set of sensor nodes at two consecutive time instances
tiþ1 and tiþ2, respectively. If R3 is Alice’s office room, an
adversary knows that Alice is in roomR3 at time ti. Then, the
adversary knows that Alice leftR3 at time tiþ1 and went toC2

by knowing the number of persons detected by the sensor
nodes in R3 and C2. Likewise, the adversary can infer that
Alice left C2 at time tiþ2 and went to R7. Such knowledge
leakage may lead to several privacy threats. For example,
knowing that a person has visited certain clinical rooms may
lead to knowing the her health records. Also, knowing that a
person has visited a certain bar or restaurant in a mall
building may reveal confidential personal information.

This paper proposes a privacy-preserving location mon-
itoring system for wireless sensor networks to provide
monitoring services. Our system relies on the well-estab-
lished k-anonymity privacy concept, which requires each
person is indistinguishable among k persons. In our system,
each sensor node blurs its sensing area into a cloaked area, in
which at least k persons are residing. Each sensor node
reports only aggregate location information, which is in a
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form of a cloaked area, A, along with the number of persons,
N , located inA, where N � k, to the server. It is important to
note that the value of k achieves a trade-off between the
strictness of privacy protection and the quality of monitoring
services. A smaller k indicates less privacy protection,
because a smaller cloaked area will be reported from the
sensor node; hence better monitoring services. However, a
larger k results in a larger cloaked area, which will reduce the
quality of monitoring services, but it provides better privacy
protection. Our system can avoid the privacy leakage in the
example given in Fig. 1 by providing low-quality location
monitoring services for small areas that the adversary could
use to track users, while providing high-quality services for
larger areas. The definition of a small area is relative to the
required anonymity level, because our system provides
better quality services for the same area if we relax the
required anonymity level. Thus, the adversary cannot infer
the number of persons currently residing in a small area
from our system output with any fidelity; therefore, the
adversary cannot know that Alice is in room R3.

To preserve personal location privacy, we propose two
in-network aggregate location anonymization algorithms,
namely, resource and quality-aware algorithms. Both algo-
rithms require the sensor nodes to collaborate with each
other to blur their sensing areas into cloaked areas, such
that each cloaked area contains at least k persons to
constitute a k-anonymous cloaked area. The resource-aware
algorithm aims to minimize communication and computa-
tional cost, while the quality-aware algorithm aims to
minimize the size of the cloaked areas, in order to maximize
the accuracy of the aggregate locations reported to the
server. In the resource-aware algorithm, each sensor node
finds an adequate number of persons, and then it uses a
greedy approach to find a cloaked area. On the other hand,
the quality-aware algorithm starts from a cloaked area A,
which is computed by the resource-aware algorithm. Then,
A will be iteratively refined based on extra communication
among the sensor nodes until its area reaches the minimal
possible size. For both algorithms, the sensor node reports
its cloaked area with the number of monitored persons in
the area as an aggregate location to the server.

Although our system only knows the aggregate location
information about the monitored persons, it can still

provide monitoring services through answering aggregate
queries, for example, “What is the number of persons in a
certain area?” To support these monitoring services, we
propose a spatial histogram that analyzes the gathered
aggregate locations to estimate the distribution of the
monitored persons in the system. The estimated distribu-
tion is used to answer aggregate queries.

We evaluate our system through simulated experiments.
The results show that the communication and computational
cost of the resource-aware algorithm is lower than the
quality-aware algorithm, while the quality-aware algorithm
provides more accurate monitoring services (the average
accuracy is about 90 percent) than the resource-aware
algorithm (the average accuracy is about 75 percent). Both
algorithms only reveal k-anonymous aggregate location
information to the server, but they are suitable for different
system settings. The resource-aware algorithm is suitable for
the system, where the sensor nodes have scarce communica-
tion and computational resources, while the quality-aware
algorithm is favorable for the system, where accuracy is the
most important factor in monitoring services.

The rest of this paper is organized as follows: Our system
model is outlined in Section 2. Section 3 presents the
resource and quality-aware location anonymization algo-
rithms. Section 4 describes the aggregate query processing.
We describe an attacker model and the experiment setting
of our system in Section 5. The experimental results are
given in Section 6. Section 7 highlights the related work.
Finally, Section 8 concludes the paper.

2 SYSTEM MODEL

Fig. 2 depicts the architecture of our system, where there are
three major entities, sensor nodes, server, and system users. We
will define the problem addressed by our system, and then
describe the detail of each entity and the privacy model of
our system.

Problem definition. Given a set of sensor nodes
s1; s2; . . . ; sn with sensing areas a1; a2; . . . ; an, respectively, a
set of moving objects o1; o2; . . . ; om, and a required anonymity
level k, 1) we find an aggregate location for each sensor node
si in a form of Ri ¼ ðAreai;NiÞ, where Areai is a rectangular
area containing the sensing area of a set of sensor nodes Si
andNi is the number of objects residing in the sensing areas of
the sensor nodes in Si, such thatNi � k;Ni ¼ j [sj2Si Ojj � k,
Oj ¼ foljol 2 ajg; 1 � i � n, and 1 � l � m, and 2) we build a
spatial histogram to answer an aggregate query Q that asks
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Fig. 1. A location monitoring system using counting sensors. (a) At
time ti. (b) At time tiþ1. (c) At time tiþ2.

Fig. 2. System architecture.



about the number of objects in a certain areaQ:Area based on
the aggregate locations reported from the sensor nodes.

Sensor nodes. Each sensor node is responsible for
determining the number of objects in its sensing area,
blurring its sensing area into a cloaked area A, which
includes at least k objects, and reporting A with the number
of objects located in A as aggregate location information to
the server. We do not have any assumption about the
network topology, as our system only requires a commu-
nication path from each sensor node to the server through a
distributed tree [10]. Each sensor node is also aware of its
location and sensing area.

Server. The server is responsible for collecting the
aggregate locations reported from the sensor nodes, using
a spatial histogram to estimate the distribution of the
monitored objects, and answering range queries based on
the estimated object distribution. Furthermore, the admin-
istrator can change the anonymized level k of the system at
anytime by disseminating a message with a new value of k
to all the sensor nodes.

System users. Authenticated administrators and users
can issue range queries to our system through either the
server or the sensor nodes, as depicted in Fig. 2. The server
uses the spatial histogram to answer their queries.

Privacy model. In our system, the sensor nodes constitute
a trusted zone, where they behave as defined in our
algorithm and communicate with each other through a
secure network channel to avoid internal network attacks, for
example, eavesdropping, traffic analysis, and malicious
nodes [6], [11]. Since establishing such a secure network
channel has been studied in the literature [6], [11], the
discussion of how to get this network channel is beyond the
scope of this paper. However, the solutions that have been
used in previous works can be applied to our system. Our
system also provides anonymous communication between
the sensor nodes and the server by employing existing
anonymous communication techniques [12], [13]. Thus given
an aggregate location R, the server only knows that the
sender ofR is one of the sensor nodes withinR. Furthermore,
only authenticated administrators can change the k-anon-
ymity level and the spatial histogram size. In emergency
cases, the administrators can set the k-anonymity level to a
small value to get more accurate aggregate locations from the
sensor nodes, or even set it to zero to disable our algorithm to
get the original readings from the sensor nodes, in order to
get the best services from the system. Since the server and the
system user are outside the trusted zone, they are untrusted.

We now discuss the privacy threat in existing location
monitoring systems. In an identity-sensor location monitor-
ing system, since each sensor node reports the exact location
information of each monitored object to the server, the
adversary can pinpoint each object’s exact location. On the
other hand, in a counting-sensor location monitoring
system, each sensor node reports the number of objects in
its sensing area to the server. The adversary can map the
monitored areas of the sensor nodes to the system layout. If
the object count of a monitored area is very small or equal to
one, the adversary can infer the identity of the monitored
objects based on the mapped monitored area, for example,
Alice is in her office room at time instance ti in Fig. 1.

Since our system only allows each sensor node to report
a k-anonymous aggregate location to the server, the
adversary cannot infer an object’s exact location with any
fidelity. The larger the anonymity level, k, the more difficult
for the adversary to infer the object’s exact location. With
the k-anonymized aggregate locations reported from the
sensor nodes, the underlying spatial histogram at the server
provides low-quality location monitoring services for a
small area, and better quality services for larger areas. This
is a nice privacy-preserving feature, because the object
count of a small area is more likely to reveal personal
location information. The definition of a small area is
relative to the required anonymity level, because our
system provides lower quality services for the same area
if the anonymized level gets stricter. We will also describe
an attack model, where we stimulate an attacker that could
be a system user or the server attempting to infer the object
count of a particular sensor node in Section 5.1. We evaluate
our system’s resilience to the attack model and its privacy
protection in Section 6.

3 LOCATION ANONYMIZATION ALGORITHMS

In this section, we present our in-network resource and
quality-aware location anonymization algorithms, that is.
periodically executed by the sensor nodes to report their
k-anonymous aggregate locations to the server for every
reporting period.

3.1 The Resource-Aware Algorithm

Algorithm 1 outlines the resource-aware location anonymi-
zation algorithm. Fig. 3 gives an example to illustrate the
resource-aware algorithm, where there are seven sensor
nodes,A toG, and the required anonymity level is five, k ¼ 5.
The dotted circles represent the sensing area of the sensor
nodes, and a line between two sensor nodes indicates that
these two sensor nodes can communicate directly with each
other. In general, the algorithm has three steps.

Algorithm 1. Resource-aware location anonymization

1: function RESOURCEAWARE (Integer k, Sensor m,

List R)

2: PeerList  f;g
// Step 1: The broadcast step

3: Send a message with m’s identity m:ID, sensing area

m:Area, and object count m:Count to m’s neighbor

peers
4: if Receive a message from a peer p, i.e., (p:ID, p:Area,

p:count) then

5: Add the message to PeerList

6: if m has found an adequate number of objects then

7: Send a notification message to m’s neighbors

8: end if

9: if Some m’s neighbor has not found an adequate

number of objects then

10: Forward the message to m’s neighbors

11: end if

12: end if

// Step 2: The cloaked area step

13: S  fmg
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14: Compute a score for each peer in PeerList

15: Repeatedly select the peer with the highest score from

PeerList to S until the total number of objects in S is at

least k

16: Area a minimum bounding rectangle of the senor

nodes in S

17: N  the total number of objects in S

// Step 3: The validation step

18: if No containment relationship with Area and R 2 R
then

19: Send ðArea;NÞ to the peers within Area and the

server

20: else if m’s sensing area is contained by some R 2 R
then

21: Randomly select a R0 2 R such that R0:Area contains
m’s sensing area

22: Send R0 to the peers within R0:Area and the server

23: else

24: Send Area with a cloaked N to the peers within Area

and the server

25: end if

Step 1: The broadcast step. The objective of this step is to
guarantee that each sensor node knows an adequate number
of objects to compute a cloaked area. To reduce commu-
nication cost, this step relies on a heuristic that a sensor node
only forwards its received messages to its neighbors when
some of them have not yet found an adequate number of
objects. In this step, after each sensor node m initializes an
empty list PeerList (Line 2 in Algorithm 1), m sends a
message with its identitym:ID, sensing aream:Area, and the
number of objects located in its sensing area m:Count, to its
neighbors (Line 3). Whenm receives a message from a peer p,
i.e., ðp:ID; p:Area; p:CountÞ, m stores the message in its
PeerList (Line 5). Whenever m finds an adequate number of
objects, m sends a notification message to its neighbors
(Line 7). If m has not received the notification message from
all its neighbors, some neighbor has not found an adequate
number of objects; therefore, m forwards the received
message to its neighbors (Line 10).

Figs. 3a and 3b illustrate the broadcast step. When a
reporting period starts, each sensor node sends a message
with its identity, sensing area, and the number of objects
located in its sensing area to its neighbors. After the first

broadcast, sensor nodes A to F have found an adequate
number of objects (represented by black circles), as depicted
in Fig. 3a. Thus, sensor nodes A to F send a notification
message to their neighbors. Since sensor node F has not
received a notification message from its neighbor G, F
forwards its received messages, which include the informa-
tion about sensor nodes D and E, to G (Fig. 3b). Finally,
sensor node G has found an adequate number of objects, so
it sends a notification message to its neighbor, F . As all the
sensor nodes have found an adequate number of objects,
they proceed to the next step.

Step 2: The cloaked area step. The basic idea of this step
is that each sensor node blurs its sensing area into a
cloaked area that includes at least k objects, in order to
satisfy the k-anonymity privacy requirement. To minimize
computational cost, this step uses a greedy approach to
find a cloaked area based on the information stored in
PeerList. For each sensor node m, m initializes a set
S ¼ fmg, and then determines a score for each peer in its
PeerList (Lines 13 and 14 in Algorithm 1). The score is
defined as a ratio of the object count of the peer to the
euclidean distance between the peer and m. The idea
behind the score is to select a set of peers from PeerList to S
to form a cloaked area that includes at least k objects and
has an area as small as possible. Then, we repeatedly select
the peer with the highest score from the PeerList to S until S
contains at least k objects (Line 15). Finally, m determines
the cloaked area (Area) that is a minimum bounding rectangle
(MBR) that covers the sensing area of the sensor nodes in S,
and the total number of objects in S (N) (Lines 16 and 17).

An MBR is a rectangle with the minimum area (which is
parallel to the axes) that completely contains all desired
regions, as illustrated in Fig. 3c, where the dotted rectangle
is the MBR of the sensing area of sensor nodes A and B. The
major reasons of our algorithms aligning with MBRs rather
than other polygons are that the concept of MBRs have been
widely adopted by existing query processing algorithms
and most database management systems have the ability to
manipulate MBRs efficiently.

Fig. 3c illustrates the cloaked area step. The PeerList of
sensor node A contains the information of three peers, B, D,
and E. The object count of sensor nodes B, D, and E is 3, 1,
and 2, respectively. We assume that the distance from sensor
node A to sensor nodes B, D, and E is 17, 18, and 16,
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Fig. 3. The resource-aware location anonymization algorithm (k ¼ 5). (a) PeerLists after the first broadcast. (b) Rebroadcast from sensor node F .
(c) Resource-aware cloaked area of sensor node A.



respectively. The score of B, D, and E is 3=17 ¼ 0:18,
1=18 ¼ 0:06, and 2=16 ¼ 0:13, respectively. Since B has the
highest score, we select B. The sum of the object counts of A
andB is six which is larger than the required anonymity level
k ¼ 5, so we return the MBR of the sensing area of the sensor
nodes in S, i.e., A and B, as the resource-aware cloaked area
of A, which is represented by a dotted rectangle.

Step 3: The validation step. The objective of this step is to
avoid reporting aggregate locations with a containment
relationship to the server. Let Ri and Rj be two aggregate
locations reported from sensor nodes i and j, respectively. If
Ri’s monitored area is included in Rj’s monitored area,
Ri:Area � Rj:Area, or vice versa, Rj:Area � Ri:Area, they
have a containment relationship. We do not allow the sensor
nodes to report their aggregate locations with the contain-
ment relationship to the server, because combining these
aggregate locations may pose privacy leakage. For example,
if Ri:Area � Rj:Area and Ri:Area 6¼ Rj:Area, an adversary
can infer that the number of objects residing in the
nonoverlapping area, Rj:Area�Ri:Area, is Rj:N �Ri:N .
In case that Rj:N �Ri:N < k, the adversary knows that the
number of objects in the nonoverlapping is less than k,
which violates the k-anonymity privacy requirement. As
this step ensures that no aggregate location with the
containment relationship is reported to the server, the
adversary cannot obtain any deterministic information from
the aggregate locations.

In this step, each sensor node m maintains a list R to
store the aggregate locations sent by other peers. When a
reporting period starts, m nullifies R. After m finds its
aggregate location Rm, m checks the containment relation-
ship between Rm and the aggregate locations in R. If there
is no containment relationship between Rm and the
aggregate locations in R, m sends Rm to the peers within
Rm:Area and the server (Line 19 in Algorithm 1). Otherwise,
m randomly selects an aggregate location Rp from the set of
aggregate locations in R that contain m’s sensing area, and
m sends Rp to the peers within Rp:Area and the server
(Lines 21 and 22). In case that no aggregate location in R
contains m’s sensing area, we find a set of aggregate
locations, R0, in R that are contained by Rm and N 0 is the
number of monitored persons in Rm that is not covered by
any aggregate location in R0. If N 0 � k, the containment
relationship does not violate the k-anonymity privacy
requirement; therefore, m sends Rm to the peers within
Rm:Area and the server. However, if N 0 < k, m cloaks the
number of monitored persons of Rm, Rm:N , by increasing it
by an integer uniformly selected between k and 2k, and
sends Rm to the peers within Rm:Area and the server (Line
24). Since the server receives an aggregate location from
each sensor node for every reporting period, it cannot tell
whether any containment relationship takes place among
the actual aggregate locations of the sensor nodes.

3.2 The Quality-Aware Algorithm

Algorithm 2 outlines the quality-aware algorithm that takes
the cloaked area computed by the resource-aware algorithm
as an initial solution, and then refines it until the cloaked
area reaches the minimal possible area, which still satisfies
the k-anonymity privacy requirement, based on extra
communication between other peers. The quality-aware

algorithm initializes a variable current minimal cloaked area
by the input initial solution (Line 2 in Algorithm 2). When
the algorithm terminates, the current minimal cloaked area
contains the set of sensor nodes that constitutes the minimal
cloaked area. In general, the algorithm has three steps.

Algorithm 2. Quality-aware location anonymization

1: function QUALITYAWARE (Integer k, Sensor m,
Set init_solution, List R)

2: current_min_cloaked_area  init_solution

// Step 1: The search space step

3: Determine a search space S based on init_solution

4: Collect the information of the peers located in S
// Step 2: The minimal cloaked area step

5: Add each peer located in S to C½1� as an item

6: Add m to each item set in C½1� as the first item
7: for i ¼ 1; i � 4; i ++ do

8: for each item set X ¼ fa1; . . . ; aiþ1g in C½i� do

9: if AreaðMBRðXÞÞ
< Area(current_min_cloaked_area) then

10: if NðMBRðXÞÞ � k then

11: current_min_cloaked_area  fXg
12: Remove X from C½i�
13: end if

14: else

15: Remove X from C½i�
16: end if

17: end for

18: if i < 4 then

19: for each item set pair X ¼ fx1; . . . ; xiþ1g,
Y ¼ fy1; . . . ; yiþ1g in C½i� do

20: if x1 ¼ y1; . . . ; xi ¼ yi and xiþ1 6¼ yiþ1 then

21: Add an item set fx1; . . . ; xiþ1; yiþ1g
to C½iþ 1�

22: end if

23: end for

24: end if

25: end for

26: Area a minimum bounding rectangle of

current_min_cloaked_area

27: N  the total number of objects in

current_min_cloaked_area

// Step 3: The validation step

28: Lines 18 to 25 in Algorithm 1

Step 1: The search space step. Since a typical sensor
network has a large number of sensor nodes, it is too costly
for a sensor node m to gather the information of all the
sensor nodes to compute its minimal cloaked area. To
reduce communication and computational cost, m deter-
mines a search space, S, based on the input initial solution,
which is the cloaked area computed by the resource-aware
algorithm, such that the sensor nodes outside S cannot be
part of the minimal cloaked area (Line 3 in Algorithm 2).
We will describe how to determine S based on the example
given in Fig. 4. Thus, gathering the information of the peers
residing in S is enough for m to compute the minimal
cloaked area for m (Line 4).

Fig. 4 illustrates the search space step, in which we
computeS for sensor nodeA. LetArea be the area of the input
initial solution. We assume thatArea ¼ 1;000. We determine
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S for A by two steps. 1) We find the minimum bounding
rectangle of the sensing area of A. It is important to note that
the sensing area can be in any polygon or irregular shape. In
Fig. 4a, the MBR of the sensing area of A is represented by a
dotted rectangle, where the edges of the MBR are labeled by
e1 to e4. 2) For each edge ei of the MBR, we compute an MBRi

by extending the opposite edge such that the area of the
extended MBRi is equal to Area. S is the MBR of the four
extended MBRi. Fig. 4b depicts the extended MBR1 of the
edge e1 by extending the opposite edge e3, where MBR1:x is
the length of MBR1, MBR1:y ¼ Area=MBR1:x and Area ¼
1;000. Fig. 4c shows the four extended MBRs, MBR1 to MBR4,
which are represented by dotted rectangles. The MBR of the
four extended MBRs constitutes S, which is represented by a
rectangle (Fig. 4d). Finally, the sensor node only needs the
information of the peers within S.

Step 2: The minimal cloaked area step. This step takes a
set of peers residing in the search space, S, as an input and
computes the minimal cloaked area for the sensor node m.
Although the search space step already prunes the entire
system space into S, exhaustively searching the minimal
cloaked area among the peers residing in S, which needs to
search all the possible combinations of these peers, could
still be costly. Thus, we propose two optimization techni-
ques to reduce computational cost.

The basic idea of the first optimization technique is that
we do not need to examine all the combinations of the peers
in S; instead, we only need to consider the combinations of
at most four peers. The rationale behind this optimization is
that an MBR is defined by at most four sensor nodes
because at most two sensor nodes define the width of the
MBR (parallel to the x-axis) while at most two other sensor
nodes define the height of the MBR (parallel to the y-axis).
Thus, this optimization mainly reduces computational cost
by reducing the number of MBR computations among the
peers in S. The correctness of this optimization technique
will be discussed in Section 3.2.2.

The second optimization technique has two properties,
lattice structure and monotonicity property. We first describe
these two properties, and then present a progressive
refinement approach for finding a minimal cloaked area.

A. Lattice structure. In a lattice structure, a data set that
contains n items can generate 2n�1 item sets

excluding a null set. In the sequel, since the null
set is meaningless to our problem, it will be
neglected. Fig. 5 shows the lattice structure of a set
of four items S ¼ fs1; s2; s3; s4g, where each black
line between two item sets indicates that an item set
at a lower level is a subset of an item set at a higher
level. For our problem, given a set of sensor nodes
S ¼ fs1; s2; . . . ; sng, all the possible combinations of
these sensor nodes are the nonempty subsets of S;
thus, we can use a lattice structure to generate the
combinations of the sensor nodes in S. In the lattice
structure, since each item set at level i has i items in
S, each combination at the lowest level, level 1,
contains a distinct item in S; therefore, there are
n item sets at the lowest level. We generate the
lattice structure from the lowest level based on a
simple generation rule: given two sorted item sets
X ¼ fx1; . . . ; xig and Y ¼ fy1; . . . ; yig in increasing
order, where each item set has i items (1 � i < n), if
all item pairs but the last one in X and Y are the
same, x1 ¼ y1; x2 ¼ y2; . . . ; xi�1 ¼ yi�1, and xi 6¼ yi,
we generate a new item set with iþ 1 items,
fx1; . . . ; xi; yig. In the example, we use bold lines
to illustrate the construction of the lattice structure
based on the generation rule. For example, the item
set fs1; s2; s3; s4g at level 4 is combined by the item
sets fs1; s2; s3g and fs1; s2; s4g at level 3, so there is a
bold line from fs1; s2; s3; s4g to fs1; s2; s3g and
another one to fs1; s2; s4g.
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(1 � i � 4). (d) The search space S.

Fig. 5. The lattice structure of a set of four items.



B. Monotonicity property. Let S be a set of items, and P
be the power set of S, 2S . The monotonicity
property of a function f indicates that if X is a
subset of Y , then fðXÞ must not exceed fðY Þ, i.e.,
8X;Y 2 P : ðX � Y Þ ! fðXÞ � fðY Þ. For our pro-
blem, the MBR of a set of sensor nodes S has the
monotonicity property, because adding sensor
nodes to S must not decrease the area of the
MBR of S or the number of objects within the MBR
of S. Let AreaðMBRðXÞÞ and NðMBRðXÞÞ be two
functions that return the area of the MBR of an item
set X and the number of monitored objects located
in the MBR, respectively. Thus, given two item
sets X and Y , if X � Y , then AreaðMBRðXÞÞ �
AreaðMBRðY ÞÞ and NðMBRðXÞÞ � NðMBRðY ÞÞ.
By this property, we propose two pruning condi-
tions in the lattice structure. 1) If a combination C
gives the current minimal cloaked area, other combi-
nations that contain C at the higher levels of the
lattice structure should be pruned. This is because
the monotonicity property indicates that the pruned
combinations cannot constitute a cloaked area
smaller than the current minimal cloaked area.
2) Similarly, if a combination C constitutes a
cloaked area that is the same or larger than the
current minimal cloaked area, other combinations that
contain C at the higher levels of the lattice structure
should be pruned.

C. Progressive refinement. Since the monotonicity prop-
erty shows that we would not need to generate a
complete lattice structure to compute a minimal
cloaked area, we generate the lattice structure of the
peers in the search space, S, progressively from the
lowest level of the lattice structure to its higher
levels, in order to minimize the computational and
storage overhead. To compute the minimal cloaked
area for the sensor node m, we first generate an item
set for each peer in S at the lowest level of the lattice
structure, C½1� (Line 5 in Algorithm 2). To accom-
modate with our problem, we add m to each item
set in C½1� as the first item (Line 6). Such
accommodation does not affect the generation of
the lattice structure, but each item set has an extra
item, m. For each item set X in C½1�, we determine
the MBR of X, MBRðXÞ. If the area of MBRðXÞ is
less than the current minimal cloaked area and the

total number of objects in MBRðXÞ is at least k, we
set X to the current minimal cloaked area, and remove
X from C½1� based on the first pruning condition of
the monotonicity property (Lines 11 and 12).
However, if the area of MBRðXÞ is equal to or
larger than the area of the current minimal cloaked
area, we also remove X from C½1� based on the
second pruning condition of the monotonicity
property (Line 15). Then, we generate the item sets,
where each item set contains two items, at the
second lowest level of the lattice structure, C½2�,
based on the remaining item sets in C½1� based on
the generation rule of the lattice structure. We
repeat this procedure until we produce the item sets
at the highest level of the lattice structure, C½4�, or
all the item sets at the current level are pruned
(Lines 19 to 23). After we examine all nonpruned
item sets in the lattice structure, the current minimal
cloaked area stores the combination giving the
minimal cloaked area (Lines 26 and 27).

Fig. 6 illustrates the minimal cloaked area step that
computes the minimal cloaked area for sensor node A. The
set of peers residing in the search space is S ¼ fB;D;Eg.
We assume that the area of the MBR of fA;Bg, fA;Dg, and
fA;Eg is 1,000, 1,200, and 900, respectively. The number of
objects residing in the MBR of fA;Bg, fA;Dg, and fA;Eg is
six, four, and five, respectively, as depicted in Fig. 3. Fig. 6a
depicts the full lattice structure of S where A is added to
each item set as the first item. Initially, the current minimal

cloaked area is set to the initial solution, which is the MBR of
fA;Bg computed by the resource-aware algorithm. The area
of the MBR of fA;Bg, AreaðMBRðfA;BgÞÞ, is 1,000 and the

total number of monitored objects in MBRðfA;BgÞ,
NðMBRðfA;BgÞÞ, is six. It is important to note that the
progressive refinement approach may not require our
algorithm to compute the full lattice structure. As depicted
in Fig. 6b, we construct the lowest level of the lattice
structure, where each item set contains a peer in S. Since
the area of MBRðfA;BgÞ is the current minimal cloaked area,
we remove fA;Bg from the lattice structure; hence, the item

sets at the higher levels that contain fA;Bg, fA;B;Dg,
fA;B;Eg, and fA;B;D;Eg (enclosed by a dotted oval), will
not be considered by the algorithm. Then, we consider the
next item set fA;Dg. Since the area of MBRðfA;DgÞ is
larger than the current minimal cloaked area, this item set is
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Fig. 6. The quality-aware cloaked area of sensor node A. (a) The full lattice structure. (b) Pruning item set fA;Bg. (c) Pruning item set fA;Dg.
(d) The minimal cloaked area.



removed from the lattice structure. After pruning fA;Dg,
the item sets at the higher levels that contain fA;Dg,
fA;D;Eg (enclosed by a dotted oval), will not be
considered (Fig. 6c). We can see that all item sets beyond
the lowest level of the lattice structure will not be
considered by the algorithm. Finally, we consider the last
item set fA;Eg. Since the area of MBRðfA;EgÞ is less than
current minimal cloaked area and the total number of
monitored objects in MBRðfA;EgÞ is k ¼ 5, we set fA;Eg
to the current minimal cloaked area (Fig. 6d). As the algorithm
cannot generate any item sets at the higher level of the
lattice structure, it terminates. Thus the minimal cloaked
area is the MBR of sensor nodes A and E, and the number
of monitored objects in this area is five.

Step 3: The validation step. This step is exactly the same
as in the resource-aware algorithm (Section 3.1).

3.2.1 Analysis

A brute-force approach of finding the minimal cloaked area
of a sensor node has to examine all the combinations of its
peers. Let N be the number of sensor nodes in the system.
Since each sensor node has N � 1 peers, we have to considerPN�1

i¼1 CN�1
i ¼ 2N�1 � 1 MBRs to find the minimal cloaked

area. In our algorithm, the search space step determines a
search space, S, and prunes the peers outside S. LetM be the
number of peers in S, where M � N � 1. Thus, the
computational cost is reduced to

PM
i¼1 C

M
i ¼ 2M � 1. In the

minimal cloaked area step, the first optimization technique
indicates that an MBR can be defined by at most four peers.
As we need to consider the combinations of at most four
peers, the computational cost is reduced to

P4
i¼1 C

M
i ¼

ðM4 � 2M3 þ 11M2 þ 14MÞ=24 ¼ OðM4Þ. Furthermore, the
second optimization technique uses the monotonicity
property to prune the combinations, which cannot give the
minimal cloaked area. In our example, the brute-force
approach considers all the combinations of six peers; hence,
this approach computes 26 � 1 ¼ 63 MBRs to find the
minimal cloaked area of sensor node A. In our algorithm,
the search space step reduces the entire space into S, which
contains only three peers; hence this step needs to compute
23 � 1 ¼ 7 MBRs. After examining the three item sets at the
lowest level of the lattice structure, all other item sets at the
higher levels are pruned. Thus, the progressive refinement
approach considers only three combinations. Therefore, our
algorithm reduces over 95 percent computational cost of the
brute-force approach, as it reduces the number of MBR
computations from 63 to 3.

3.2.2 Proof of Correctness

In this section, we show the correctness of the quality-aware
location anonymization algorithm.

Theorem 1. Given a resource-aware cloaked area of size Area of a

sensor node s, a search space, S, computed by the quality-
aware algorithm contains the minimal cloaked area.

Proof. Let X be the minimal cloaked area of size equal to or
less than Area. We know that X must totally cover the
sensing area of s. Suppose X is not totally covered by S,
X must contain at least one extended MBR, MBRi, where
1 � i � 4 (Fig. 4c). This means that the area of X is larger
than the area of an extended MBR, Area. This contradicts

to the assumption that X is the minimal cloaked area;
thus, X is included in S. tu

Theorem 2. A minimum bounding rectangle can be defined
by at most four sensor nodes.

Proof. By definition, given an MBR, each edge of the MBR
touches the sensing area of some sensor node. In an
extreme case, there is a distinct sensor node touching
each edge of the MBR but not other edges. The MBR is
defined by four sensor nodes, which touch different
edges of the MBR. For any edge e of the MBR, if multiple
sensor nodes touch e but not other edges, we can simply
pick one of these sensor nodes, because any one of these
sensor nodes gives the same e. Thus, an MBR is defined
by at most four sensor nodes. tu

4 SPATIAL HISTOGRAM

In this section, we present a spatial histogram that is
embedded inside the server to estimate the distribution of
the monitored objects based on the aggregate locations
reported from the sensor nodes. Our spatial histogram is
represented by a two-dimensional array that models a grid
structure G of NR rows and NC columns; hence, the system
space is divided intoNR �NC disjoint equal-sized grid cells.
In each grid cell Gði; jÞ, we maintain a float value that acts as
an estimator H½i; j� (1 � i � NC , 1 � j � NR) of the number
of objects within its area. We assume that the system has the
ability to know the total number of moving objects M in the
system. The value of M will be used to initialize the spatial
histogram. In practice, M can be computed online for both
indoor and outdoor dynamic environments. For the indoor
environment, the sensor nodes can be deployed at each
entrance and exit to count the number of users entering or
leaving the system [4], [5]. For the outdoor environment, the
sensor nodes have been already used to count the number of
people in a predefined area [3]. We use the spatial histogram
to provide approximate location monitoring services. The
accuracy of the spatial histogram, which indicates the utility
of our privacy-preserving location monitoring system, will
be evaluated in Section 6.

Algorithm 3 outlines the maintenance of our spatial
histogram. Initially, we assume that the objects are evenly
distributed in the system, so the estimated number of objects
within each grid cell is H½i; j� ¼M=ðNR �NCÞ. The input of
the histogram is a set of aggregate locationsR reported from
the sensor nodes. Each aggregate location R in R contains a
cloaked area, R:Area, and the number of monitored objects
within R:Area, R:N . First, the aggregate locations in R are
grouped into the same partition P ¼ fR1; R2; . . . ; RjP jg if
their cloaked areas are not overlapping with each other,
which means that for every pair of aggregate locations Ri

and Rj in P , Ri:Area \Rj:Area ¼ ; (Lines 2 to 8). Then, for
each partition P , we update its entire set of aggregate
locations to the spatial histogram at the same time. For each
aggregate location R in P , we record the estimation error,
which is the difference between the sum of the estimators
within R:Area, R: bN , and R:N , and then R:N is uniformly
distributed among the estimators within R:Area; hence each
estimator within R:Area is set to R:N divided by the total
number of grid cells within R:Area (Lines 10 to 13). After
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processing all the aggregate locations in P , we sum up
the estimation error of each aggregate location in P ,PjP j

k¼1 Rk: bN �Rk:N , that is uniformly distributed among
the estimators outside P:Area, where P:Area is the area
covered by some aggregate location in P , P:Area ¼
[Rk2PRk:Area (Line 15). Formally, for each partition P that
contains jP j aggregate locations Rk (1 � k � jP j), every
estimator in the histogram is updated as follows:

H½i; j� ¼

Rk:N

No: of cells within Rk:Area
;

for Gði; jÞ 2 Rk:Area;

H½i; j� þ
PjP j

k¼1 Rk: bN �Rk:N

No: of cells outside P:Area
;

for Gði; jÞ 62 P:Area:

8>>>>>>><
>>>>>>>:

Algorithm 3. Spatial histogram maintenance
1: function HISTOGRAMMAINTENANCE

(AggregateLocationSet R)

2: for each aggregate location R 2 R do

3: if there is an existing partition P ¼ fR1; . . . ; RjP jg
such that R:Area \Rk:Area ¼ ; for every Rk 2 P
then

4: Add R to P

5: else

6: Create a new partition for R

7: end if

8: end for

9: for each partition P do

10: for each aggregate location Rk 2 P do

11: Rk: bN  P
G½i;j�2Rk:Area

H½i; j�
12: For every cell Gði; jÞ 2 Rk:Area,

H½i; j�  Rk:N
No: of cells within Rk:Area

13: end for

14: P:Area R1:Area [ 	 	 	 [RjP j:Area
15: For every cell Gði; jÞ 62 P:Area,

H½i; j� ¼ H½i; j� þ
P

Rk2P
Rk:bN�Rk:N

No: of cells outside P:Area

16: end for

5 SYSTEM EVALUATION

In this section, we discuss an attacker model, the experiment
setting of our privacy-preserving location monitoring system
in a wireless sensor network, and the performance metrics.

5.1 Attacker Model

To evaluate the privacy protection of our system, we
simulate an attacker attempting to infer the number of
objects residing in a sensor node’s sensing area. We will
analyze the evaluation result in Section 6.1. The key idea of
the attacker model is that if the attacker cannot infer the
exact object count of the sensor node from our system
output, the attacker cannot infer the location information
corresponding to an individual object. We consider the
worst-case scenario where the attacker has the background
knowledge about the system, which includes the map
layout of the system, the location of each sensor node, the
sensing area of each sensor node, the total number of objects
currently residing in the system, and the aggregate

locations reported from the sensor nodes. In general, the
attacker model is defined as: Given an area A (that
corresponds to the monitored area of a sensor node) and a set of
aggregate locations R ¼ fR1; R2; . . . ; RjRjg overlapping with A,
the attacker estimates the number of persons within A. Since the
validation step in our location anonymization algorithms
guarantees that the containment relationship among the
aggregate locations reported to the server does not violate
the k-anonymity privacy requirement, we do not consider
any containment relationship in R.

Without loss of generality, we use the Poisson distribu-
tion as a concrete exemplary distribution for the attacker
model [14]. Under the Poisson distribution, objects are
uniformly distributed in an area within intensity of �. The
probability of n distinct objects in a region S of size s is
P ðNðSÞ ¼ nÞ ¼ e��sð�sÞn

n! , where � is computed as the number
of objects in the system divided by the area of the system.

Suppose that the object count of each aggregate location
Ri is ni, where 1 � i � jRj, and the aggregate locations in R
and A constitute m nonoverlapping subregions Sj, where
1 � j � m; hence NðRiÞ ¼

P
Sj2Ri

NðSjÞ ¼ ni. Each subre-
gion must either intersect or not intersect A, and it intersects
one or more aggregate locations. If a subregion Sk intersects
A, but none of the aggregate locations in R, then NðSkÞ ¼ 0.
The probability mass function of the number of distinct
objects in A being equal to na, N ¼ na, given the aggregate
locations in R can be expressed as follows:

P ðN ¼ najNðR1Þ ¼ n1; . . . ; NðRjRjÞ ¼ njRjÞ

¼
P ðN ¼ na;NðR1Þ ¼ n1; . . . ; NðRjRjÞ ¼ njRjÞ

P ðNðR1Þ ¼ n1; . . . ; NðRjRjÞ ¼ njRjÞ

¼
P

Vi2ðVS\VAÞ
�
vi1; v

i
2; . . . ; vim

�
P

Vj2VS
�
vj1; v

j
2; . . . ; vjm

� ;

ð1Þ

where the notation V ¼< v1; v2; . . . ; vm > represents the
joint probability that there are vi objects in a subregion Si
(1 � i � m); the joint probability is computed asQ

1�i�m P ðNðSiÞ ¼ viÞ. The lower and upper bounds of vi
(denoted as LBðviÞ and UBðviÞ, respectively) are zero and
the minimum nj of the aggregate locations intersecting Si,
respectively. Thus, the possible value of vi is within a range
of ½0;minRj\Si 6¼;^1�i�m^1�j�jRjðnjÞ�. VS is the set of < v1;

v2; . . . ; vm > that is a solution to the following equations:

VS :
X
Si2R1

vi ¼ n1;
X
Si2R2

vi ¼ n2; . . . ;
X

Si2RjRj
vi ¼ njRj;

where vi � 0 for 1 � i � m. VA is the set of <v1; v2; . . . ; vm>

that satisfies the following equation: VA :
P

1�i�m vi ¼ na.
The attacker uses an exhaustive approach to find all

possible solutions to VS , in order to compute the expected
value EðN Þ of (1) as the estimated value of na. The
complexity of computing EðN Þ is Oð

Q
1�i�m UBðviÞÞ. Since

the complexity of the attacker model is an exponential
function of m and m would be much larger than jRj, such
exponential complexity makes it prohibitive for the attacker
model to be used to provide online location monitoring
services; therefore, we use our spatial histogram to provide
online services in the experiments. We will evaluate the
resilience of our system to the attacker model in Section 6.1.
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5.2 Simulation Settings

In all experiments, we simulate 30� 30 sensor nodes that are

uniformly distributed in a 600� 600 system space. Each

sensor node is responsible for monitoring a 20� 20 space.

We generate a set of moving objects that freely roam around

the system space. Unless mentioned otherwise, the experi-

ments consider 5,000 moving objects that move at a random

speed within a range of ½0; 5� space unit(s) per time unit, and

the required anonymity level is k ¼ 20. The spatial histogram

contains NR �NC ¼ 200� 200 grid cells, and we issue

1,000 range queries whose query region size is specified by

a ratio of the query region area to the system area, that is, a

query region size ratio. The default query region size ratio is

uniformly selected within a range of ½0:001; 0:032�. Table 1

gives a summary of the parameter settings.

5.3 Performance Metrics

We evaluate our system in terms of five performance

metrics.

1. Attack model error. This metric measures the resi-
lience of our system to the attacker model by the
relative error between the estimated number of
objects bN in a sensor node’s sensing area and the
actual one N . The error is measured as j

bN�Nj
N . When

N ¼ 0, we consider bN as the error.
2. Communication cost. We measure the communication

cost of our location anonymization algorithms in
terms of the average number of bytes sent by each
sensor node per reporting period. This metric also
indicates the network traffic and the power con-
sumption of the sensor nodes.

3. Cloaked area size. This metric measures the quality of
the aggregate locations reported by the sensor nodes.
The smaller the cloaked area, the better the accuracy
of the aggregate location is.

4. Computational cost. We measure the computational
cost of our location anonymization algorithms in
terms of the average number of the MBR computa-
tions that are needed to determine a resource or
quality-aware cloaked area. We compare our algo-
rithms with a basic approach that computes the MBR
for each combination of the peers in the required
search space to find the minimal cloaked area. The
basic approach does not employ any optimization
techniques proposed for our quality-aware algorithm.

5. Query error. This metric measures the utility of our
system, in terms of the relative error between the
query answer bM, which is the estimated number of
objects within the query region based on a spatial

histogram, and the actual answer M, respectively.
The error is measured as

j bM �Mj
M

:

When M ¼ 0, we consider bM as the error.

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show and analyze the experimental
results with respect to the privacy protection and the
quality of location monitoring services of our system.

6.1 Anonymization Strength

Fig. 7 depicts the resilience of our system to the attacker
model with respect to the anonymity level and the number
of objects. In the figure, the performance of the resource and
quality-aware algorithms is represented by black and gray
bars, respectively. Fig. 7a depicts that the stricter the
anonymity level, the larger the attacker model error will
be encountered by an adversary. When the anonymity level
gets stricter, our algorithms generate larger cloaked areas,
which reduce the accuracy of the aggregate locations
reported to the server. Fig. 7b shows that the attacker
model error reduces, as the number of objects gets larger.
This is because when there are more objects, our algorithms
generate smaller cloaked areas, which increase the accuracy
of the aggregate locations reported to the server. It is
difficult to set a hard quantitative threshold for the attacker
model error. However, it is evident that the adversary
cannot infer the number of objects in the sensor node’s
sensing area with any fidelity.

6.2 Effect of Query Region Size

Fig. 8 depicts the privacy protection and the quality of our
location monitoring system with respect to increasing the
query region size ratio from 0.001 to 0.256, where the query
region size ratio is the ratio of the query region area to the
system area and the query region size ratio 0.001 corresponds
to the size of a sensor node’s sensing area. The results give
evidence that our system provides low-quality location
monitoring services for the range query with a small query
region, and better quality services for larger query regions.
This is an important feature to protect personal location
privacy, because providing the accurate number of objects in
a small area could reveal individual location information;
therefore, an adversary cannot use our system output to track
the monitored objects with any fidelity. The definition of a
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small query region is relative to the required anonymity level

k. For example, we want to provide low-quality services,

such that the query error is at least 0.2, for small query

regions. For the resource-aware algorithm, Fig. 8a shows that

when k ¼ 10, a query region is said to be small if its query

region size is not larger than 0.002 (it is about two sensor

nodes’ sensing area). However, when k ¼ 30, a query region

is only considered as small if its query region size is not larger

than 0.016 (it is about 16 sensor nodes’ sensing area). For the

quality-aware algorithm, Fig. 8b shows that when k ¼ 10, a

query region is said to be small if its query region size is not

larger than 0.002, while when k ¼ 30, a query region is only

considered as small if its query region size is not larger than

0.004. The results also show that the quality-aware algorithm

always performs better than the resource-aware algorithm.

6.3 Effect of the Number of Objects

Fig. 9 depicts the performance of our system with respect to

increasing the number of objects from 2,000 to 10,000. Fig. 9a

shows that when the number of objects increases, the
communication cost of the resource-aware algorithm is only

slightly affected, but the quality-aware algorithm signifi-
cantly reduces the communication cost. The broadcast step of
the resource-aware algorithm effectively allows each sensor

node to find an adequate number of objects to blur its sensing
area. When there are more objects, the sensor node finds
smaller cloaked areas that satisfy the k-anonymity privacy

requirement, as given in Fig. 9b. Thus, the required search
space of a minimal cloaked area computed by the quality-
aware algorithm becomes smaller; hence, the communication

cost of gathering the information of the peers in such a
smaller required search space reduces. Likewise, since there

are less peers in the smaller required search space as the
number of objects increases, finding the minimal cloaked
area incurs less MBR computation (Fig. 9c). Since our

algorithms generate smaller cloaked areas when there are
more users, the spatial histogram can gather more accurate
aggregate locations to estimate the object distribution; there-

fore, the query answer error reduces (Fig. 9d). The result also
shows that the quality-aware algorithm always provides

better quality services than the resource-aware algorithm.

6.4 Effect of Privacy Requirements

Fig. 10 depicts the performance of our system with respect
to varying the required anonymity level k from 10 to 30.
When the k-anonymity privacy requirement gets stricter,

the sensor nodes have to enlist more peers for help to blur
their sensing areas; therefore, the communication cost of

our algorithms increases (Fig. 10a). To satisfy the stricter
anonymity levels, our algorithms generate larger cloaked
areas, as depicted in Fig. 10b. For the quality-aware

algorithm, since there are more peers in the required search
space when the input (resource-aware) cloaked area gets
larger, the computational cost of computing the minimal

cloaked area by the quality-aware algorithm and the basic
approach gets worse (Fig. 10c). However, the quality-aware
algorithm reduces the computational cost of the basic

approach by at least four orders of magnitude. Larger
cloaked areas give more inaccurate aggregate location

information to the system, so the estimation error increases
as the required k-anonymity increases (Fig. 10d). The
quality-aware algorithm provides much better quality

location monitoring services than the resource-aware
algorithm, when the required anonymity level gets stricter.
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Fig. 9. Number of objects. (a) Communication cost. (b) Cloaked area size. (c) Computational cost. (d) Estimation error.

Fig. 8. Query region size. (a) Resource-aware algorithm. (b) Quality-
aware algorithm.



6.5 Effect of Mobility Speeds

Fig. 11 gives the performance of our system with respect to
increasing the maximum object mobility speed from ½0; 5�
and ½0; 30�. The results show that increasing the object
mobility speed only slightly affects the communication cost
and the cloaked area size of our algorithms, as depicted in
Figs. 11a and 11b, respectively. Since the resource-aware
cloaked areas are slightly affected by the mobility speed, the
object mobility speed has a very small effect on the required
search space computed by the quality-aware algorithm.
Thus, the computational cost of the quality-aware algorithm
is also only slightly affected by the object mobility speed
(Fig. 11c). Although Fig. 11d shows that query answer error
gets worse when the objects are moving faster, the query
accuracy of the quality-aware algorithm is consistently
better than the resource-aware algorithm.

7 RELATED WORK

Straightforward approaches for preserving users’ location
privacy include enforcing privacy policies to restrict the use
of collected location information [15], [16] and anonymizing
the stored data before any disclosure [17]. However, these
approaches fail to prevent internal data thefts or inad-
vertent disclosure. Recently, location anonymization tech-
niques have been widely used to anonymize personal
location information before any server gathers the location
information, in order to preserve personal location privacy
in location-based services. These techniques are based on
one of the three concepts. 1) False locations. Instead of
reporting the monitored object’s exact location, the object
reports n different locations, where only one of them is the
object’s actual location while the rest are false locations [18].
2) Spatial cloaking. The spatial cloaking technique blurs a

user’s location into a cloaked spatial area that satisfy the
user’s specified privacy requirements [19], [20], [21], [22],
[23], [24[, [25], [26], [27], [28]. 3) Space transformation. This
technique transforms the location information of queries
and data into another space, where the spatial relationship
among the query and data are encoded [29].

Among these three privacy concepts, only the spatial
cloaking technique can be applied to our problem. The
main reasons for this are that 1) the false location
techniques cannot provide high-quality monitoring services
due to a large amount of false location information, 2) the
space transformation techniques cannot provide privacy-
preserving monitoring services as it reveals the monitored
object’s exact location information to the query issuer, and
3) the spatial cloaking techniques can provide aggregate
location information to the server and balance a trade-off
between privacy protection and the quality of services by
tuning the specified privacy requirements, for example, k-
anonymity and minimum area privacy requirements [17],
[27]. Thus, we adopt the spatial cloaking technique to
preserve the monitored object’s location privacy in our
location monitoring system.

In terms of system architecture, existing spatial cloaking
techniques can be categorized into centralized [19], [20], [22],
[25], [26], [27], [28], distributed [23], [24], and peer-to-peer [21]
approaches. In general, the centralized approach suffers
from the mentioned internal attacks, while the distributed
approach assumes that mobile users communicate with
each other through base stations is not applicable to the
wireless sensor network. Although the peer-to-peer ap-
proach can be applied to the wireless sensor network, the
previous work using this approach only focuses on hiding a
single-user location with no direct applicability to sensor-
based location monitoring. Also, the previous peer-to-peer
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Fig. 11. Object mobility speeds. (a) Communication cost. (b) Cloaked area size. (c) Computational cost. (d) Estimation error.

Fig. 10. Anonymity levels. (a) Communication cost. (b) Cloaked area size. (c) Computational cost. (d) Estimation error.



approaches do not consider the quality of cloaked areas and
discuss how to provide location monitoring services based
on the gathered aggregate location information.

In the wireless sensor network, Cricket [2] is the only
privacy-aware location system that provides a decentra-
lized positioning service for its users where each user can
control whether to reveal her location to the system.
However, when many users decide not to reveal their
locations, the location monitoring system cannot provide
any useful services. This is in contrast to our system that
aims to enable the sensor nodes to provide the privacy-
preserving aggregate location information of the monitored
objects. The closest work to ours is the hierarchical location
anonymization algorithm [6] that divides the system space
into hierarchical levels based on the physical units, for
example, subrooms, rooms, and floors. If a unit contains at
least k users, the algorithm cloaks the subject count by
rounding the value to the nearest multiple of k. Otherwise,
the algorithm cloaks the location of the physical unit by
selecting a suitable space containing at least k users at the
higher level of the hierarchy. This work is not applicable to
some landscape environments, for example, shopping mall
and stadium, and outdoor environments. Our work
distinguishes itself from this work, as 1) we do not assume
any hierarchical structures, so it can be applied to all kinds
of environments, and 2) we consider the problem of how to
utilize the anonymized location data to provide privacy-
preserving location monitoring services while the usability
of anonymized location data was not discussed in [6].

Other privacy related works include: anonymous com-
munication that provides anonymous routing between the
sender and the receiver [12], source location privacy that
hides the sender’s location and identity [13], aggregate
data privacy that preserves the privacy of the sensor
node’s aggregate readings during transmission [30], data
storage privacy that hides the data storage location [31],
and query privacy that avoids disclosing the personal
interests [32]. However, none of these previous works is
applicable to our problem.

8 CONCLUSION

In this paper, we propose a privacy-preserving location
monitoring system for wireless sensor networks. We design
two in-network location anonymization algorithms, namely,
resource and quality-aware algorithms, that preserve personal
location privacy, while enabling the system to provide
location monitoring services. Both algorithms rely on the
well-established k-anonymity privacy concept that requires
a person is indistinguishable among k persons. In our
system, sensor nodes execute our location anonymization
algorithms to provide k-anonymous aggregate locations, in
which each aggregate location is a cloaked area A with the
number of monitored objects, N , located in A, where N � k,
for the system. The resource-aware algorithm aims to
minimize communication and computational cost, while
the quality-aware algorithm aims to minimize the size of
cloaked areas in order to generate more accurate aggregate
locations. To provide location monitoring services based on
the aggregate location information, we propose a spatial
histogram approach that analyzes the aggregate locations

reported from the sensor nodes to estimate the distribution

of the monitored objects. The estimated distribution is used

to provide location monitoring services through answering

range queries. We evaluate our system through simulated

experiments. The results show that our system provides

high-quality location monitoring services (the accuracy of

the resource-aware algorithm is about 75 percent and the

accuracy of the quality-aware algorithm is about 90 percent),

while preserving the monitored object’s location privacy.
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