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Abstract—With advances in energy harvesting techniques, it
is now feasible to build sustainable sensor networks (SSN) to
support long-term applications. Unlike battery-powered sensor
networks, the objective of sustainable sensor networks is to
effectively utilize a continuous stream of ambient energy. Instead
of pushing the limits of energy conservation, we are aiming
at energy-synchronized designs1 to keep energy supplies and
demands in balance. Specifically, this work presents the Energy
Synchronized Communication (ESC) as a transparent middle-
ware between the network layer and data link layer that controls
the amount and timing of RF activity at receiving nodes. In this
work, we first derive a delay model for cross-traffic at individual
nodes, which reveals an interesting stair effect in low-duty-cycle
networks. This effect allows us to design a localized energy
synchronization control with O(1) time complexity that shuffles
or adjusts the working schedule of a node to optimize cross-
traffic delays in the presence of changing duty-cycle budgets.
Under different rates of energy fluctuations, shuffle-based and
adjustment-based methods have different influences on logical
connectivity and cross-traffic delay, due to the inconsistent views
of working schedules among neighboring nodes before schedule
updates. We study the tradeoff between them and propose
methods to update working schedules efficiently. To evaluate our
work, ESC is implemented on MicaZ nodes with two state-of-the-
art routing protocols. Both test-bed experiment and large scale
simulation results show significant performance improvements
over randomized synchronization controls.

I. INTRODUCTION

With the increasing need for cyber-physical interaction,

Wireless Sensor Networks (WSN) have emerged as a key

technology for many long-term applications, such as mili-

tary surveillance [1], [2], field monitoring [3] and assisted

living [4]. Due to the stringent constraints on cost and form

factors, traditional battery-powered sensor networks must bal-

ance the tradeoff between sustainability and system perfor-

mance [5]–[7]. Normally, the design objective of these systems

is to conserve as much energy as possible while meeting

minimal requirements [8]–[10].

Because sensor networks usually interact with the physical

environment, they are especially well-suited to exploit ambient

energy resources. For example, there are already many existing

technologies to extract energy from the environment such

as solar, thermal, optical, and kinetic energies [11]–[13]. In

addition, several recent works have built prototypes [14]–[16]

to demonstrate the feasibility of deploying sustainable sensor

1Usually synchronization refers to time dimension, for energy-harvesting
sensor networks we propose to use the term synchronization to represent the
balance between energy supply and demand in the network.

network with energy-harvesting nodes. However, influenced by

the traditional belief in energy management, the designers of

those systems still think that maximum energy harvesting and

minimum energy consumption are always beneficial.

Different from previously ingrained belief, we take a new

position in this work. We argue that energy management

should synchronize the supply with demand. The equilibrium

point is achieved when the energy supplied and demanded are

in balance. It is not always beneficial to conserve energy when

a network can harvest excessive energy from the environment

since energy storage devices (e.g., batteries or capacitors) are

always limited in capacity and usually leakage-prone. There-

fore, energy saving with reduced performance during energy-

rich periods is actually wasteful and counter-productive. In

other words, in sustainable sensor networks, we would like to

consume as much energy as possible while maintaining their

sustainability.

In this work, we are particularly interested in studying

the impact of energy synchronization on communication per-

formance. We propose Energy Synchronized Communication

(ESC), a novel solution that dynamically synchronizes node

activity patterns with available energy budgets, so as to min-

imize communication delay at individual nodes in sustainable

sensor networks. Specifically, by exploiting an interesting

stair-effect of delay during energy synchronization, ESC is

capable of minimizing communication delay at individual

nodes in constant time and lies as a generic middleware

between the data link layer and network layer. The major

intellectual contributions of this work are as follows:

• An Energy Synchronized Communication (ESC) protocol

is designed as a generic middleware service for support-

ing existing network protocols. To our best knowledge,

this is the first in-depth and generic work to study

low duty-cycle communication performance in energy-

harvesting, sustainable sensor networks.

• We formulate a general model for cross-traffic delay

at individual nodes. This model reveals an interesting

stair effect of delays in low duty-cycle networks. We

show that, counterintuitively, the communication delay

is not affected by when a packet is received as long as

the packet arrives within a certain interval. This stair

effect allows us to design a localized O(1) algorithm

to minimize communication delay while synchronizing

duty-cycles of individual nodes with available ambient

energy.
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Fig. 1. Harvested Power
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Fig. 2. Duty Cycle

• Logical Link Quality (LLQ) is put forward to reflect

the true reliability of a link in low-duty-cycle networks,

capturing transient inconsistency views among neighbor-

ing nodes. We study the impact of shuffle-based and

adjustment-based synchronization on LLQ and propose

how to maintain LLQ with a small overhead.

The rest of the paper is organized as follows: Section II mo-

tivates the necessity of ESC. Section III articulates the network

model and related assumptions. Section IV formalizes a delay

model for cross traffic. Section V and Section VI describe

our energy-synchronized control algorithm and the impact of

updates on logical link quality. Section VII discusses practical

design issues. Section VIII and Section IX present test-bed and

simulation evaluation results, respectively. Section X briefly

discusses related work. Section XI concludes the paper.

II. MOTIVATION

The motivation of this work is originated from our empirical

experience of deploying energy-harvesting, sustainable sensor

networks. In such networks, the energy supply usually is very

dynamic and the whole network normally has to operate at

low-duty-cycle to ensure the sustainability. With those unique

characteristics, effective data communication in such networks

therefore poses a new challenge beyond traditional static,

battery-powered sensor networks. In the following paragraphs,

we explain the impact of dynamic energy supply and low-duty-

cycle networking on data communication process in detail.

Fig. 3. Experiment Site

First, in energy harvesting networks, the harvested energy

usually is very unpredictable and could vary significantly over

time [15], [16]. To study the empirical energy harvesting rate

over time, we have deployed 11 solar-powered sensor nodes

in an open field, shown in Figure 3. We collect the energy

harvesting rates for the 11 deployed sensor nodes for a period

of two days and Figure 1 plots the harvested energy over time

for node 4 and node 5 in Figure 3. Clearly in Figure 1, in the

time dimension, the harvested energy varies significantly both

within a day and across days. Furthermore, in the space dimen-

sion, even node 4 and node 5 are physically co-located, their

energy harvesting rates also vary significantly. Furthermore,

although energy-harvesting sensor nodes usually are equipped

with rechargeable batteries or super capacitors to alleviate

the impact of energy variations, they are limited in energy

storage capacity due to the small form factor requirement

and waste energy unnecessarily due to the problem of energy

leakage [16]. With such energy dynamics in the network, we

can no longer schedule sensor nodes a priori as most existing

battery-powered solutions do. Consequently, the question of

how to effectively synchronize energy supply with sensor node

activities while optimizing communication process, introduces

a very demanding task.

Second, in the long run, ambient energy (e.g., solar, wind)

is normally not intensive enough to sustain the continuous

100% duty cycle operation of sensor nodes [15]–[17]. Figure 2

shows the affordable duty cycles of node 4 and node 5, given

the energy harvested in Figure 1. From Figure 2, we can see

in order to ensure the continuous operation, the duty cycles

of an energy-harvesting node can only range from 0.2% to

9.78%. From our empirical measurement results, even in a

sunny day, the total energy harvested at a node can only supply

itself to operate at 100% duty cycle for 6.37 hours. Essentially,

during the operation of an energy-harvesting network, sensor

nodes have to activate very briefly and stay in a dormant state

for a very long period of time. In order to forward a packet

in such always-dormant networks, a sender would experience

sleep latency - the time spent waiting for the receiver to wake

up [18]. Moreover, since communication links between low-

power sensor devices are usually unreliable [19], it brings

further challenges in managing communication in sustainable

sensor networks.

To the best of our knowledge, no prior work has studied the

impact of energy synchronization on low-duty-cycle networks

with unreliable links. We contribute this research direction

with (i) theory, (ii) architecture and (iii) design.

III. SYSTEM MODELS AND ASSUMPTIONS

Before presenting ESC in detail, we introduce the models

and assumptions used in this work. In addition, we elaborate

on the packet delivery process and define sleep latency in low-

duty-cycle sensor networks. To simplify our description, we

introduce our ESC design assuming (i) neighboring nodes are

synchronized in the unit of a time instance and, (ii) there is

at most one packet transmission within such a time instance.

Later on in Section VII, we discuss how we can relax those

assumptions in practice.



A. Working Schedule

The working schedule of a sensor node denotes the active-

dormant behaviors of the sensor node over its lifetime. It

consists of a set of active instances, during which a node can

receive packets. Each active instance j at node i can be repre-

sented by a tuple (tij , d
i
j), where tij denotes the starting time of

the active instance and di
j denotes the corresponding duration

of the active instance j. Since many sensor node working

schedules are periodic [20]–[22], it is sufficient to represent

an infinite sequence of active instances, using repeated subse-

quences with a period time T . Let Γi be the working schedule

of node i and the number of active instances within a period

be N , we can have Γi = {(ti
1
, di

1
), (ti

2
, di

2
), ..., (tiN , di

N )}. Ac-

cording to its working schedule, a node continuously transits

its state between active and dormant state. The duty cycle of

node i, therefore is

P

N
j=1

di
j

T
. For example, Figure 4 shows a

periodic working schedule Γi = {(1, 1), (5, 2), (8, 1)} with a

period time 10. The duty cycle of node i here is 4

10
= 40%.

Fig. 4. A Working Schedule

To simplify our description, in the rest of the paper we

assume all active instances have the same durations (τ ). When

a node is said to be active at time t, it has an active instance

that starts at time t with duration of τ . We note that this

definition of working schedule can actually accommodate

active instances with varying durations. Essentially, if we let

τ be the finest granularity of time durations in the design, we

can represent any node schedule with the fixed τ .

B. Network Model

We assume a network with N sensor nodes. At a given point

of time t, a sensor node is in either an active or a dormant

state. When a node is in the active state, it can receive packets

transmitted from neighboring nodes. When a node is in the

dormant state, it turns off all function modules except a timer

(for the purpose of waking itself up). In other words, a node

can wake up to transmit a packet at any time, but can receive

packets only when it is in its active state. Since a node can

only receive packets during its active state, the packet ready

time at a node (i.e., the time a node receives a new packet and

ready to forward to the next hop node), therefore is the same

as active instances in its working schedule.

For a sensor node, its neighbors consistently transit between

active and dormant states, and thus connectivity between a

pair of nodes varies over time and becomes time-dependent.

Formally, for a given time t, we denote the network topology

as G(t) = (V, E(t)), where V is a set of N nodes within the

network, and E(t) is a set of directed edges at time t. An

edge e(i,j) belongs to E(t) if and only if (i) node i is within

the communication range of node j, and (ii) node j is active

and hence able to receive packet at time t. Essentially G(t)

represents the potential traffic flow within the network at time

t.

C. Sleep Latency in Low-Duty-Cycle Network

In connected networks, a one-hop packet delivery latency

usually includes processing delay, transmission delay, and

propagation delay, which are normally in the order of millisec-

onds. In low-duty-cycle sensor networks, however, a sender

may need to wait for its receiver to wake up before it can send

a packet. We define sleep latency as the time duration from

the moment a packet is ready at the sender to the moment the

destined one-hop receiver is active. Sleep latency is usually

in the order of seconds, which is much longer than other

delivery latencies. Therefore, in this paper we only consider

sleep latency for measuring E2E delay. In a network with

perfect links, the E2E delay is the sum of sleep latencies along

the path of data delivery.

a dcb

(1) (3) (4) (5)

Fig. 5. A Linear Network

To further illustrate the concept of sleep latency, we use the

linear network shown in Figure 5 as an example. In Figure 5,

the active instance of each node is labeled on top of each node.

Assume node a has a packet ready to be sent at time 1, given

that the node b wakes up at time 3, the sleep latency for the

first attempted transmission from node a to node b therefore

is 3− 1 = 2.

IV. MODELING OF CROSS-TRAFFIC DELAY

This section presents the model for cross-traffic delay at a

node. In low duty-cycle networks, a packet is transmitted only

when the receiver is in the active state, and nodes in such

networks only activate very briefly and stay in the dormant

state for the majority of time. Thus here we assume data

traffic/congestion is low, which holds well for existing low-

duty-cycle sensor networks [18], [21], [23].

A. Cross-Traffic Pattern

ESC is designed to be a flexible middleware between the

network layer and data link layer, so that it can be used

to support various existing routing protocols. Therefore, it is

important to have a delay model that can capture the behavior

of cross-traffic (many-to-many), a generalized case for one-to-

one, many-to-one, and one-to-many traffic.

For a node b in the network, depending on the specific

routing protocol adopted, there may be a set of nodes that

forwards packets to node b, and we call those nodes prede-

cessors of node b. Similarly, for different final destinations or

multi-path routing protocols, node b would forward its packets

to a certain set of nodes, and we call those nodes successors

of node b. For example, in Figure 6, the predecessors of node

b include node p1, p2 and p3, while the successors of node b

are nodes s1 and s2. Here we note that a node can be both a
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Fig. 7. A Cyclic Working Schedule

predecessor and a successor of node b, if this node exchanges

data bidirectionally with node b.

To model the cross-traffic delay related to node b, we

consider the expected delays for packets from all predecessor

nodes through node b, then to corresponding successor nodes.

B. Delay Modeling

Assume at a predecessor node p1, a packet destined to

node b is ready at time t, where t ∈ [0, T ). Since the radio

link between a pair of nodes is usually not perfect, node

p1 may need to initiate multiple transmissions before the

packet has successfully arrived at node b. In order to obtain

a corresponding sleep latency for each attempted transmission

at node p1 after packet ready time t, we introduce a cycle

representation of a node working schedule shown in Figure 7.

In Figure 7, the cycle is equally divided by T ticks. Begin-

ning at the 12 o’clock position, the time increases from 0 to T

clockwise. Consequently, we can easily label the sequence of

active instances at node b on the cycle. To measure the sleep

latency (denoted as Lb
t(k)) introduced by node b, for a given

kth attempted transmission at time t, we can simply start from

time t, follow the clockwise direction and measure the total

distance traversed by visiting k labels after time t on the cycle.

For example, as depicted in Figure 7 where T is 10 units of

time, the packet is ready at time t = 2 and node b wakes up

during time 1, 3, 6 and 9. For the first attempted transmission

(Lb
t(1)), the corresponding sleep latency is 1 since the total

time traversed for visiting one label (tb2) from time 2 is 1.

Similarly, for the fourth attempted transmission (Lb
t(4)), the

sleep latency is total time traversed from t to tb2, then to tb3,

tb
4

and the fourth label tb
1
, which gives 1 + 3 + 3 + 2 = 9 in

total.

Link Reliability: Let the bi-directional link quality pab denote

the success ratio of a round-trip transmission (DATA and

ACK) between node a and node b. The probability that packet

transmission succeeds at the kth attempt is the probability that

previous k − 1 attempts failed times the probability that the

current attempt succeeds, which is simply the link quality pab.

Therefore the probability that the packet reaches node b from

node a at its kth attempt can be expressed as (1−pab)
k−1pab.

Assuming the maximum number of packet retransmissions

within the network is Rmax, for the packets arriving at node b

from a, the probability that they arrive at kth attempt is under

the condition that the packet is delivered within Rmax re-

transmissions. The probability that a packet is delivered within

Rmax retransmissions can be expressed as 1− (1−pab)
Rmax ,

and the corresponding conditional probability can be written

as:

P ab(k) =
(1− pab)

k−1pab

1− (1 − pab)Rmax
(1)

Delay Over a Single link: For a packet ready time t at node

a, the expected transmission delay to reach node b is the sum

of the product of probability that the packet reaches node b at

its kth attempt and corresponding sleep latency. Consequently,

it can be formulated as:

Dab(t) =

Rmax∑

k=1

P ab(k)Lb
t(k) (2)

Delay from One Predecessor to One Successors: For a

packet ready time t at a predecessor node pi, assuming the

packet arrives at node b at the kth attempted transmission,

its corresponding delay is simply Lb
t(k). Upon receiving the

packet at time t + Lb
t(k), node b would forward the received

packet to a destined successor node sj with a delay of

Dbsj
(t + Lb

t(k)). Then the expected delay from predecessor

pi to successor sj with packet ready time t at predecessor pi

is the product of probability that the packet arrives node b at

its kth attempted transmission and corresponding cross-traffic

delay, which can be expressed as:

Dpisj
(t) =

Rmax∑

k=1

P pib(k)(Lb
t(k) + Dbsj

(t + Lb
t(k))) (3)

Delay from Multiple Predecessors to Multiple Successors:

To model the expected cross-traffic delay at node b from all

packet ready times at all predecessor nodes to all successor

nodes, node b needs to know the portion of traffic that

reaches node b from each packet ready time at all predecessor

nodes to all successor nodes. To obtain those statistics, each

predecessor of node b can piggyback packet ready time for

each sent packet. Then at node b, with known sender and

packet ready time for each packet, it can easily keep track

of what percentage of packets is from a given packet ready

time t at a predecessor node pi, to a specific successor node sj .

Assume the number of packet ready time at a predecessor node

pi is Npi
, for each packet ready time t

pi

k , we can represent

the percentage of traffic from a packet ready time t
pi

k at a

predecessor node pi to a successor node sj as W
pisj

k . Let the

number of predecessor nodes and successor nodes at node b be

Np and Ns, respectively, we can express the expected delay

of cross-traffic at node b as:

Db =

Np∑

i=1

Ns∑

j=1

Npi∑

k=1

W
pisj

k Dpisj
(tpi

k ) (4)

V. ENERGY SYNCHRONIZATION CONTROL

With the cross-traffic delay model available, we now intro-

duce energy synchronization control for minimizing commu-

nication delay in sustainable sensor networks. In this section,

we first assume the working schedules of predecessors and

successors of a node are known and up-to-date. Later in

Section VI, we discuss the impact of obsolete schedules and

methods to keep the schedules up-to-date.



A. Main Idea

As shown in Section II, energy harvested from surrounding

environments varies significantly over time at a sensor node.

In order to make full use of the available energy supply, we

need to enhance system performance when there is abundant

scavenged energy available; conversely, we need to decrease

duty-cycles with a minimum performance degradation when

there is a shortage in the power supply. Previous works [24],

[25] have demonstrated methods for deciding appropriate duty-

cycle of a sensor node with in-situ energy supply. In this

section, we further focus on the impact of duty-cycle changes

on communication delay. More specifically, when we increase

the duty-cycle of a node with additional available energy, we

aim at minimizing cross-traffic delay at the node. Similarly,

when a node needs to decrease its duty-cycle due to lack of

sufficient energy supply, we would like to achieve a minimum

increase in the cross-traffic delay of the node. As a result,

harvested energy at an individual node is synchronized to

minimize the communication delay within the network.

B. Decrementing Single Active Instance

For a given node b, assume its current working schedule

is Γb = {tb
1
, tb

2
, ..., tbNb

} and current energy supply can only

afford Nb − 1 active instances to guarantee the sustainability

of the node. Therefore, we need to remove one active instance

from node b’s current working schedule such that the increase

of cross-traffic delay at node b is minimized. Since sustainable

sensor nodes work in extremely low duty-cycles, the number

of active instances in its working schedule is very small and

would always below a constant value c. Consequently, to find

the optimal active instance for decrement, we can simply test

all existing active instances and select the one that yields the

minimum delay at node b. The complexity of the optimal

single active instance decrement, therefore, is just O(1).

C. Augmenting Single Active Instance

Intuitively, for augmenting one active instance at a node,

we can perform an exhaustive search on all time instances

within a period time T and choose the time instance that

yields a minimum cross-traffic delay at a node. Although this

naive algorithm is acceptable, a much more efficient algorithm

can be designed based on the stair effect as presented in this

section.

For a given node b, we can divide its period time into mul-

tiple intervals according to active instances of its predecessors

and successors. For example, as shown in Figure 8, assume

the predecessor and successor of node b is node p and node s,

respectively. Let the active instances at node p and node s be

{tp
1
, t

p
2
} and {ts1, t

s
2}, respectively. According to their locations

on the cyclic working schedule, we can easily obtain four

intervals, namely: (tp
1
, ts

1
), (ts

1
, t

p
2
), (tp

2
, ts

2
) and (ts

2
, t

p
1
).

Intuitively, one would expect the timing of an augmented

active instance within an interval to yield different cross-traffic

delays at node b. However this is not the case. We observe

that given schedules of predecessors and successors of node

Fig. 8. Period Partition Example
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Fig. 9. Delay Difference Example

b, cross-traffic delay at node b only depends on the counts,

instead of timing, of active instances within each interval.

To validate this observation, it is sufficient to prove that for

two arbitrary layouts of active instances of same size within

an interval, the cross-traffic delays at node b are the same

if packets are received within this interval. Following is the

formal proof.

Lemma 5.1: let X = x1, x2, ..., xn and Y = y1, y2, ..., yn

be two sets of active instances of node b within one interval

(where x1 < x2 < ... < xn and y1 < y2 < ... < yn),

and let DX and DY be corresponding cross-traffic delays. If

|X | = |Y |, DX = DY .

Proof: For any packet ready time t at a predecessor

node p, since x1, x2, ..., xn and y1, y2, ..., yn are in the same

interval, as shown in Figure 9, the difference of sleep latencies

for the ith attempted transmission for X and Y after time

t is just the difference of their respective active instances.

Consequently, LX
t (i)− LY

t (i) = xi − yi, for any 1 ≤ i ≤ n.

Similarly, since xi and yi are in the same interval, the

jth attempted transmission from either xi or yi reaches the

same active instance at a successor node s. Clearly shown in

Figure 9, Ls
xi

(j) − Ls
yi

(j) = yi − xi, where 1 ≤ i ≤ n and

1 ≤ j ≤ Rmax.

By applying Equation 3 to X and Y , we have,

DX
ps(t)−DY

ps(t)

=
∑Rmax

i=1
P pb(i)

(LX
t (i)− LY

t (i) + Dbs(L
X
t (i))−Dbs(L

Y
t (i)))

=
∑Rmax

i=1
P pb(i)(xi − yi + Dbs(xi)−Dbs(yi))

Since,

Dbs(xi)−Dbs(yi) =

Rmax∑

j=1

P bs(j)(Ls
xi

(j)− Ls
yi

(j))

=

Rmax∑

j=1

P bs(j)(yi − xi)

As
∑Rmax

j=1
P bs(j) = 1 we have:

Dbs(xi)−Dbs(yi) = yi − xi

Consequently,

DX
ps(t)−DY

ps(t) =
∑Rmax

i=1
P pb(i)(xi − yi + yi − xi) = 0



As a linear combination of DX
ps(t) −DY

ps(t) for all packet

ready times at all predecessor nodes, we have DX −DY = 0.

According to Lemma 5.1, for augmenting one active in-

stance within a partitioned time interval, the cross-delay at

node b is not affected by the timing of the augmented active

instance. In other words, single active instance augmentation

yields the same cross-traffic delay at node b within each of

partitioned time intervals. Consequently, for a single active

instance augmentation, we have a stair effect of cross-traffic

delays at node b within each partitioned time interval. Based

on this counterintuitive observation, we can have the following

theorem on finding the optimal single active instance augmen-

tation in the constant time.

Theorem 5.2: Assuming there are c intervals partitioned by

active instances at predecessors and successors of a node and

xi is a random active instance within interval i, where i =
1, 2, ..., c. Let Dj represent the cross-traffic delay at the node

after augmenting an active instance j to its original working

schedule, and Min(Dxi) = Dxk , where i = 1, 2, ..., c, then

any time instance within interval k is the optimal single active

instance augmentation and the complexity of this process is

O(1).

Proof: Within any time interval i that is partitioned

by active instances at predecessors and successors, for any

random augmented active instance xi, essentially we increase

the number of active instances within the interval by one.

By Lemma 5.1, it is straightforward that those augmented

active instances yield the same cross-traffic delays at node

b. Therefore, to find the optimal augmented active instance

at a node, we just need to check the cross-traffic delay with

a random active instance augmentation within each of time

intervals, and find the interval k that yields the minimum cross-

traffic delay.

Since sustainable sensor networks operate in extremely low

duty-cycle, we would have a very few packet ready times from

predecessor nodes and active instances from successor nodes.

Consequently, there would be only a few time intervals that

need to be checked in order to find the optimal augmented

active instance. In other words, the number of time intervals c

is a constant value, and thus the complexity of finding optimal

active instance is just O(1).

Guided by Theorem 5.2, we can derive the detailed energy

synchronization process at a node b shown in Algorithm 1.

First, based on working schedules of predecessor and succes-

sor nodes of node b, we create c time intervals and initialize

system variables (Line 1 to Line3). Then for each time interval,

we select a random time instance xi, augment it to working

schedule of node b and calculate cross-traffic delay Db (Line

5 to Line 7). For each calculated Db, we compare it to current

minimal cross-traffic delay Dmin and store new minimal delay

value and the corresponding time interval if necessary (Line

8 to Line 11). After testing each time interval, we obtain the

optimal active instance augmentation for node b. Since time

complexity of our energy synchronization process is just O(1),

Algorithm 1 Active Instance Augmentation at a Node b

Input: Working schedule Γ for predecessor and successor

nodes

Input: Real-time link quality for cross-traffic from predeces-

sor and successor nodes

Input: Traffic distribution for cross-traffic

Output: The optimal augmented active instance

1: Sort active instances for predecessor and successor nodes

and form c time intervals

2: Dmin ←∞
3: X ← ∅
4: for i← 1 to c do

5: xi ← random active instance within time interval i

6: Augment active instance xi to working schedule Γb of

node b

7: Calculate cross-traffic delay Db using Equation 4

8: if Db < Dmin then

9: Db ← Dmin

10: X ← xi

11: end if

12: Remove active instance xi from working schedule Γb

of node b

13: end for

14: return X

it incurs little energy overhead for a node b to perform such

procedure in real-time.
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Fig. 10. Stair Effect of Cross-Traffic Delay

To further illustrate Theorem 5.2 and Algorithm 1, we

give an example in Figure 10. Assuming one period time

contains 200 time instances, Figure 10 shows the expected

cross-traffic delay at a node for different augmented active

instances. For example, the delay corresponding to active

instance 1 represents the delay at node b after augmenting an

active instance at time 1. The node shown in Figure 10 has a

predecessor with active instances (36, 53, 80) and a successor

with active instances (90, 151, 189). According to our analysis

above, we can divide one period time into the following

intervals: (36, 53), (53, 80), (80, 90), (90, 151), (151, 189),
(189, 36).

From Figure 10, it is clear that we have a stair effect of

delays at the node among the above time intervals, which is

consistent with our analysis. The optimal augmented active

instance, therefore, is any value within interval (80, 90).



D. Bursty Augmentation and Decrement

In the previous two subsections, we introduced the optimal

solutions for augmenting and decreasing a single active in-

stance for the scenario that energy variation is slow. However,

the change in harvested energy could be bursty and therefore

a node may need to increase or decrease multiple active

instances simultaneously. In this section, we present a minimal

cost solution for augmenting and decreasing multiple active

instances.

A straightforward exhaustive search for multiple active

instances augmentation and decrement is no longer acceptable

since the computational complexity grows exponentially with

the number of augmenting or decreasing active instances.

Therefore, a low-cost solution that guarantees optimality of

multiple active instances augmentation and decrement is de-

sirable. Fortunately, we observe that multiple active instances

augmentation and decrement can be optimally solved using a

greedy selection.

The main idea of greedy solution is that by applying single

active instance augmentation or decrement n times, we can

obtain the optimal solution for augmenting or decreasing n

active instances at a node. The detailed proof is omitted due

to the space constraints. Since the computational complexity of

single active instance augmentation or decrement is O(1), the

complexity for augmenting or decrementing n active instances

is O(n).

VI. MAINTAINING LOGICAL CONNECTIVITY

In the previous section, energy synchronization control is

designed to adjust the working schedules at receiving nodes,

assuming the schedule of predecessors and successors are

known and up-to-date. In this section, we investigate the

impact of obsolete schedules and how to maintain connectivity

while updating schedules.

p b
(1) (3,6,9)

p b
(1) (6,9)

Before Energy Synchronization After Energy Synchronization

Fig. 11. Impact of Energy Synchronization Example

A. Impact of Schedule Updates

To understand how obsolete schedules can affect the con-

nectivity between nodes, let us start with the example shown

in Figure 11, where the working schedule of node b has been

changed but has not yet been updated to node p:

• Unnecessary loss: If node b decreases its duty-cycle due

to insufficient energy supply, then one or more original

active instances at node b may be removed. However, be-

fore node p is updated, it would continue to deliver pack-

ets according to the old (obsolete) working schedule of

node b, which could suffer significant greater packet loss

than necessary. For example, as shown in Figure 11, node

b reduces its duty-cycle by changing its working schedule

from (3, 6, 9) to (6, 9). Assuming predecessor node p has

a packet ready at time 1, unaware of the new working

schedule at node b, node p would try to deliver the

packet with active instance sequence (3, 6, 9, 3, 6, 9, ...)
until the packet is successfully delivered or the number

of retransmissions reaches the bound Rmax. Since node p

would always fail at attempted transmissions at removed

active instance 3, the data delivery ratio therefore is

clearly decreased.

• Suboptimal delay: Similarly, if node b increases its duty-

cycle and a predecessor node is unaware of the augmented

active instances at node b, it would continue to deliver

the packets at node b’s original active instances rather

than take advantage of the augmented active instances

at node b to reduce the delivery delay. In addition, for

both predecessors and successors, the new schedule of

node b is essential for them to perform effective energy

synchronization. Therefore, it is crucial for node b to

promptly disseminate its new working schedule to its

predecessor and successor nodes.

B. Shuffle-Based vs. Adjustment-Based Energy Synchroniza-

tion

There are two general approaches that can be taken when

node b increases or decreases its duty cycles. Node b can either

generate a complete new working schedule with a given new

energy budget (termed a shuffle), or node b can increase or

decrease its duty-cycle on top of its previous working schedule

(termed an adjustment). For example, assume node b currently

has active instances (3, 6) and the current energy supply could

afford to increase one more active instance. A shuffle would

generate a completely new schedule solely based on the packet

ready time at predecessors and active instances at successor

nodes. Therefore, the new working schedule at node b after

one active instance augmentation could be (2, 7, 9), which has

no overlap with the previous schedule. On the other hand, an

adjustment would add the augmented active instance to the

previous schedule. Consequently, the new working schedule

produced by the adjustment could be (3, 6, 8), where (3, 6)
are identical to the previous working schedule.

One interesting phenomena of duty-cycled sensor networks

is the separation between physical connectivity and logical

connectivity. Two nodes are physically connected if they

are within each other’s communication range and logically

connected only if they can communicate. Unlike traditional

networks, a low-duty-cycle network could be physically con-

nected, but logically partitioned if nodes do not know each

other’s working schedules.

Let logical connectivity ℓab be the packet delivery ratio

between two nodes a and b, after Rmax retransmissions. Let

Γb be the set of first Rmax active instances in the original

schedule and Γ′

b be the new schedule of node b. The logical

connectivity ℓab, therefore, is:

ℓab = 1− (1− pab)
K where K = |Γb ∩ Γ′

b| (5)



1) Shuffle: In the case of a complete shuffle, |Γb∩Γ′

b| = 0,

therefore, logical connectivity ℓab = 0. In other words, node

a and b are disconnected. In the case of a partial shuffle, node

a experiences the long packet delivery delay as well as low

packet delivery ratio before it receives the new schedule from

node b. This is because without knowing the new working

schedule of node b, node a tries to deliver the data during

node b’s original active instances. However, most of the

original active instances no longer exist due to the shuffling.

Consequently, a packet might experience a long delivery delay

(after several pointless transmissions), or even get dropped

because it exceeded the maximum number of retransmissions.

On the other hand, a shuffle creates an optimal working

schedule at node b with the known packet ready times at

predecessors and active instances at successors. After the new

schedule is updated, a shorter delay is expected.
2) Adjustment: In the case of an adjustment, |Γb ∩ Γ′

b| =
min{|Γb|, |Γ′

b|}, the logical connectivity is optimally main-

tained. Adjustment preserves the previous schedule when the

duty-cycle increases, while it keeps the majority of the pre-

vious schedule when the duty-cycle decreases. Consequently,

before a predecessor receives the new schedule of node b for

the increased duty-cycle, its packet delivery delay and delivery

ratio would remain unchanged. Similarly, for the decreased

duty-cycle, the packet delivery delay for a predecessor un-

aware of the new schedule of node b would be consistent with

the scenario when the predecessor knows the new schedule

since in either case the predecessor would not be able to

deliver the data during the removed active instances at node b.

The packet delivery ratio, however, would be slightly reduced

since the predecessor wastes a certain number of attempted

transmissions at the time instance that node b is no longer

awake to receive the packet.
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3) Comparison: Since adjustment produces smaller delays

before the new working schedule reaches predecessor nodes

and shuffle creates smaller delays after the new working

schedule reaches predecessor nodes, the overall delay at a

node therefore is influenced by the energy variation rate at the

node. Figure 12 shows average cross-traffic delays for both

adjustment and shuffle under different energy variation rates.

In Figure 12, the energy variation rate denotes the average

number of energy changes over a period of 100,000 units of

time. When the energy variation rate is low, the delay after

schedule dissemination dominates the overall delay and shuffle

therefore has a smaller overall delay than that of adjustment.

For example, when the energy variation rate is 1, the overall

delay for adjustment and shuffle is 226.34 and 206.17 units

of time, respectively. As the energy variation rate becomes

larger, the delay before schedule dissemination weights more

in overall cross-traffic delay. Consequently, adjustment that

has a smaller delay before schedule dissemination also has

a smaller overall delay than shuffle. As shown in Figure 12,

from energy variation rate 2.5 to 5, adjustment has smaller

delay than that of shuffle. At energy variation rate 5, the delay

for adjustment and shuffle is 225.22 and 257.65, respectively.

This study indicates that the design options on ESC should be

decided based on how fast ambient energy changes over time.

VII. PRACTICAL ISSUES

This section completes the description of our ESC design

by discussing several practical design issues, such as time

synchronization and multiple transmissions within a time

instance.

A. Low-cost Time Synchronization

For the sake of clarity, we introduce ESC design in a

synchronized mode. Clearly, the operation of ESC depends on

neither neighbor time instance nor global synchronization. It

is sufficient for ESC only knows the wake-up time interval

of predecessor and successor nodes. To know those wake-

up time intervals, simple and low-cost local synchronization

techniques [26] can achieve an accuracy of 2.24µs with the

cost of exchange a few bytes of packets among neighboring

nodes every 15 minutes. Since an active instance is typically

ranges from 2000µs to 20,000µs, the accuracy of 2.24µs is

far more than sufficient. In addition, ESC does not require

the transmission starts at the beginning of an active instance,

which further relaxes the requirement of accuracy for time

synchronization.

B. Multiple Transmissions within a Time Instance

While describing our network model in Section III, we

assume there is at most one packet transmission during an

active instance. This is true if nodes are equipped with slow

radio. However, if fast radio are used, it is possible to transmit

multiple packets within an active instance. To accommodate

such scenario in modeling of cross-traffic delay, we can simply

rewrite the bidirectional link quality between two nodes as

p′ab = 1 − (1 − pab)
m, where m is the maximum number of

transmissions allowed in an active instance. Essentially, the

new p′ab represents the probability that the receiver received

the packet by m transmissions.

VIII. IMPLEMENTATION AND EVALUATION

In order to validate the performance and feasibility of

ESC in practice, we have fully implemented ESC on the

TinyOS/Mote platform in nesC. To compare the performance

of ESC, we also implemented a random working schedule

synchronization scheme that randomly adjusts active instances

of the original node working schedule with increasing or

decreasing node duty cycles.
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A. Experiment Setup

During the experiment, we randomly placed 30 MicaZ

nodes on our test-bed. The transmission power at MicaZ motes

is tuned down to form a multi-hop network. Neighboring

nodes are synchronized using FTSP [26] and each active

instance lasts for 20ms. The available energy budget over

time at each node is derived from the actual energy harvesting

rate measured at our running prototype and the correspond-

ing energy harvesting model [16]. The range of duty cycle

varies from around 0.2% to 10%. According to the available

energy budget, each node turns on and off its radio based

on the energy synchronized working schedule. To study the

performance of ESC under various routing protocols, we also

implemented link-quality-based ETX [27] and sleep-latency-

based DESS [23] on motes.

B. Performance Comparison

In this section, we compare the E2E delay for both ESC

and the randomized scheme. During the experiment, for each

routing protocol, over 1000 packets are transmitted from a

random source to a random destination. To ensure the fair com-

parison, ESC packets and randomized energy synchronization

packets are sent alternatively to minimize the impact of energy

variation and link quality fluctuation.

In Figure 13 we study the E2E delay for ESC and the

randomized scheme under ETX. Clearly, ESC performs much

better than the randomized scheme. While 80% of ESC pack-

ets reach their destinations within 877ms, the corresponding

percentile for the randomized scheme is 1451ms, which is

about 65% increase. Since ETX picks the route with the

minimum number of expected transmissions, the performance

gap between ESC and the randomized scheme therefore is

mainly due to the minimized cross-traffic delay for ESC.

Similar to the results for ETX, ESC also significantly

outperforms the randomized scheme under DESS. While the

80% percentile for ESC is 1131ms, the corresponding number

for the randomized scheme is 2091ms, which almost doubles

the number of ESC. In addition, the randomized scheme has

much longer tail than ESC. While all messages for ESC reach

the destinations within 6299ms, the longest E2E delay for the

randomized scheme is 12343ms. The reason for such long tail

of the randomized scheme is because the penalty of a failed

transmission for the randomized scheme is much larger than

the ESC, as ESC has carefully scheduled the radio activity to

minimize the impact of the failed transmissions.

To further reveal the performance of ESC over time di-

mension, Figure 15 and Figure 16 show the duty-cycle of a

deployed node and its corresponding cross-traffic delay under

ESC and the randomized scheme over a period of 3 hours.

By comparing Figure 15 and Figure 16, we can see the

cross-traffic delay matches the available duty-cycle well. For

example, the peaks of delay occur when the node duty-cycle

drops to around 0.4% at time 65 and 100. In addition, although

both ESC and the randomized scheme react to the duty-cycle

change promptly, the cross-traffic delay for ESC is always

smaller than that of the randomized scheme. This consistent

smaller cross-traffic delay of ESC over time further explains

the smaller E2E delay for ESC in Figure 13.

IX. SIMULATION EVALUATION

In addition to test-bed evaluation in Section VIII, to under-

stand the system performance of ESC under numerous network

settings, in this section we provide simulation results with over

1000 sensor nodes. To investigate the flexibility of ESC design,

we choose two state-of-the-art solutions as underlying routing

protocols:

• Link-Quality-based: ETX [27] in MobiCom’03

• Sleep-Latency-based: DESS [23] in INFOCOM’05

A. Simulation Setup

In the simulation, except where otherwise specified, we

deploy up to 1,200 sensor nodes randomly in a 400m×400m

square field. A sink is positioned in the center of the de-

ployment field, and each sensor node sends its packet to the

sink over multiple hops. The radio model was implemented

according to [28], which considers the oscillation nature of

the radio links and has several adjustable parameters. During

the simulation, we set these parameters strictly according to

the CC2420 radio hardware specification [29].

Each experiment was repeated 100 times with different ran-

dom seeds, node deployments, and node working schedules.

Data collected at each node were obtained by averaging over

10000 source-to-sink communications. The 95% confidence

intervals are within 1∼4% of the means.

B. System Performance Over Time

In this section, we reveal the effectiveness of ESC over time

in terms of communication delays. Figure 20 shows the aver-

age cross-traffic delay at a node over a period of 25,000 units

of time. At time 0, active instances are allocated randomly

within nodes (hence not optimally). The node increases its

duty-cycle at time 5,000 and 10,000 and decreases its duty-

cycle at time 15,000 and 20,000. It is clear that after the node

increases its duty-cycle at time 5,000, the delay at the node
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Fig. 19. ETX Delay vs. Duty Cycle

significantly drops. For example, within time interval [0, 5000],
the average delay is 249.26 units of time. In contrast, during

time [5000, 10000], the average delay drops to 90.51, which is

around only 36.3% of the original delay. After increasing the

duty-cycle again at time 10,000, the delay at the node further

reduces to 50.32 during time [10000, 15000], almost half the

previous delay. When the duty-cycle decreases at time 15,000,

the average delay only slightly increases to 51.36 units of time

within time interval [15000, 20000]. Finally, when we further

reduce the duty-cycle at time 20,000, the delay increases to

113.66 which is only around 45.6% of the initial delay during

time [0, 5000], when allocation is not optimal. From this figure,

it is clear that ESC effectively reduces the delay at the node

when its duty-cycle increases while it minimally increases

the delay when the node decreases its duty-cycle, converging

gradually from an initial not-optimal allocation into an optimal

allocation.
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C. Impact of Node Densities

In this section, we examine the impact of node densities on

E2E delay for both ETX and DESS networks with varying

energy supplies over time.

During the simulation, for each node both ESC and the

randomized energy synchronization scheme described in Sec-

tion VIII have the same energy supply over time to ensure fair

comparisons. As can clearly be seen from both Figure 17 and

Figure 18, ESC has a much smaller delay than the Randomized

scheme at all node densities for both ETX and DESS. For

example, at node density 10, ETX-ESC has a delay of 710.64

units of time while ETX-Random has a delay of 1032.51 units

of time, which is about 45% larger than the delay for ETX-

ESC. Similarly for DESS at node density 10, the delay for

DESS-ESC and DESS-Random is 814.02 units of time and

1173.95 units of time, respectively.

D. Impact of Node Duty Cycles

In this section, we study the impact of node duty cycles on

E2E delay for applying ESC to ETX and DESS in energy-
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varying sustainable sensor networks. In both Figure 19 and

Figure 21, we can see that ESC outperforms randomized

scheme at all node duty cycles. As the node duty cycle

increases, E2E delays for both ETX and DESS under ESC

and randomized scheme are decreasing. This is because with

a higher node duty-cycle in the network, the sleep latency

between a sender and a receiver is reduced, as there are more

active instances at the receiver to receive incoming packets

from sending nodes. For example, average E2E delays for

ESC-ETX decreases from 750.27 units of time to 614.15

units time while the delays for Random-ETX decreases from

1118.48 to 911.31 units of time.

X. RELATED WORK

Several technologies have been developed to extract energy

from the environment, including solar, motion, biochemical

and vibrational [11], [13]. Building on those energy-harvesting

technologies, researchers have designed various types of plat-

forms to collect ambient energy from the environment with

optimal efficiency [12], [17], [30]. To fully utilize the har-

vested energy and ensure the sustainable operation of sensor

node, Kansal et al. [15], [24] and Vigorito et al. [25] have

presented both theoretical and experimental results on deciding

the appropriate working duty-cycle of sensor nodes with in-

formation on current energy harvesting rates. To further study

the impact of energy leakage for energy-harvesting sensor

networks, TwinStar system suggests node duty-cycle base

on user specified lifetime and energy information including

energy harvesting rate, remaining energy in the system and

energy leakage rate [16].

On the other hand, with the growing gap between energy

supply and demand recently, there has been a surge of inter-

est on intermittently connected networks. For scenarios with

mobile nodes, a number of effective solutions has been pro-

posed to data communication in such networks [31]–[33]. For

scenarios with low-duty-cycle nodes, by assuming perfect link

qualities, both work [23], [34] introduce serval techniques for



minimizing communication latency while providing energy-

efficient periodic node working schedules. To address both

low-duty-cycle and unreliable communication links, Gu et

al. [18] introduce a dynamic switch-based forwarding us-

ing optimized forwarding sequences. Su et al. [21] propose

both on-demand and proactive algorithms for routing packets

in low-duty-cycle networks. More recently, serval efficient

flooding protocols have been introduced to tackle the unique

challenge in low-duty-cycle sensor networks [35], [36].

However, none of those prior works investigate how chang-

ing the duty-cycle of sensor nodes affects communication

performance in sustainable sensor networks and how we can

adaptively synchronize node working schedules with specified

duty-cycle budgets. In this work, we advance state-of-the-art

solutions for both energy-harvesting and low-duty-cycle sensor

networks and providing effective methods of synchronizing

node working schedules with varying duty-cycle budgets.

XI. CONCLUSION

In this work, we reveal that cross-traffic delay through

a duty-cycled node is determined only by the number of

active instances at intervals, partitioned by active instances

of predecessor and successor nodes. This allows us to design

energy-synchronized control with O(1) time complexity for

sustainable networks in which energy supplies and demands

are in balance. In a low-duty-cycle network, updating neigh-

bors’ working schedules would be slow, leading to inconsistent

views on active instances. To address this issue, we investigate

the impact of obsolete working schedules on logical link

quality and demonstrate the tradeoff between shuffle-based and

adjustment-based allocation under different energy variation

rates. Our evaluation demonstrates that ESC can effectively

reduce delay and increase delivery ratios, while synchronizing

radio activity with available energy.
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