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Abstract
Data distribution in embedded real-time sensor networks re-
quires new protocols and programming environments that
achieve time-sensitive message delivery and provide useful ab-
stractions to the application programmer. Attainment of these
goals requires changes to multiple layers of the communica-
tion protocol stack. In this paper, we review a protocol suite
developed by the authors for data communication in embed-
ded sensor networks. It takes into account time constraints and
exports attribute-based connections that are tightly integrated
with properties of the monitored environment. A programming
language is described that allows external physical objects to
be represented as first class abstractions in the computing sys-
tem. The language facilitates writing monitoring applications.
The system was implemented on a prototypical sensor network
based on MICA motes.

Keywords: sensor networks, programming paradigms, track-
ing, QoS, distributed systems.

1 Introduction

Ad hoc wireless sensor networks, made possible by advances in
communication technology and hardware miniaturization [11],
raise the need for a new suite of communication protocols and
new programming abstractions for distributed deeply embed-
ded computing. Such sensor networks are especially useful
when an inhospitable, poorly accessible, or delicate environ-
ment prevents the installation of needed computing infrastruc-
ture. An example could be the site of a natural disaster or a
target behind enemy lines. Instead, myriads of tiny computa-
tionally equipped wireless sensor devices may be dropped to
form an ad hoc network that operates autonomously to monitor
its surroundings, react to distributed events, or alert appropriate
authorities when specific activities are observed.
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Sensor networks offer new challenges both from the per-
spective of building communication protocols and from the
perspective of developing appropriate programming models.
These challenges arise due to their large scale, autonomous
operation, massively parallel interactions with a spatially dis-
tributed physical environment, and a more stringent set of re-
source constraints.

Communication protocols for sensor networks must provide
real-time assurances. While ensuring proper timing behavior
of systems has been a topic of real-time research for decades,
sensor network applications offer physical space in addition to
time, as a new dimension for interaction with the environment.
Hence, while traditional real-time computing research has been
concerned with meeting time constraints, a new branch of the-
ory is needed to analyze systems that interact with the their
surroundings both in real time and in the real dimensions of
physical space. For example, in a network that tracks vehicles
through the sensor field, the application must collect sensory
measurements in real-time from the actual changing locale in
which the vehicle is detected. Message communication must
therefore be sensitive to both time and distance constraints,
which may depend on external factors such as the physical
speed of the monitored vehicle. In this paper, we describe a
protocol suite in which both time and distance constraints are
addressed.

A new programming paradigm is needed to facilitate the
task of sensor network application development. Due to the
large scale of sensor networks, programmers should not have
to concern themselves with low-level abstractions and func-
tions such as creating and destroying individual connections
between pairs of nodes. Instead, the programming environ-
ment must offer a conceptual view in which global tasks can
be defined in an abstract manner, leaving it for the underlying
system to translate them into computational and communica-
tion activities on individual sensor nodes. This paper reports
on the design of a programming system developed on top of
our communication protocol suite, which provides the required
high-level abstractions. The language allows external events in
the environment to be represented as objects in the computing



system facilitating the monitoring of such events by the appli-
cation. The reported architecture is a part of an ongoing re-
search effort on developing a sensor network virtual machine
for future distributed deeply embedded applications.

The rest of this paper is organized as follows. In Section 2,
we describe a protocol suite that takes into account time and
space constraints, and exports a useful transport-layer abstrac-
tion in which logical communication end-points can be asso-
ciated with tracked objects in the external environment. Sec-
tion 3 describes a new programming model for sensor networks
which builds upon the aforementioned transport protocol to el-
evate environmental objects into first class programming ab-
stractions. Related work is summarized in Section 4. The paper
concludes with Section 5 which describes some of the remain-
ing challenges and directions for future research.

2 A Protocol Suite for Sensor Networks
Communication protocols in sensor networks are the funda-
mental cornerstone that glues distributed applications together.
The deeply embedded nature of sensor networks presents some
of the most interesting challenges in the design of their com-
munication protocols. New research topics span all protocol
stack layers, primarily motivated by a tighter interaction be-
tween the network and its physical environment. At the MAC
layer, new protocols are needed that enforce message priori-
ties consistently with time and distance constraints that arise
from environmental interactions [22]. Awareness of the phys-
ical environment must also be incorporated into the network
layer. For example, location should be an essential attribute
of addressable networked objects [15]. Location-assisted rout-
ing protocols such as LAR [19] and DREAM [4], as well as
location services [21] have been described for ad hoc wireless
networks. More generally, routing algorithms are needed in
which destinations are described implicitly by their environ-
mental attributes. For example, directed diffusion [18, 14] and
the intentional naming system [3] provide addressing and rout-
ing based on data interests. A fundamental rethinking of basic
protocols is required at the transport layer as well. Individ-
ual socket-style connections between nodes are too low-level
to be a useful abstraction for the programmer. They must be re-
placed with higher-level alternatives that are more suitable for
the main purpose of sensor networks, namely monitoring the
external surroundings in which they are embedded.

This section describes our answer to the challenge of in-
corporating environmental awareness into the design of sensor
network communication protocols. Our protocol stack features
two important contributions. First, it implements new real-time
message scheduling algorithms in which both time and physi-
cal distance requirements are observed. Second, it exports a
transport-layer address space that associates unique network
addresses with external environmental objects. The new ad-
dresses serve as connection end-points, thereby raising the level
of connection abstraction to entities of direct interest to the ap-

plication. The layers of our protocol stack are described in the
following subsections.

2.1 Real-Time Distance-Aware Scheduling

Message communication in sensor networks must occur in
bounded time, for example to prevent delivery of stale data on
the status of detected events or intruders. In general, a sensor
network may simultaneously carry multiple messages of dif-
ferent urgency, communicated among destinations that are dif-
ferent distances apart. The network has the responsibility of
ordering these messages on the communication medium in a
way that respects both time and distance constraints.

A protocol that achieves this goal in our architecture is
called RAP [22]. It supports a notion of packet velocity and
implements velocity monotonic scheduling (VMS) as the de-
fault packet scheduling policy on the wireless medium. Ob-
serve that for a desired end-to-end latency bound to be met,
an in-transit packet must approach its destination at an aver-
age velocity given by the ratio of the total distance to be tra-
versed to the requested end-to-end latency bound. RAP pri-
oritizes messages by their required velocity such that higher
velocities imply higher priorities. Two flavors of this algorithm
are implemented. The first, called static velocity-monotonic
scheduling, computes packet priority at the source and keeps
it fixed thereafter regardless of the actual rate of progress of
the packet towards the destination. The second, called dynamic
velocity-monotonic scheduling, adjusts packet priority en route
based on the remaining time and the remaining distance to des-
tination. Hence, a packet’s priority will increase if it suffers
higher delays on its path and decrease if it is ahead of schedule.

To achieve consistent prioritization in the wireless network,
not only do we need priority queues at nodes, but also a MAC
layer that resolves contention on the wireless medium in a man-
ner consistent with message priorities. We adopt a scheme
similar to [1] to prioritize access to the wireless medium.
The scheme is based on modifying two 802.11 parameters,
namely the DIFS counter and the backoff window, such they
are priority-aware. The DIFS counter determines the maximum
time a node waits, after the communication channel becomes
idle, prior to transmitting an RTS packet. The actual waiting
time is randomly chosen between 0 and DIFS. An approximate
prioritization effect is achieved by letting the DIFS value de-
pend on the priority of the outgoing packet at the head of the
transmission queue. A larger value is given to packets of lower
priority. Hence, more urgent packets tend to contend on the
medium more aggressively. The back-off window of 802.11
increases the maximum waiting time when collisions occur.
To give preferential treatment to higher priority packets, we
make this increase dependent on the priority of the head of the
queue. A higher increase is incurred for packets of lower pri-
ority. Hence, collisions tend to be resolved in favor of higher-
priority packets.

A detailed performance evaluation of this scheme can be



found in [22]. It is shown that velocity-monotonic schedul-
ing substantially increases the fraction of packets that meet
their deadlines taking into consideration distance constraints.
More accurate schemes for medium access prioritization re-
main an open research topic. An interesting related topic is
that of schedulability analysis of velocity-monotonic schedul-
ing. Ideally, such an analysis should allow a source node to
determine whether a particular desired velocity is attainable
between a source-destination pair given current network con-
ditions. While an analytic expression for velocity feasibility is
still an open problem, in the following, we describe a feedback-
based technique that enforces velocity constraints dynamically
by applying back-pressure to slow down the sources when such
constraints are violated.

2.2 Enforcement of Velocity Constraints

Consider a network that supports multiple predefined veloci-
ties. An application can choose a velocity level for each mes-
sage. The network guarantees that the chosen message velocity
is observed with a very high probability as long as the mes-
sage is accepted from the application. A network-layer proto-
col with the above property, called SPEED [13], has recently
been developed by the authors. The protocol defines the veloc-
ity of an in-transit message as the rate of decrease of its straight-
line distance to its final destination. Hence, for example, if the
message is forwarded away from the destination, its velocity at
that hop is negative.

The main idea of SPEED is as follows. Each node
�

in
the sensor network maintains a neighborhood table that enu-
merates the set of its one-hop neighbors. For each neighbor,�
, and each priority level, � , the node keeps a history of the

average recently recorded local packet delay, ���	��
��� . Delay
������
��� is defined as the average time that a packet of prior-
ity � spends on the local hop

�
before it is successfully for-

warded to the next-hop neighbor
�
. Given a packet with some

velocity constraint, � , node
�

determines the subset of all its
neighbors that are closer to the packet’s destination. If ���	� is
the distance by which neighbor

�
is closer to the destination

than
�
, the velocity constraint of the packet is satisfied at node�

if there exists some priority level � and neighbor
�

such that
� �	��� � �	� 
������� . The packet is forwarded to one such neigh-
bor non-deterministically. If the condition is satisfied at mul-
tiple priority levels, the lowest priority level is chosen. If no
neighbor satisfies the velocity constraint, we say that a local
deadline miss occurs.

A table at node
�

keeps track of the number of local dead-
line misses observed for each velocity level � . This table is
exchanged between neighboring nodes. Nodes use this infor-
mation in their forwarding decisions to favor more appropri-
ate downstream hops among all options that satisfy the veloc-
ity constraint of a given packet. No messages are forwarded
in the direction of nodes with a high miss-ratio. The mecha-
nism exerts back-pressure on nodes upstream from congested

areas. Congestion increases the local miss-ratio in its vicin-
ity, preventing messages from being forwarded in that direc-
tion. Messages that cannot be forwarded are dropped thus in-
creasing the local miss-ratio upstream. The effect percolates
towards the source until a node is found with an alternative
(non-congested) path towards the destination, or the source is
reached and informed to slow down. The mentioned scheme
is therefore effective in exerting congestion control and per-
forming packet rerouting that guarantee the satisfaction of all
velocity constraints in the network at steady state [13]. The pro-
tocol is of great value to real-time applications where different
latency bounds must be associated with messages of different
priority.

2.3 Entity-Aware Transport

Although RAP and SPEED allow velocity constraints to be
met, the abstractions provided by them are too low-level for
application programmers. We develop a transport layer whose
main responsibility is to elevate the degree of abstraction to a
level suitable for the application. In particular, we propose a
transport layer in which connection end-points are directly as-
sociated with events in the physical environment. Events rep-
resent continuous external activities, such as the passage of a
vehicle or the progress of a fire, which is precisely what an
application might be interested in. By virtue of this layer, the
programmer can describe events of interest and logically as-
sign “virtual hosts” to them. Such hosts export communication
ports and execute programs at the locations of the correspond-
ing events. The programmer is isolated from the details of how
these hosts and ports are implemented. When an external event
(e.g., a vehicle) moves, the corresponding virtual host migrates
with it transparently to the programmer.

We call the virtual host associated with an external event of
interest an entity. Sensor nodes that can sense the event are
called entity members. Members elect an entity leader that
uniquely represents the entity and manages its state. Hence,
an entity appears indivisible to the rest of the network. The fact
that it is composed of multiple nodes with a changing member-
ship is abstracted away.

When the external event moves outside the sensing horizon
of the current entity leader, the leader hands-off leadership to
another member. Connection state is handed off as well al-
lowing communication with the entity to remain uninterrupted.
To ensure unique representation of external events within the
computational environment, a unique entity must be associated
with each event. The transport protocol meets this constraint
by announcing the existence of the entity to nearby nodes that
cannot yet sense the event. These announcements are sent pe-
riodically by the entity leader and are called heartbeats. Nodes
that hear a heartbeat but cannot sense the event are called entity
followers. They are said to be within the awareness horizon
of the named entity. Upon receiving a heartbeat, such nodes
set an entity timeout timer. Upon timer expiration, their sta-
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Figure 1. Node state transition diagram

tus as followers expires. The timer is reset to zero every time
a new heartbeat is received. When the event enters the sens-
ing horizon of a follower node, the node becomes a member of
the entity it is following. If the node is not a follower, it recog-
nizes that a new entity must be created. The node sets a random
timer upon expiration of which it claims leadership of the new
entity. If it receives a leadership claim message from another
node prior to timer expiration, it clears the timer and becomes
an entity member. The algorithm ensures that a newly sensed
event is represented by a single entity and that current events
do not spawn spurious entities as they move from one location
to another. Figure 1 depicts the node state transition diagram
between follower, member, and leader states, as well as the free
state in which a node is not cognizant of any entities.

An evaluation of this architecture reveals that entity unique-
ness is maintained as long as the target event moves in the envi-
ronment at a speed slower than half the nodes’ communication
radius per second [7]. For example, if sensor nodes can com-
municate within a 200 meter radius, the transport layer can cor-
rectly maintain endpoints attached to targets that move as fast
as 100 m/s (i.e., 360 km/hr). The combination of this transport
layer and the guaranteed velocity protocols described earlier
provides invaluable support to real-time applications. For ex-
ample, communication regarding moving targets can be made
to proceed in the network at a velocity that depends on target
velocity itself. Hence, positions of faster targets, for example,
can be reported quicker than those of slower ones. To the au-
thors’ knowledge no other protocols in sensor networks have
explicitly addressed message timing constraints.

3 A Sensor-Network Programming Model

The transport layer described above gives rise to a program-
ming model that elevates tracked activities in the physical en-
vironment into first class programming abstractions. In this
model, the application developer specifies events to be moni-
tored. The system automatically detects such events and instan-
tiates a so called context every time an instance of an event is
detected in the environment. From the programmer’s perspec-
tive, the application is composed of a dynamic set of contexts,
each representing a particular event. Objects can be attached

to contexts. These objects will logically execute in the locale
of the monitored event. Contexts have unique identifiers called
context labels. Objects attached to a context can be addressed
using the context label and object name. They can communi-
cate remotely by remote method invocation. The programmer’s
view of the application is depicted in Figure 2.

Sensor Network Abstraction Layer
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State

Sensing CAR Sensing FIRE
GroupGroup

Context type: CAR
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Objects
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Figure 2. Programming model

A context label around some event, � , is completely defined
by two elements, namely (i) the function ���������! "
� which spec-
ifies an environmental condition that spawns the context label,
and (ii) the function ��#%$&#%�' "
� which describes the environmen-
tal state to be encapsulated in the context label. The former
function, for example, might dictate that a label is to be cre-
ated if magnetic distortion (e.g., the presence of a vehicle) is
sensed. The state function returns a set of aggregate variables,
each computed using outputs of at least (  nodes for which
���������� �
� was true in the last �) time units. We call (* and
�+ the critical mass and freshness constraints, respectively. For
example, to obtain the approximate position of a vehicle we
may define ��#%$&#%�� "
� to be the average coordinates of at least
5 nodes that have sensed the vehicle within the last 2 seconds.
We define environmental tracking of event � as the process of
maintaining the state of this event subject to given freshness
and critical mass constraints.

Syntactically, an application consists of a list of context dec-
larations, each specifying an activation condition ���������! �
� , a
set of state variables ��#%$&#%�" "
� , and a list of attached objects.
An example declaration is shown in Figure 3. The example
defines a context of type tracker, specifies its activation condi-
tion, ���������  
� , as an appropriate magnetometer reading (pre-
sumably caused by a nearby vehicle), and defines ��#%$,#%�  
� as
the average -�."/0$&# � .�� of the tracked target. It specifies that
-�."/0$&# � .�� must represent the average of at least 2 sensor read-
ings measured no earlier than 1 second ago. The attached ob-
ject is invoked periodically to report the current location of the
vehicle to a virtual base station object. It passes the originating



(1) begin context tracker
(2) activation: MAGNETOMETER == ON
(3) -�."/0$&# � .�� : avg (position) mass=2, freshness=1s
(4) begin object reporter
(5) invocation: PERIOD(0.5s)
(6) report function() 1
(7) BaseStation.reportLocation ( ����-3254 -�$&60��- , -�."/0$&# � .�� );
(8) 7
(9) end
(10) end context

Figure 3. Sample code

context label as the identity of the reported vehicle. If there are
several vehicles in the field, multiple reporter objects will be
automatically instantiated. The programmer does not need to
worry about instantiating these objects. Object execution and
maintenance of aggregate state occurs automatically. Details
of the underlying communication, group membership manage-
ment, leader handoff, and mobility are handled transparently.
Hence, the programmer’s interaction with the sensor network
is significantly simplified.

We have described real-time communication protocols and
programming abstractions motivated by a tighter interaction
between sensor networks and their physical environment. Our
architecture might be a first step towards a comprehensive vi-
sion for next-generation programming systems supporting fu-
ture real-time deeply embedded distributed sensor network ap-
plications.

4 Related Work
Classical distributed programming paradigms and middleware
such as CORBA [27], group communication (e.g., ISIS [5]),
remote procedure calls (RPC [6]), and distributed shared mem-
ory (e.g., MUNIN [9]) share in common the fact that their pro-
gramming abstractions exist in a logical space that does not
represent or interact with objects and activities in the physi-
cal world. Their main goal is to abstract distributed commu-
nication rather than facilitate distributed sensory interactions
with an external physical environment. In contrast, sensor
network applications call for a paradigm that revolves around
“environmentally-inspired” abstractions aimed at simplifying
the coding of interactions with the physical world that arise in
distributed deeply embedded systems.

The work reported in this paper is closely related to sev-
eral recent projects, such as Cricket [23], Sentient Comput-
ing [2] and Cooltown [10], which propose high-level paradigms
in which an embedded distributed computing system is able to
share humans’ perceptions of the physical world. These sys-
tems allow the location of entities in the external environment
to be tracked. One major difference is that they assume co-
operative users who, for example, can wear beaconing devices

that interact with location services in the infrastructure for the
purposes of localization and tracking [23, 2]. Our interest, in
contrast, is in situations where no cooperation is assumed from
the tracked entity.

In the absence of cooperation, several research efforts pro-
posed alternative addressing schemes that do not rely on hav-
ing destinations with specific identities, but rather contact sen-
sor nodes in the vicinity of a phenomenon of interest based on
the attributes of data they sense. For example, DataSpace [17]
exports abstractions of physical volumes addressable by their
locations. Similarly, directed diffusion [18, 14] and the inten-
tional naming system [3] provide addressing and routing based
on data interests [18, 14]. Attributed-based naming is also re-
lated to the notion of content-addressable networks [24] pro-
posed for an Internet environment, which allows queries to be
routed depending on the requested content rather than on the
identity of the target machine. We adopt context labels; a form
of attribute-based naming. In our architecture, however, con-
text labels are active elements. Not only do they provide a
mechanism for addressing nodes that sense specific environ-
mental conditions, but also they can host context-specific com-
putation that tracks a target in the environment.

Recent research on system software for sensor networks
has seen the introduction of distributed virtual machines de-
signed to provide convenient high-level abstractions to appli-
cation programmers, while implementing low-level distributed
protocols transparently in an efficient manner [26]. This ap-
proach is taken in MagnetOS [12], which exports the illusion
of a single Java virtual machine on top of a distributed sensor
network. The application programmer writes a single Java pro-
gram. The run-time system is responsible for code partition-
ing, placement, and automatic migration such that total energy
consumption is minimized. Maté [20] is another example of a
virtual machine developed for sensor networks. It implements
its own bytecode interpreter, built on top of TinyOS [16].

A somewhat different approach of providing high-level pro-
gramming abstractions is to view the sensor network as a
distributed database, in which sensors produce series of data
values and signal processing functions generate abstract data
types. The database management engine replaces the virtual
machine in that it accepts a query language that allows appli-
cations to perform arbitrarily complex monitoring functions.
This approach is implemented in the COUGAR sensor network
database [8]. A middleware implementation of the same gen-
eral abstraction is also found in SINA [25], a sensor informa-
tion networking architecture that abstracts the sensor network
into a collection of distributed objects.

Our system is different in that it is geared for real-time en-
vironmental tracking. To the authors’ knowledge, we describe
the first programming language for sensor networks that explic-
itly facilitates the coding of tracking applications, and the first
sensor network communication protocols that conider real-time
constraints. These novel abstractions and underlying mecha-



nisms are well-suited for monitoring targets that move in the
physical world. They can therefore have a major impact on
application development for sensor networks.

5 Conclusions
This paper reviewed a new protocol suite and programming
system for sensor network applications, that may considerably
improve real-time behavior and reduce the development cost
of deeply embedded systems. This reduction comes from off-
loading from the application developer the details of manag-
ing low-level abstractions. Future work of the authors will
involve refinement of the real-time protocols and the environ-
mental tracking problem such that more precise semantics and
failure models are achieved. With such refinements we hope to
build a predictable sensor network “virtual machine” that ex-
ports timely, reliable behavior and well-defined semantics, im-
plemented on the unreliable, unpredictable, and resource con-
strained hardware and communication infrastructure typical of
sensor networks. Such a virtual machine would hide the com-
plexity of sensor network programming from the application
developer, making a new more robust and more dynamic realm
of sensor network applications attaintable to impact future de-
fense, surveillance, habitat monitoring, and disaster manage-
ment systems.
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