
EnviroSuite: An Environmentally Immersive

Programming Framework for Sensor Networks

LIQIAN LUO and TAREK F. ABDELZAHER

University of Illinois at Urbana-Champaign

TIAN HE

University of Minnesota

and

JOHN A. STANKOVIC

University of Virginia

Sensor networks open a new frontier for embedded distributed computing. Paradigms for sensor
network programming in the large have been identified as a significant challenge towards devel-
oping large-scale applications. Classical programming languages are too low-level. This paper
presents the design, implementation, and evaluation of EnviroSuite, a programming framework

that introduces a new paradigm, called environmentally immersive programming, to abstract dis-
tributed interactions with the environment. Environmentally immersive programming refers to
an object-based programming model in which individual objects represent physical elements in
the external environment. It allows the programmer to think directly in terms of environmental
abstractions. EnviroSuite provides language primitives for environmentally immersive program-
ming that map transparently into a support library of distributed algorithms for tracking and
environmental monitoring. We show how nesC code of realistic applications is significantly sim-
plified using EnviroSuite, and demonstrate the resulting system performance on Mica2 and XSM
platforms.

Categories and Subject Descriptors: C.2.4 [Computer-communication Networks]: Distributed
Systems—Distributed Applications; D.2.11 [Software Engineering]: Software Architectures—
Domain-specific Architectures; D.3.2 [Software Engineering]: Language Classifications—Spe-
cialized Application Languages

General Terms: Design, Experimentation, Languages, Performance

Additional Key Words and Phrases: Abstractions, embedded systems, middleware, programming
models, tracking, sensor networks

1. INTRODUCTION

This paper presents EnviroSuite, the first sensor network programming framework
for environmentally immersive programming. The need to facilitate software devel-
opment for sensor networks motivates new high-level abstractions for programming-
in-the-large. These abstractions must hide the details of distributed monitoring and

This work is supported in part by Microsoft and NSF grants EHS-0208769, ITR-0205327, and
EHS-0509233.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 1529-3785/2005/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005, Pages 1–31.

2 · Liqian Luo et al.

tracking algorithms, capture the unique properties of these networks such as their
distributed interactions with a physical environment, and address the issue of scale.

Traditional programming languages such as Java and C, as well as their sensor
network adaptations, such as nesC [Gay et al. 2003] and its extension galsC [Cheong
et al. 2003; Cheong and Liu 2005], are too low-level. Their basic computation,
communication and actuation unit is typically the sensor node. Programmers must
think in terms of single node activities and explicitly encode interactions among
nodes. For example, programmers are exposed to reading sensing data from appro-
priate sensor devices, aggregating data pertaining to the same external stimulus,
deciding where to send it, and communicating with actuators if needed. If the
monitored activity moves in the environment, programmers are responsible for spa-
tial and temporal correlation of measurements obtained about the activity across
a changing set of sensor nodes, and associating that data with event progress.

A more desirable approach would be for the programmers to encode only overall
network behavior, leaving it to the underlying system to decompose such behavior
into node-level algorithms. Examples of higher-level abstractions that address this
concern include logical-node-based primitives [Gummadi et al. 2005], token-based
languages [Newton et al. 2005], database-centric abstractions [Madden et al. 2003;
Yao and Gehrke 2002; Madden et al. 2005], event-based systems [Li et al. 2004],
group-based primitives [Blum et al. 2003; Whitehouse et al. 2004; Welsh and Main-
land 2004; Liu et al. 2003], state-centric approaches [Liu et al. 2003] and virtual
machines [Levis and Culler 2002; Boulis et al. 2003]. These paradigms offer logical
nodes, tokens, queries, events, sensor node groups, and logical state, respectively,
as the underlying abstractions with which the programmer operates.

EnviroSuite is an object-based programming system. Its abstractions revolve
directly around elements of the environment as opposed to sensor network con-
structs such as regions, neighborhoods, or sensor groups. The existence of the
sensor network is thus made more transparent. EnviroSuite is different from other
object-based systems in that its objects are representations of elements in the ex-
ternal environment. Dynamic object instances are created automatically by the
run-time system when the corresponding external elements are detected and are
destroyed when these elements leave the network. A unique mapping between
object instances and the corresponding environmental elements is maintained by
the system. Object instances float across the network following (geographically)
the elements they represent. The execution of object code at the location of the
corresponding physical element is ideal for sensing and actuation tasks. Objects
encapsulate the aggregate state of the elements they represent, making such state
available to their methods. These objects (as opposed to the individual nodes) are
therefore the units that encapsulate program data, computation, communication,
sensing and actuation. Classical objects (that do not represent any environmental
elements) are also supported. We call the above model, environmentally immersive

programming (EIP).

This paper presents the first comprehensive design and implementation of an
environmentally immersive programming framework. EnviroSuite abstractions are
supported by an underlying library called EIPLib, which is implemented in nesC
on TinyOS [Hill et al. 2000], an operating system designed specifically for sen-

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 3

sor networks. We evaluate EnviroSuite and several applications written in it on
TOSSIM [Levis et al. 2003] as well as on a mote-based sensor network. TOSSIM is
an emulator that runs the actual nesC service code, emulating on a PC the behavior
of programs on the Berkeley motes [U. C. Berkeley 2005]. The framework extends a
previous tracking middleware service by the authors, called EnviroTrack [Abdelza-
her et al. 2004], which introduced a network address space where representations
of environmental entities are the addressable objects.

Finally, two remarks are in order on what EnviroSuite is not. First, EnviroSuite
is not a replacement to other emerging programming paradigms such as group-
based primitives, database-centric abstractions, event-based systems, and virtual
machines. This paper does not argue for a single approach to the exclusion of
others. The most appropriate abstractions are often a personal choice that depends
on subjective programmer preferences as well as application specifics. Ultimately, it
is the availability of multiple programming alternatives that induces more software
development. EnviroSuite is therefore presented and evaluated for its own merits,
and not as a substitution for other high-level paradigms.

Second, EnviroSuite is not a programming language in itself. EnviroSuite is a
framework that extends other programming languages with environmentally im-
mersive programming primitives. This extension takes two different forms. First,
the programmer is allowed to define and use variables that summarize elements of
a potentially distributed environmental state (such as the average temperature of
a region or the current location of a moving target). Second, the programmer may
define code that is geographically distributed and associate the time and place of
its execution with the occurrence of certain environmental events. Both the ag-
gregate variables and distributed code are encapsulated within simple objects. As
with other distributed computing paradigms, remote communication is allowed be-
tween objects. The purpose is to abstract the distributed aspects of environmental
interactions and computation.

With distribution hidden from the programmer, logical computation can be per-
formed using the native programming language. The current implementation of
EnviroSuite extends nesC. However, there is nothing in its design and general ab-
stractions that is nesC specific. The implementation can be easily re-targeted to
support other programming languages. nesC was chosen due to its wide popularity
in the sensor network community and due to the availability of a compiler for the
current mote hardware.

The remainder of the paper is organized as follows. Section 2 introduces the
overall architecture of the EnviroSuite framework. Section 3 provides a detailed de-
scription of the exported abstractions. Section 4 presents the design of the essential
algorithms underlying these abstractions. Section 5 highlights the implementation
details. Section 6 presents and analyzes performance evaluation results. Section 7
discusses related work. Section 8 concludes the paper.

2. SYSTEM ARCHITECTURE

EnviroSuite lets the programmer think in terms of objects in the external envi-
ronment that are relevant to the application. An environmental object may refer
to a localized entity (such as a moving vehicle) or a distributed region of the en-

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

4 · Liqian Luo et al.

person
event

Base Station

vehicle
event

 object type: VEHICLE
 object ID: vehicle01

method:
report location to the
base station every 5
seconds

attribute: location

 object type: PERSON
 object ID: person01

method:
turn on a nearby micro-
phone if current location
is less than 1 mile away
from the base station

attribute: location

mapping

 object type: NETWORK_HEALTH
 object ID: network_health01

method:
send out alarms if more than 20% nodes do not have
enough power (voltage < 2.7V)

attribute: voltage

mapping

Fig. 1. One-to-one mapping between physical events and event objects

vironment (e.g., a geographic area or an area specified by some sensory signature
such as high temperature). Typically, the system must keep some state or other
information about each object. This state is maintained in variables encapsulated
within the object that can be accessed using object methods. Hence, each object
is given by (i) a sensory or geographic signature that defines its boundaries or lo-
cation, (ii) a set of data variables to be collected in its vicinity, and (iii) a set of
methods that can be performed in its context. The fact that the obtainment of
values stored in the encapsulated variables and the execution of local methods may
need distributed computation (such as data aggregation) is hidden from the pro-
grammer. The programmer may also define regular objects that are not linked to
objects in the environment. We call them function objects . Environmental objects
and function objects seamlessly coexist in the programmers’ world and can invoke
each other’s methods using a remote object invocation mechanism. An example of
such mapping is depicted in Figure 1.

The example in Figure 1 represents a surveillance application that monitors ve-
hicle and person movement in a hostile territory (e.g., behind enemy lines). Each
tracked vehicle or person is mapped into a dynamically instantiated object with

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 5

Monitoring and Tracking Applications in EnviroSuite

Monitoring and Tracking Applications in nesC

EnviroSuite Middleware

EIPLC
EIPLib

- Primitive Algorithms
- High-level services

Fig. 2. Relation of EnviroSuite, EIPLC & EIPLib

a unique label, denoted by an object ID in EnviroSuite. Desired event attributes
such as location can be returned for the object. This application also periodically
monitors the health of the network by collecting information on nodes that are alive
and their remaining power. The network is thus mapped into an object that main-
tains aggregate health statistics. Computation, communication and actuation can
be logically attached to these objects. Examples include reporting vehicle location
by vehicle objects, turning on microphones in their vicinity for tracking purposes,
or sending out alarms if system health fails to meet an acceptable threshold.

These primitives are supported by the environmentally immersive programming
library (EIPLib), which provides a series of algorithms containing the detailed
implementations (such as sensor data processing, object maintenance, and inter-
object communication) and some other higher level services. A compiler (EIPLC)
is introduced to translate EnviroSuite applications into nesC. The relation among
EnviroSuite, EIPLC and EIPLib is depicted in Figure 2.

Programmers design and implement environmental monitoring and tracking ap-
plications using a combination of EnviroSuite and nesC. Taking such implemen-
tations as input, the compiler (EIPLC) configures and restructures services and
protocols in EIPLib to automatically produce as output the corresponding imple-
mentations in the nesC language. The resulting code can be compiled on TinyOS
and uploaded to the motes. In the following sections, we describe in more details
the abstractions of EnviroSuite, the services and protocols provided in EIPLib to
support these abstractions, and the translation of these abstractions carried out by
EIPLC.

3. ENVIRONMENTALLY IMMERSIVE PROGRAMMING SYNTAX

When a programmer develops a monitoring application using EnviroSuite, the pro-
grammer creates a virtual world with a set of logical objects, which attempts to
reflect the real world with a set of physical objects. Each object is defined by a
sensory signature such that contiguous groups of nodes that satisfy that signature
will be given a unique object ID. These object IDs constitute a global name space
available to the programmer. Various data operations can then be performed on
different locales defined by the corresponding object IDs. These operations are
typically coded as methods encapsulated in the corresponding objects. Observe
that EnviroSuite is only concerned with (i) grouping together nodes that satisfy
programmer-defined sensory signatures, (ii) giving global names to those groups,

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

6 · Liqian Luo et al.

object VEHICLE

object_condition =
 ferrous_object() && background_sound()

object_attribute location
attribute_value = AVERAGE(position())
attribute_degree = 2
attribute_freshness = 500ms

object_main_function = vehicle.getLocation

object type

object context

object attribute

object method

Fig. 3. Object declaration of object VEHICLE

(iii) executing programmer-defined data operations within each named group, and
(iv) storing programmer-defined group state in variables encapsulated within the
named objects. The correspondence between the groups and meaningful aspects of
the environment is the programmer’s responsibility. For example, there is inherent
uncertainty regarding whether or not a motion and magnetic signature defined by
the programmer truly signals the presence of a vehicle. EnviroSuite is concerned
only with tracking the defined signature. The uncertainty in the interpretation of
the signature must be handled at a higher-level.

Syntactically, an EnviroSuite program consists of a list of object declarations
such as the one shown in Figure 3. Each declaration specifies a user-defined object
type, an object condition statement, declaration of object attributes, and the object
methods.

The object condition statement creates a mapping between the software object
and the corresponding environmental element. For example, it can specify the
sensory signature of an external tracked entity, or a geographic area defining a
physical region. An object is created for each contiguous region where the object
condition is true. A contiguous region is one that is not partitioned. In other words,
there exists a path between any two nodes in the region that has no intermediate
hops outside the region. We call this region the object context. A null object
condition specifies that this object is not a representation of an environmental
element (e.g., a pure computational object), which is called a function object, as
mentioned above.

Specifications of object contexts are followed by declarations of encapsulated
data to store the state of the object. Such data typically refers to aggregates of
sensory measurements or node attributes over the object context. They can be
thought of as query results over the context. The declaration specifies the method
of aggregation together with confidence and freshness parameters. Finally, as in
traditional object-based systems, an object main function specifies the name of a
default constructor method to be automatically executed when the object is created.
Other methods can be defined to be executed when called. Object methods can
access the attributes of their encapsulating object and perform remote method
invocations on other objects.

Objects are instantiated either statically or dynamically. The former is useful to
represent fixed environmental elements such as topological features of the terrain.
The latter is useful, for example, to represent dynamically arriving targets in the

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 7

Table I. Keywords for basic EnviroSuite ob-
ject declaration

Object Context object condition

Object Attributes object attribute

attribute value

attribute degree

attribute freshness

Object Methods object main function

object function

environment. As described later in this paper, special care is taken to ensure unique
representation (i.e., that a single object is instantiated to refer to a single target,
even though the target causes multiple sensor hits).

EnviroSuite keywords for basic object declarations are listed in table I. More
detailed discussion on EnviroSuite object contexts, attributes, and methods is pre-
sented in the following subsections respectively, using the object declaration exam-
ple depicted in Figure 3.

3.1 Defining the Object Context

In EnviroSuite, the object condition statement defines the object context, which is
the continuous region where the object condition is true. EnviroSuite includes a
library of sensor data processing algorithms (called the condition library) designed
by domain experts for purposes of defining object contexts. These algorithms return
(possibly) filtered or otherwise processed sensor outputs (e.g., temperature()),
or identify specific boolean environmental conditions (e.g., ferrous object() or
vehicle sound()), or return node attributes (e.g., position() or voltage()). A
boolean expression of such conditions can then define the region of object context.
We call it the object condition statement. For example, the following declaration
defines the condition that represents the potential presence of a vehicle:

object condition = ferrous object() && vehicle sound();

In this example, ferrous object() is a function that returns true when the
magnetometer output indicates a significant disturbance to the earth magnetic
field (consistent with the passage of a large ferrous object), and vehicle sound()

indicates microphone output of energy and pitch consistent with the sound of a
passing vehicle. Implementation of such functions is described in [Gu et al. 2005].

The idea is to compile a library of such conditions to abstract the specifics of
sensor processing away from the programmer in much the same way device drivers
abstract the details of device I/O away from application code. The separation
between high-level application code and low-level sensor processing comes at the
cost of increased condition library size, since many different algorithms need to be
written to identify a sufficient range of useful conditions for each sensor type. This
is not unlike the proliferation of device drivers (one for each version of every possi-
ble device) in contemporary operating system installations. The success of device
drivers as a means for separating concerns leads one to believe that the condition
library will considerably simplify application development in sensor networks. An
object executes when and where the conditions defined in its condition statement
become true.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

8 · Liqian Luo et al.

Observe that conditions can also be parameterized. For example, the condition:

object condition = altitude()>500 && temperature()<32;

defines the region (i.e., object context) that satisfies freezing temperatures on top
of a local hill. The case of object condition = NULL specifies a function object
not associated with an environmental element (region or physical entity).

3.2 Defining Object Attributes

The main purpose of objects invoked in response to environmental conditions such
as those mentioned above is usually to monitor attributes of environmental events,
targets or regions. These attributes are measurements collected and aggregated by
nodes in the object context. Specification of attributes requires specification of (i)
the sensor measurements in question, and (ii) optionally, their method of aggrega-
tion. Aggregation is always performed over all nodes within the object context. The
sensor measurements to be aggregated could be any environmental measurements,
or node attribute measurements such as remaining battery power or node position,
for which a measurement function exists in the condition library described above.
A library, called the aggregation method library, is supplied, which lists a set of
aggregation methods such as AVERAGE, MAX and RANGE on attributes. For example,
to define an aggregate attribute, targetLocation, EnviroSuite programmers can
simply specify the corresponding node measurement, position(), from the condi-
tion library, and the name of the appropriate aggregation method, say AVERAGE,
from the aggregation method library, in an object attribute clause, such as:

object attribute targetLocation {
attribute value = AVERAGE(position());

}

Within the declaration of an attribute, EnviroSuite allows the programmer to
specify the minimum aggregation degree, attribute degree. The aggregate at-
tribute is valid only when it is the aggregation result from at least as many nodes
as attribute degree. This knob allows programmers to control the confidence in
retrieved information. The feature is especially useful in reducing false alarms. An-
other important property of attributes is freshness. Most monitoring applications
have temporal data validity constraints. Usually, stale information is of no use. En-
viroSuite allows programmers to define attribute freshness, which determines
how often aggregate attributes are to be sampled and updated by the mechanisms
that compute them in EIPLib.

3.3 Defining Object Methods

Sensor network applications can have more complex functionality than merely mon-
itoring attributes. In general, computation, communication or actuation could be
encapsulated into the definition of an object. EnviroSuite tries to make full use
of existing general-purpose languages, such as nesC, and their existing modules,
such as those exported by TinyOS, by separating real object method implementa-
tion from object declaration. In object declaration, EnviroSuite programmers are
required to denote the name of functions implementing in a general language the
object methods. Such functions can use the EnviroSuite communication primitives

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 9

(using keyword ES IOC and ES IOCRESULT) and read values of encapsulated aggre-
gate attributes of the object (using keyword ES GETATTRIBUTE). The separation of
object method declaration and object method implementation retain independence
of EnviroSuite abstractions from the underlying programming language.

There are two types of object methods that can be encapsulated within an object.
Those object methods specified in object main function statements are functions
which will be automatically executed upon the creation of the corresponding ob-
ject. In contrast, object methods specified in object function statements will
be executed only when they are called by other objects. Assuming programmers
choose nesC as the general language to implement object methods, the following
clause specifies that the implementation of the main object method can be found
in nesC command getLocation within interface vehicle.

object main function = vehicle.getLocation;

To facilitate communication and coordination beyond the scope of one object,
we introduce a RPC-like mechanism in EnviroSuite, called the Inter-Object Call

(IOC). IOC is different from traditional RPC in several aspects. First, both the
caller and the callee of IOC can be migrating across nodes as the location of the
external object changes. Such migration is transparent to programmers, who simply
specify the callees instance name (to be stated below) and never worry about which
physical nodes these objects are located on. Second, IOC is asynchronous. Callers
do not block themselves to wait for results. Instead, results declare their arrivals
by interrupts. The keyword for IOC is ES IOC and ES IOCRESULT. The former is
used for executing an IOC and declaring its handler and the latter for receiving IOC
result interrupts. All object methods defined in an object can be remotely called by
any other objects by using its reference. The underlying low-level communication
protocol and routing extensions to support IOC have been previously published
in [Blum et al. 2003] and are thus not described in this paper.

3.4 Defining Static Object Instances and Global Variables

The above discussion covered declaration of object types. Objects that represent
fixed environmental elements, such as topological features of the terrain, can be
statically instantiated. These static instances can be used, for example, as the
destinations of IOCs that invoke object methods. Object types that do not have
static instances will be instantiated dynamically at run-time when their object
conditions become true. They would have to send their handle to any other objects
that need to communicate with them.

EnviroSuite also allows programmers to define globally shared static variables in
(static) object declarations and to access defined static variables in object method
implementation by using EnviroSuite keyword, ES READ and ES WRITE.

The next section gives a complete tracking application implemented in Enviro-
Suite, including code samples for static instances and static variables.

3.5 A Tracking and Monitoring Application in EnviroSuite

A typical tracking and monitoring application written in EnviroSuite (and some
nesC) is shown in Figure 4. The main function of this application is to estimate the
current location of a tracked vehicle, update the estimates every 500 ms and report

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

10 · Liqian Luo et al.

1. object VEHICLE {
2. object_condition = ferrous_object()&&vehicle_sound();
3. object_attribute location {
4. attribute_value = AVERAGE(position());
5. attribute_degree = 2;
6. attribute_freshness = 500ms; }
7. object_main_function = vehicle.getLocation; }

8. object NETWORK_HEALTH {
9. object_condition = TRUE;
10. object_attribute energyLevel {
11. attribute_value = voltage();
12. attribute_freshness = 20m; }
13. object_main_function = networkHealth.getEnergyLevel; }
14. static NETWORK_HEALTH networkHealthInstance;

15. object MONITOR {
16. object_condition = NULL;
17. object_main_function = monitor.start;
18. object_function = monitor.reportLocation;
19. static int vehicleNumber = 0; }
20. static MONITOR monitorInstance;

Object Declarations

21. Triple_float_t *currentLocation;

22. command result_t vehicle.getLocation() {
23. call ES_WRITE(monitorInstance.vehicleNumber,
 monitorInstance.vehicleNumber +1);
24. return call Timer.start(TIMER_REPEAT, 500); }

25. event result_t Timer.fired() {
26. currentLocation = call ES_GETATTRIBUTE(location);
27. ES_IOC report = call monitorInstance.monitor.
 reportLocation(currentLocation);
28. return SUCCESS; }

29. ES_IOCRESULT report(bool result) {
 //deal with remote call results here
30. return; }

31. uint16_t currentEnergyLevels[MAX_NODE_NUMBER];

32. command result_t networkHealth.getEnergyLevel() {
33. return call Timer.start(TIMER_REPEAT, 1200000); }

34. event result_t Timer.fired() {
35. currentEnergyLevels = call ES_ATTRIBUTE(energyLevel);
 //deal with obtained node IDs and voltage values here
36. return SUCCESS; }

37. command result_t monitor.start() {
38. return SUCCESS; }

39. command bool monitor.reportLocation(Triple_float_t
 Location) {
 //deal with received target location here
40. return TRUE; }

object method implementation of object VEHICLE

Implementations of Object Methods

object method implementation of object NETWORK_HEALTH

object method implementation of object MONITOR

Fig. 4. An EnviroSuite application

the estimated location to the base station every 500 ms. The total number of vehi-
cles is counted. At the same time, voltage values for individual nodes are collected
every 20 minutes to obtain system health information. This application illustrates
the main abstractions supported by the framework, as well as the programming
style.

The application declares three object types VEHICLE, NETWORK HEALTH and MONI-

TOR which refer to a dynamically instantiated object, a geographic region object

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 11

and a function object, respectively (lines 1 - 20).
For object type VEHICLE, the object condition statement (line 2) specifies its

sensory signature as ferrous object() and vehicle sound(). The object attri-

bute statements (lines 3 - 6) define an aggregate attribute location for which the
value is the average of positions of more at least 2 nodes, updated every 500 ms. The
object main function statement (line 7) states that main object method imple-
mentation can be found in interface vehicle that includes command getLocation.

For object type NETWORK HEALTH, the object condition statement (line 9) speci-
fies its object context as TRUE to include all nodes in the network. The object attri-

bute statements (lines 10 - 12) define an attribute energyLevel as the voltage values
of individual nodes with an update rate 20 minutes. The object main function

statement (line 13) defines that main object method is command getEnergyLevel

in interface networkHealth, which obtains an array of node IDs and voltage val-
ues. Line 14 creates a static instance networkHealthInstance for object type
NETWORK HEALTH so that it will be instantiated statically in system initialization
and IOCs can be made through this reference.

For object type MONITOR, the object condition statement (line 16) specifies
NULL as the object context since the object is not mapped to any environmental
element. The object main function statement (line 17) specifies the command
start in interface monitor as the main object method. Finally, the object func-

tion statement (line 18) defines that command reportLocation in interface moni-
tor can be remotely called by any other objects by using IOC and its static instance
monitorInstance (line 20). Line 19 defines a static variable vehicleNumber which
is globally accessible by any object through ES READ and ES WRITE.

In the object method implementation of object VEHICLE, it is defined that static
variable vehicleNumber is increased by one whenever a new instance of VEHICLE

is created (line 23). For each instance, every 500 ms (line 24) the current value of
aggregate attribute location is fetched (line 26) and sent to the base station by
using ES IOC (line 27) to remotely call method monitor.reportLocation located
in static instance monitorInstance. In line 29, ES IOCRESULT keyword is used to
receive IOC interrupts of ES IOC report. The interrupt handler name must be the
same as ES IOC which is report and the parameters should be of the same type as
the returned value of remote called method reportLocation which is bool.

In the object method implementation of object NETWORK HEALTH, it is defined
that every 20 m (line 33) the current values of individual voltages are collected
(line 35) and analyzed (not included) to monitor system health.

The object method implementation of object MONITOR includes the implemen-
tation of its constructor method monitor.start (lines 37 - 38) and its exported
method monitor.reportLocation (lines 39 - 40).

This application is used as a running example throughout this paper. It is com-
piled and evaluated on an actual sensor network as well as on TOSSIM.

4. OBJECT MAINTENANCE ALGORITHMS

To support EnviroSuite abstractions, the main question is how physical state,
events, and activities can be uniquely and identically mapped into objects despite of
distribution and possible mobility in the environment. This section gives extensive

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

12 · Liqian Luo et al.

answers.
While all objects in EnviroSuite have the same declaration syntax and program-

ming interface, underneath the common API, EnviroSuite supports three different
implementations of objects, namely, event objects (created for mobile events de-
fined as those that dynamically change their geographical locations), region objects

(mapped to static or slowly moving regions), and function objects (not mapped to
an environmental element).

To alleviate the programmers burden, EnviroSuite can automatically determine
the best category for each object based on the keywords used in the object condi-

tion statement. Conditions defined in terms of volatile measurements (such as
motion sensing) typically give rise to dynamic contexts with rapidly changing node
membership, which are more appropriately implemented as event objects. In con-
trast, conditions defined in terms of slowly changing measurements (such as tem-
perature) result in more stable groups that can be implemented as region objects.
Taking sensor type into account therefore allows the compiler to make intelligent
guesses about the most appropriate group management protocols to use for object
implementation. The programmer is allowed (although not required) to annotate
the object as event or region object, overriding the compilers intelligent guess. An
incorrect annotation, however, will result in impaired performance. Function ob-
jects are similar to region objects, except that they do not interact with the physical
environment. In the following, we describe the three different object maintenance
protocols, which determine how and when to form the object context, what group
management protocols are involved, where to execute object code, and how to
compute object attributes.

4.1 EVENT OBJECT MAINTENANCE

Typically, event objects are created dynamically in response to environmental
events that may be mobile and usually fast moving. (A compile-time warning
is generated if a static instance is declared for such objects.) In the current im-
plementation and in the discussion below, only localized events are supported. By
a localized event, we mean those with a geographically limited sensory signature,
such as moving vehicles. We call such localized events, targets. Supporting events
with a large signature that move quickly is challenging because of the high over-
head. However, we do support slowly moving large-signature events as described
in region objects.

The core component of our event object implementation is the multi-target group

management protocol (MGMP). When the condition statement of an event object
evaluates to true in a new contiguous region, MGMP creates a new globally unique
address, object ID, and associates it with the geographically contiguous group of
sensor nodes which sense the environmental event. The movement of the contiguous
region associated with the event results in dynamic changes to group membership.
The protocol ensures that the same object ID is maintained for the event object
despite mobility and membership changes, so that it can always be addressed via
its uniquely assigned object ID. Dynamically created event objects are aware of
their ID and must explicitly send it to other objects if they want to be contacted.
Observe that the internal details of MGMP are transparent to the programmer.
From the perspective of application code, the only visible effect of MGMP is the

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 13

Object Resolution

Sensing Range

Nulls

Event
Leader

Members

Followers

Fig. 5. States of nodes around an environmental event

dynamic creation and deletion of object instances (in response to environmental
conditions). These instances encapsulate aggregate object attributes as defined by
the programmer.

Internally, MGMP elects a leader in each object context to maintain a persis-
tent and unique object ID, collects raw data from group members in the context,
performs aggregation functions on the leader to compute object attributes, and
coordinates computation and actuation tasks as defined in object methods.

In the following, we discuss how MGMP maintains object uniqueness (one-to-one
mapping of external events to logical objects) and object identity (immutability of
the mapping function) for fast moving targets.

4.1.1 State Machine Representation. MGMP treats each node as a state ma-
chine. The sensor network around an environmental event might have the state
distribution shown in Figure 5. It should be noted that although we use circles to
indicate sensing areas, we do not assume sensing areas are circular.

All nodes sensing an event constitute the member set. A single leader is elected
by MGMP among the member set. The leader sends periodic heartbeats to nodes
within half an object resolution (default half is two times the sensing range) away
from itself to claim its leadership and to inform them of the existence of the event.
Note that the sensing range can be statically derived from the sensor characteristics,
and, if the event is detected by a combination of multiple sensors, the shortest one is
used. Heartbeats are disseminated through limited flooding, and later on, members
communicate to the leader through reverse paths of flooding. The period of these
messages, called the heartbeat period, is one of the key parameters of MGMP. As
we show in the evaluation section, this period can be chosen automatically by
EnviroSuite from a high-level specification of the maximum abject creation latency.

All nodes that cannot sense the event themselves but know of its existence
through received nearby leader heartbeats are said to be in the follower state. All
MGMP control messages are transmitted to nodes within half object resolution

away from senders. Thus, half the object resolution must be no less than two
times the sensing range, since nodes within the same sensing area must commu-
nicate with each other to agree on a single leader. The minimal tolerable object
resolution in EnviroSuite is therefore four times the sensing range.

At any point of time, a node stays at a single state from a set of states Ss:

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

14 · Liqian Luo et al.

New-
Candidate

Resigning-
Leader

Leader-
Candidate

LeaderMember

Follower

Null

Win in Candidate Election

 Win in
 Leader Election

leave()

Resigning Timeout

 Object Timeout

join()
 Lose in
 Leader Election

 Lose in
 Candidate Election

 Receive RESIGN
message or notice
 leader failure

Lose in Leader Competition

Join()

Leave()

Fig. 6. State machine in MGMP

Ss = {Null, Follower, Member, NewCandidate, LeaderCandidate,

Leader, ResigningLeader}

To make MGMP suitable for sensor devices with limited computation and storage
ability, we allow each node except leaders to maintain only one object/object ID to
reduce algorithm complexity both in time and space. For instance, a node cannot
act as member of two different objects/object IDs. Figure 6 depicts the general state
machine algorithm of MGMP without providing details of associated objects/object
IDs.

4.1.2 Maintaining Object Uniqueness. Object uniqueness can be compromised
in several cases. The first is at the time when a new event causes the creation
of a new object. Multiple object IDs for one event may be created since there is
no agreement on a single leader initially. To solve the problem we employ a de-

layed object creation mechanism, which delays the creation of a new object by an
amount called the candidate period, until we are of high confidence that the group
of nodes has elected a single leader node. In this mechanism, null nodes, when
sensing an event, transit their states to newCandidate and begin to send periodic
CANDIDATE messages at the heartbeat period, containing sequence numbers and
their own node ID. To prolong system lifetime, instead of using the fixed heartbeat
period, we can enhance energy balancing by using a dynamic period inversely pro-
portional to remainder energy of nodes. Hence, nodes with a higher energy will
become candidates first and will have a higher chance of being elected. In the case
of re-transmissions, candidates with a higher energy can back-off less, hence hav-
ing a higher chance of successfully claiming leadership. The node with the smaller
sequence number or, if sequence numbers are equal, with the bigger node ID is
forced to quit from the newCandidate state and transition to state member. This
procedure is called candidate election, which finally results in only one node at the
newCandidate state. After a given delay (namely, the candidate period) this node
transits to the leaderCandidate state. The candidate period is measured in the
number of periodic CANDIDATE messages sent before one newCandidate node can

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 15

transit to the leaderCandidate state. The candidate election algorithm ensures a
single leaderCandidate in the absence of message loss. Even if messages can be
lost, by increasing the candidate delay, a single leaderCandidate can be generally
guaranteed since the possibility of consecutive message loss is small. In the eval-
uation section, we determine a good choice for the candidate delay, such that the
programmer need not be involved in the decision.

The next problem that compromises uniqueness occurs during leader re-election.
When tracked events move out of the current leaders sensing ranges, these leaders
must handover their leadership to other nodes, which is called object migration. Ob-
ject migration, especially frequent object migration caused by fast moving events,
challenges the maintenance of object uniqueness. MGMP solves this problem by
introducing the follower state. Through heartbeats from leaders, follower nodes
know in advance the event objects associated with incoming events. When these
nodes come to sense these events, they join the existing objects as member instead
of creating spurious objects. It was shown in [Abdelzaher et al. 2004] that this
mechanism is successful in maintaining object uniqueness as long as object velocity
is below some maximum limit.

The third case that challenges object uniqueness is when multiple events of same
signatures become closer than defined object resolution, or even cross each others
path. To simplify the situation, we assume that event crossing does not coincide
with event disappearance. In the previous cases without event crossing, the delayed
object creation mechanism and the introduction of the follower set ensures object
uniqueness. Here, we need only to prevent accidental object termination during
event crossing, so that object uniqueness is maintained. The leadership handoff
mechanism used in MGMP prevents object termination as long as the object is
maintained by one leader node and at least one member node. Thus, the key in
maintaining object uniqueness during event crossing is to balance member nodes
between merging objects to assign at least one member for each object, which is
detailed below.

To show the member balancing mechanism, Figure 7 depicts part of the state
machine, which describes how member nodes choose their corresponding objects.
Memberx denotes member state with object ID x. A simple way to balance Member
nodes is to divide member nodes based on leader position. When a member node
receives heartbeats from multiple objects, it chooses to join the one with the nearest
leader since there is a higher possibility that this node is sensing the same event as
that leader. However, such division is not accurate since leader positions are not
identical to event locations. It is also possible that a member node is actually sensing
the same event as the farther leader. For this reason, a new state called freeMember

is introduced into the state machine. The continuous reception of n continuous
heartbeats from object 2 can transit member1 to freeMember and then to member2

even if the last heartbeat was from a closer leader (object 1). The introduction
of freeMember allows wrong choices to be corrected, thus ensuring correctness of
member balancing. The member balancing mechanism prevents object termination
successfully, therefore enhancing object uniqueness in the third case.

4.1.3 Maintaining Object Identity. While object uniqueness refers to maintain-
ing a single object representation for each external target, maintaining object iden-

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

16 · Liqian Luo et al.

Free-
Member

Member1

 Receive a
heartbeat from object 2

Notice that object 1 leader is near
than object 2 leader

Receive n heartbeats
from objects other
than object 1

Member2

Fig. 7. Member balancing mechanism

tity refers to keeping the correct association between external targets and their
representing objects. In the case where events with same signatures are closer than
one object resolution, an extra mechanism is required to maintain identity since
member balancing only ensures object uniqueness. EnviroSuite makes the default
extra assumption that targets tend not to change direction abruptly. This assump-
tion, for example, allows disambiguation of crossing targets based on their path.
The default assumption can be customized by programmers if needed.

EnviroSuite keeps a record of the recent trajectory of each target (storing it
within its representing object). To reduce system overhead, instead of using posi-
tion information of group members to estimate target locations, EnviroSuite takes
leaders positions as an approximation. When transferring leadership, each leader
also transfers its maintained history of the last n−1 old leaders positions plus its
own. When two events E1 and E2 cross each others path, each object leader is able
to receive the heartbeat from the other. Each object leader marks itself by the con-
catenation of the old object ID (O1) and the new object ID (O2) as its temporary
object ID (O1O2). The two leaders exchange their event trajectories such that each
remembers both. After separation, a disambiguation algorithm is used, based on
recorded history and current locations to chose the ID assignment most consistent
the default (straight path) assumption.

4.2 REGION AND FUNCTION OBJECT MAINTENANCE

Region object maintenance differs from event object maintenance since region ob-
jects are associated with a relatively fixed set of nodes. What we implement for
region object maintenance is a spanning-tree based information collection structure
described in [He et al. 2004]. Like event objects, the details of region object main-
tenance are transparent to the programmer. The application code is only aware of
the object and its encapsulated aggregate attributes.

When a region object is initialized (statically at system deployment time or dy-
namically, depending on whether a static instance is declared), a default leader
node disseminates tree construction requests to the object context with a running
hop-count initialized to zero. Requests are flooded outward with hop-count incre-
mented at every intermediate hop. After receiving tree construction requests, nodes
establish multiple reverse paths towards the sending nodes. As a result, a multi-
parent diffusion tree is constructed with the leader residing at the root. Spanning
tree construction stops when nodes are reached that do not satisfy the region object

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 17

condition statement. Such nodes become the outer boundary of the tree and serve
a role similar to followers in event objects. If these nodes ever satisfy the condition
statement they become members and recruit other followers for which the state-
ment is not satisfied. Also, if tree leaves cease to satisfy the object condition, they
truncate themselves from the tree and become outer boundary nodes. Hence, mem-
bership of the tree can change slowly over time. Measurements needed to compute
object attributes can flow up the tree from members towards the leader and get
aggregated along intermediate hops. We do not provide details of aggregation al-
gorithms here, since similar mechanisms have been described in previous literature
such as directed diffusion [Intanagonwiwat et al. 2000] and TAG [Madden et al.
2002]. Our contribution lies in the uniform programming abstractions presented on
top of such mechanisms.

One aspect where our region object maintenance algorithm differs from previ-
ous work is that we automatically migrate the root of the aggregation tree to the
location that minimizes communication and aggregation overhead, as well as to a
higher energy node, periodically escaping energy depleted regions. This load bal-
ancing flexibility is made possible in our programming model since we implement
the program inside the network, alleviating external bottlenecks. After each migra-
tion, a (possibly partial) tree reconstruction is done to form a new spanning-tree
rooted in the new host node.

The introduction of region objects enables EnviroSuite to support not only track-
ing functions, but also region monitoring functions such as contour finding and
system health monitoring, thus making EnviroSuite applicable to a broader set of
applications.

Function objects are quite similar to region objects except that there are no
object contexts and object attributes in function objects. There is no need for
object context maintenance and object attribute collection since function objects do
not interact directly with the physical environment. In EnviroSuite, the leader of a
function object always migrates to the gravity center of all other objects which have
recently communicated with the function object through IOC or global variable
access.

Like in event objects, leaders in region objects and function objects are respon-
sible for object method execution.

5. IMPLEMENTATIONS IN NESC

In this section, we take nesC, the most popular language in sensor network area, as
the general language that implements EnviroSuite. EnviroSuite object declarations
(defined by programmers) and object methods (assumed to be written in nesC
by programmers) are to be automatically translated by EIPLC into a whole nesC
application by selecting and integrating primitive algorithms provided in EIPLib.
This section describes how we design EIPLib to simplify the work of EIPLC and
how we implement the compiler EIPLC with the help of EIPLib. Although the
implementation details are specific to nesC, most design decisions we make in this
section are portable to other languages.

All nesC applications consist of a set of components. A component provides and
uses interfaces, as defined in the components provides and uses clauses. An interface

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

18 · Liqian Luo et al.

describes the parameters of a set of commands and events. There are two types
of components: modules and configurations. Modules provide application code,
implementing one or more interfaces. Configurations connect interfaces used by
components to interfaces provided by other components. The action of connecting
component interfaces is called component wiring. It is the main mechanism for
building large applications from smaller modules. Wiring is done at compile time,
and offers no run-time overhead. We use wiring extensively to connect application
components to components implemented by our language libraries.

5.1 EIP Service and Protocol Library (EIPLib)

EIPLib contains a series of primitive algorithms to be used by EIPLC to build
comprehensive applications in nesC, currently including: sensor data processing
algorithms (condition library), aggregation algorithms (aggregate method library),
object maintenance algorithms and inter-object communication protocols. It also
contains higher level services as potential consumers of primitive algorithms, includ-
ing: object context determination components, object attribute collection compo-
nents and object method execution components.

Each condition such as temperature() and vehicle sound() is associated with a
sensor data processing algorithm in EIPLib, which returns processed sensor outputs
either as a meaningful value or a boolean either immediately or in a phase-splitting
way. However, the association and ways of accessing are hidden in EIPLC and
programmers are only aware of available condition names and their purposes. Also,
each aggregation method such as AVERAGE is associated with an aggregation algo-
rithm which implements the method. In the current version, object maintenance
algorithms contain separate implementations for three object categories: event ob-
jects, region objects and function objects. As stated in the beginning of Section 4,
the object categories are transparent to programmers and are determined by EIPLC
based on the object condition statement. (Advanced APIs are provided for so-
phisticated programmers to override default rules.) Inter-object communication
protocols provide supports for maintaining links between dynamic objects, which
is required to implement IOCs and global variable access. All these primitive algo-
rithms are implemented as nesC components with standard interfaces.

Object context determination components determine whether the current node
should join some object context based on object declarations. Object attribute
collection components collect raw object attributes from member nodes, apply ag-
gregation methods to form aggregate attributes in leader nodes, and support access
to aggregate attributes. Object method execution components are responsible for
executing object methods in leader nodes whenever corresponding objects exist.
These higher level components are also implemented in the form of nesC compo-
nents, yet differ from usual nesC components in many ways, including:

(1) They are not pre-wired since object declarations and object method imple-
mentations are not available until compile time. Wiring is left for the compiler so
that primitive algorithm components may be freely selected and wired into higher
level components to construct any EnviroSuite applications defined by program-
mers.

(2) They contain special clauses that are recognizable only by the compiler. In

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 19

nesC
ApplicationEnviroSuite

Application

object context
definitions

object attribute
definitions

object method
definitions

global variable
definitions

static instance
definitions

object method
implementations

object context
determination
components

object attribute
collection

components

object method
execution

components

object method
implementation

components

sensor data
processing

components

aggregation
components

object
maintenance
components

inter-object
communication

components

Fig. 8. Translate an EnviroSuite application into a nesC application

many cases, such clauses are necessary to guide language translation. For exam-
ple, the configuration of object context determination components may include
a special clause ({ ES COMPONENTS}) which indicates the position where necessary
sensor data processing components are to be listed by EIPLC. These clauses greatly
simplify the implementation of EIPLC by giving some hints.

The hierarchical structure between primitive algorithms and high level compo-
nents is also critical. In this structure, various configurations can be achieved by
changing only the high level components while other components can remain un-
changed, thus reducing the complexity of the compiler.

5.2 EnviroSuite Compiler (EIPLC)

EIPLC is essentially a translator that takes EnviroSuite code as input and outputs
desired environmental monitoring applications in nesC, which then can be compiled
by a standard nesC compiler and uploaded to the motes. EIPLC is implemented
in Perl, a language with powerful built-in support for text processing. Current
implementation of EIPLC contains 1533 lines.

EnviroSuite application code consists of two parts, object declarations and object
method implementations. The detailed translation of both parts is illustrated in
Figure 8.

EIPLC analyzes object declarations line by line, making corresponding configu-
rations and integrations. As depicted in Figure 8, for object context definitions,
EIPLC identifies all conditions, locates the corresponding sensor data processing
components by searching condition library, which lists all condition names and the
corresponding implementations, wires them into object context determination com-
ponents. A feature of EIPLC is that it automatically determines the best category
for each object based on these conditions and integrates the corresponding object
maintenance algorithms.

For object attribute definitions, besides identifying conditions and wiring corre-

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

20 · Liqian Luo et al.

sponding components into object attribute collection modules, EIPLC also wires
aggregation components. Additional work includes setting attribute refreshing
timers based on attribute freshness definition and validating resulted aggregate
attribute based on attribute degree definition. Based on object method defini-
tions, EIPLC wires the implementations into object method execution components.
EIPLC also copies global variable definitions into object method execution com-
ponents and enables remote access to global variables by implementing local read
and write commands, which respond to received remote calls. For each static ob-
ject instance, EIPLC randomly selects a node as the default leader, which initially
executes the main object function, and migrate the leader to a more power-efficient
position later.

EIPLC also filters object method implementations for keywords, translating
ES GETATTRIBUTE into command calls to object attribute collection components
and ES IOC, ES IOCRESULT, ES READ and ES WRITE into command calls and event
handlers of inter-object communication components.

As seen above, EIPLC successfully bridges between low-level implementations
in EIPLib and high-level abstractions exported by EnviroSuite by making several
intelligent steps that are transparent to the programmers: selecting sensor data
processing algorithms; automatically identifying object categories and applying cor-
responding maintenance algorithms; and automatically collecting and aggregating
attributes from multiple nodes.

Observe that, one clause in an EnviroSuite application may result in multiple
changes in higher level components, and one higher level component from EIPLib
may be changed multiple times by multiple EnviroSuite clauses, which means
EIPLC may need to change the same file in EIPLib repeatedly. Considering such
phenomenon, instead of creating corresponding new code line by line, we store the
resulting changes in a hash of hashes, so that already changed code can be further
changed easily. The hash of hashes stores, for each file and each special clause such
as { ET COMPONENTS}, their corresponding nesC code. Only after analyzing the
entire EnviroSuite application, EIPLC changes files from EIPLib based on the re-
sulted hash of hashes. The storage space needed by the hash of hashes may be very
large. However, we consider it acceptable since EIPLC runs on a PC and therefore
does not have severe storage constraints.

6. PERFORMANCE EVALUATION

This section provides a detailed quantitative analysis of EnviroSuite. We begin by
evaluating the performance of a series of micro-benchmarks on simulators, which
analyze the primary features of EnviroSuite: object uniqueness and identity main-
tenance, and inter-object communication support. The first set of benchmarks
tests object uniqueness and identity management during object creation, object
migration and object crossing (which is the most challenging case). The second set
of benchmarks tests inter-object communication. We then move to real platforms
to evaluate the performance of a surveillance system built using the EnviroSuite
framework. Both tracking performance and monitoring performance are evaluated
to demonstrate event objects and region objects. The evaluated system is the one
described in Section 3. Its abbreviated code is given in Figure 4.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 21

0

5

10

15

20

0.125 0.25 0.5 1 2 3 4 5 6 7 8

Heartbeat Period (sec)

O
bje

ct
 C

re
at

ion
 D

ela
y

(s
ec

)

Candidate Period=1
Candidate Period=2
Candidate Period=3
Candidate Period=4

Fig. 9. Object creation delay for varied heartbeat period and candidate period

6.1 Performance of Object Operations

To evaluate the performance of primitive object operations, we choose TOSSIM
since EnviroSuite produces real nesC code for motes and TOSSIM can emulate the
execution of the real code on the motes without the need for deployment. The radio
model simulated in TOSSIM is almost identical to the 40 Kbit RFM-based stack on
the motes. To control per-hop message loss at the packet level we added an external
program component. We focus on fast-moving objects (event objects), since their
real-time maintenance offers the most challenge to the EnviroSuite infrastructure.

In our emulated experiments, we set the sensing range to 100 feet (approximately
30 meters). Current sensor devices such as the micropower impulse radar [Azevedo
and McEwan 1996] can detect objects up to 50 meters away. Radio range is set
to 300 feet. Current sensor network products such as the Mica2 and Mica2Dot
motes [U. C. Berkeley 2005] have a maximum outdoor radio range of 500 feet to
1000 feet under ideal conditions when sending with full power. Sensor nodes are
placed on a grid 100 feet apart.

6.1.1 Experiment 1 - Object Creation. EnviroSuite associates a logical object
with each physical event. It is critical that such association should be done as soon
as possible to reduce the inconsistency between the physical world and the logical
world exported by EnviroSuite. In the first experiment, we measure object creation
delay, defined as the difference between the time the first node senses an external
stimulus and the time an object ID is created for the corresponding object. The
external entity tracked, in this case, is a vehicle. The tracking code is given in
Figure 4.

The delay of object creation is decided by both the candidate period, which indi-
cates how many candidate messages must be sent before creating objects, and the
heartbeat period, which determines candidate message intervals. In the following
we show the experimental data that allow these parameters to be selected auto-
matically by EnviroSuite from a high-level specification of the maximum tolerable
object creation delay. Figure 9 plots object creation delay versus heartbeat period
for different candidate periods.

From Figure 9 we observe that object creation delay increases with the increase
in both the candidate period and the heartbeat period. The plots show only those
points for which a non-zero number of objects are created. A candidate period of
1 performs best in terms of object creation delay. However, it is undesirable since

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

22 · Liqian Luo et al.

0

1

2

3

4

0.125 0.25 0.5 1 2 3 4 5 6 7 8

Heartbeat Period (sec)

#O
bje

ct
s

Candidate Period=1
Candidate Period=2
Candidate Period=3
Candidate Period=4

Fig. 10. Number of objects created for varied heartbeat period and candidate period

it causes spurious objects at higher heartbeat periods as stated below.
The candidate period and the heartbeat period affect not only object creation

delays but also object uniqueness. Figure 10 shows the impact of the candidate pe-
riod and the heartbeat period on object uniqueness by plotting the average number
of created objects. Ideally, only one object should be created per experiment, since
the only target is deployed.

Figure 10 shows that with shorter heartbeat periods, candidate periods 2, 3
and 4 perform similarly. However, longer candidate periods result in a longer
object creation delay, so that when the heartbeat period exceeds a certain threshold,
objects cannot be formed in time before the vehicle moves out of their sensing
ranges. Figure 10 shows that for candidate period 4, it is difficult to create objects
after the heartbeat period exceeds 2 seconds, while for candidate period of 2, objects
can be created up to a heartbeat period around 5 seconds. We therefore choose 2
as the default candidate period in EnviroSuite. A longer candidate period should
be chosen in the presence of message loss.

Given the default candidate period (of 2), the object creation delay can be chosen
anywhere from a small fraction of a second to multiple seconds depending on the
choice of heartbeat period, as shown in Figure 9. The programmer should therefore
specify a maximum tolerable value of object creation delay. This specification stems
easily from application domain knowledge. For example, in a vehicle tracking appli-
cation, a delay of 1-2 seconds between vehicle entry into the field and the creation
of a corresponding event object is quite tolerable. EnviroSuite then uses Figure 9
to compute the corresponding heartbeat period. Observe that a smaller heartbeat
period implies more communication, more energy consumption, and consequently
a shorter lifetime. Hence, a trade-off exists between system responsiveness (object
creation delay) and lifetime.

6.1.2 Experiment 2 - Object Migration. The core part of EnviroSuite is to
uniquely and identically map physical events to logical objects. In this experi-
ment, we reveal how fast object migration could be performed without breaking
object uniqueness and identity. Object migration is caused by the movement of
associated events. Hence, from the perspective of applications, the velocity limit of
object migration is more meaningfully expressed by the maximum tolerable event
velocity. It is defined as the maximum velocity of events, which can be uniquely and

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 23

0

50

100

150

200

250

300

0.125 0.25 0.5 1 2 3 4 5

Heartbeat Period (sec)

M
ax

im
um

 T
ole

ra
ble

 E
ve

nt
 V

elo
cit

y
(m

ph
) Half Object Resolution=2

Half Object Resolution=3
Half Object Resolution=4

Fig. 11. Maximum tolerable event velocity for varied heartbeat period and object resolution

identically mapped to logical objects. Observe that for a given maximum object
migration speed (in hops per second), the corresponding maximum event velocity
depends on the radio range (distance per hop). The data presented below is for the
range parameters mentioned in Section 6.

We explore several factors, which affect maximum tolerable event velocity, in-
cluding heartbeat period and object resolution (in multiples of sensing range). As
is shown in Figure 11, the maximum tolerable velocity increases when the heart-
beat period decreases, since a shorter heartbeat period results in a shorter leader
re-election delay and thus a higher trackable velocity. This trend is reversed when
heartbeat period becomes short enough to cause message loss or congestion as
shown in Figure 11 (for a half object resolution of 2 sensing ranges) when heart-
beat period falls below 0.5 s. Increasing object resolution has positive impact on
the maximum tolerable velocity since a bigger set of followers allows the vehicle
to go farther without causing new object creation. Similar results were reported
in [Abdelzaher et al. 2004]. We stress, however, that results reported in [Abdelzaher
et al. 2004] were obtained from algorithm simulation in GloMoSim. In contrast,
results presented in this paper test the performance of actual nesC code generated
by our functional EIPLC compiler for the application in Figure 4.

Next, we evaluate how robust the object uniqueness guarantee is against message
loss during object migration. TOSSIM does not provide message loss models at the
packet level. Thus, we add a simple external program to control per-hop packet
loss ratio. Figure 12 depicts the average number of objects formed per run as a
function of target velocity in the presence of different degrees of packet loss. As
before, the ideal number should be 1 object per run.

From Figure 12, we see that EnvoroSuite can completely tolerate a 10% loss
ratio since we get similar results to those with 0% loss ratio. EnviroSuite can also
tolerate a loss ratio of up to 30% when event velocity does not exceed 68 mph.
Larger velocities or loss percentages, however, cause spurious objects to emerge.
Observe that at a very high event velocity, the number of formed objects decreases
again, which might seem like an anomaly. The explanation lies in that very high
speed objects do not have enough time to form in the first place.

6.1.3 Experiment 3 - Object Crossing Performance. Next, we explore the effi-
cacy of EnviroSuite in maintaining object uniqueness and identity when two objects
of the same sensory signature (i.e., fulfill the same object condition statement)

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

24 · Liqian Luo et al.

0

1

2

3

4

17 34 51 68 85 102 119 136

Event Velocity (mph)

#O
bje

ct
s

0% 10%
20% 30%
40% 50%

Fig. 12. Number of objects created for varied event velocity and per-hop packet loss ratio

0

0.2

0.4

0.6

0.8

1

0 141 283 424 566 707

Cross ing Distance (ft)

Pe
rc

en
ta

ge

Object Uniqueness
Object Identity

Fig. 13. Achieved object uniqueness (white) and identity (shaded) for varied crossing distance

cross paths. In this experiment, two vehicles are moving straight along crossing
diagonals with the same speed of 24 mph. The diagonals cross in the center of the
field. However, these objects may not start at the same time, and hence may not
reach the crossing point together. We vary their relative start times to vary the
shortest distance reached between the two objects at the crossing point (which we
call, the crossing distance). We show the percentage of runs where object unique-
ness and identity are maintained as a function of crossing distance. As shown in
Figure 13, object uniqueness and identity are ensured in most cases even when the
two targets cross the center point at the same time (crossing distance is 0).

Each bar in Figure 13 represents the average of more than 10 runs. The tracked
trajectory for one run with crossing distance 0 is shown in Figure 14. After passing
the center point, although object identity is lost for a while, the system successfully
recovers from the confused state after accumulating enough history.

The results prove the relative success of our adopted direction disambiguation
algorithm. It also shows that defensive programming is advisable. While we elevate
the level of abstraction to that of objects representing environmental elements, the
programmer should expect such objects to be occasionally confused. The applica-
tion code may chose to implement its own disambiguation on top of EnviroSuite
object IDs.

6.1.4 Experiment 4 - Inter-object Communication. Programming for communi-
cation and coordination between objects becomes very simple by using IOC and
global variables. In this experiment, we evaluate a vehicle counting application,
which counts the total number of vehicles in a global variable, to analyze the perfor-
mance of inter-object communication. As seen in the code from Figure 4, whenever

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 25

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
X

Y

Vehicle 1 Path
Object 1 Track
Vehicle 2 Path
Object 2 Track
Unknow n Track

Fig. 14. Reported target tracks with crossing distance 0

0

1

2

3

4

0 5 10 15 20 25 30

Time (sec)

#O
bje

ct
s

Input
Output

Fig. 15. Vehicle counting application results

a vehicle appears, the global variable vehicleNumber is increased by one through
an ES WRITE call from the corresponding vehicle object.

In this scenario, four vehicles enter the coverage field one by one, maintaining
the same speed of 35 mph and thus the same distance. The first one goes straight
from (-1, 1) to (16, 1); the second from (-5, 5) to (16, 5); the third from (-9, 9) to
(16, 9); the last from (-13, 13) to (16, 13).

Figure 15 plots the counter values as a function of time in this application. Input
represents real numbers of vehicles. Output represents the counting results achieved
by the application. Delay between the input and output curves represent the end-
to-end performance of remote object invocation. These delays reflect the sum of
object creation delay and inter-object communication delay.

6.2 A Surveillance System

Finally, we test the complete surveillance application written in EnviroSuite, de-
scribed in Section 3. This surveillance system tracks all in-field vehicles, counts
their number and monitors system health at the same time. The EnviroSuite code
of this application can be translated by EIPLC into a nesC application. Emitted
nesC code size of different services in the translated application is listed in Table II.

Table III compares EnviroSuite code and emitted nesC code of the same appli-
cation in terms of module number, code length and size. The code size of the nesC
version gives a good estimation of required programming effort if the whole system

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

26 · Liqian Luo et al.

Table II. Services and code sizes of the nesC application trans-
lated from the EnviroSuite application

Service Name Code Size (KB)

Sensing Data Processing 10.8
Event Object Maintenance 25.6
Region and Function Object Maintenance 28.5
Inter-object Communication 15.0
Other Service (Aggregation, etc.) 25.1
Object Method Components 6.0

Table III. Code Comparison of EnviroSuite Version and nesC Version

Module Number Code Length (lines) Code Size (KB)

EnviroSuite Version 3 218 5.9
nesC Version 12 3692 111.0

is to be programmed directly in nesC. As is seen from Table III, the code size of the
nesC version is more than ten times of that of the EnviroSuite version. Thus, the
estimated programming effort with EnviroSuite is roughly an order of magnitude
less. The result reflects the efficiency of EnviroSuite compared with node-based
languages, such as nesC.

6.2.1 Tracking Performance. In this experiment, we evaluate the efficiency of
EnviroSuite in terms of tracking performance and power consumption by comparing
it to a simple baseline. This baseline is to plot the trajectory of a tracked target at
a base station located in (0, 0). In the EnviroSuite implementation, members, who
are sensing the target, report to the current leader their own positions every 0.5
seconds. The leader aggregates these positions and reports the average to the base
station twice per second. The baseline has a simple implementation of the same
application. Each node that senses the target sends its own position to the base
station every 0.5 seconds. The base station averages received positions twice per
second. In both the EnviroSuite version and the baseline, a minimum aggregation
degree of 2 is enforced to reduce false alarms.

The actual testbed for this experiment consists 40 Mica2 motes laid out in a
10×4 grid with integer (x, y) coordinates ranging from (0, 0) to (9, 3). The goal
is to track a rectangular object, 1 square grid in size, moving straight along the
middle of the longer axis, with a speed of 0.5 grid per second. This testbed does
not take into account errors in localization and time synchronization services. To
ensure enough tracking accuracy for real applications, we require that localization
errors not exceed half grid and time synchronization errors be kept in the order of
ms. Many existent techniques support such precision.

Figure 16 compares the target trajectory obtained by the EnviroSuite application
to the one resulting from the baseline. Some tracking error is seen because our
sensor devices have no notion of proximity to the target. As shown in Figure 16,
the EnviroSuite version has a smaller average tracking error compared with the
baseline although it introduces a little more variability. The underlying reason is
that in the baseline, position reports from nodes may not be in order when they
arrive at the base station, since they may have traversed multiple hops, which
results in more inaccuracy.

Figure 17 depicts the number of packets sent or forwarded by each node in a slice

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 27

0

1

2

3

0 1 2 3 4 5 6 7 8 9

X
Y

Baseline

0

1

2

3

0 1 2 3 4 5 6 7 8 9

X

Y

EIP

Fig. 16. Tracked target trajectory comparison

0 1 2 3 4 5 6 7 8 9

0
1

2
3

0

10

20

30

40

50

#p
ac

ke
ts

X

Y

Baseline

0 1 2 3 4 5 6 7 8 9

0
1

2
3

0

10

20

30

40

50

#p
ac

ke
ts

X

Y

EIP

Fig. 17. Transmitted packet number comparison

of the network over the duration of the experiment (where X , Y is the coordinate
of each node). Each bar in this figure represents the average of 15 runs to ensure a
statistical significance at the 0.05 level. The number of packets is important as it
is proportional to power consumption. It can be seen that the EnviroSuite version
achieves its comparable tracking performance with much less power consumption
in terms of the number of transmitted packets. Hence, our tracking algorithms are
more energy-efficient.

In the baseline test, most packet transmissions occur on nodes with Y coordinates
between 1 and 2 since only these nodes can forward the packets to the base station.
The nodes with smaller X coordinates in the baseline send much more packets than
those in the EnviroSuite version since each node sensing the target sends packets
directly to the base station located in (0, 0). Hence, a greater number of packets
have to be forwarded by nodes with smaller X coordinates. In the EnviroSuite
version, position reports are aggregated locally by leaders, amounting to much
fewer packets forwarded to the base station.

6.2.2 Monitoring Performance. In this experiment, we utilize the NETWORK -

HEALTH object coded in Figure 4 to monitor the health of the network by collecting
information on nodes that are alive and their remaining power. Alarms will be sent
out if a big portion of the network is dead or lacks power.

We carry out this experiment on a network of 27 XSM motes [Dutta et al. 2005]
deployed in a grassy field. The system performs the function of vehicle tracking as
well as health monitoring. For system health monitoring, the NETWORK HEALTH ob-
ject is determined as a region object by EIPLC, thus a multi-parent spanning tree
is automatically constructed at object initialization to collect power information of
each node every 20 minutes. The system is tested for several hours. Figure 18 de-
picts the collected power information, where the black bars represent initial voltage

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

28 · Liqian Luo et al.

2600

2700

2800

2900

3000

3100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

node ID

vo
lta

ge
(m

V)

Fig. 18. Power level of each node for different times

reported by the region object, the grey ones show voltage reported after 20 minutes
and the white ones shows voltage reported after 40 minutes. Node 0 is the base
node, which consumes the most power.

7. RELATED WORK

EnviroSuite opens a new category of distributed programming paradigms. It dif-
ferentiates itself from traditional paradigms such as CORBA [Vinoski 1997], Mi-
crosoft’s COM [Microsoft 1994], and remote procedure calls [Birrell and Nelson
1984] by combining within its programming abstractions objects and events in the
physical world.

Several communication and programming models have been proposed for sensor
networks in recent years. These include node-based languages, virtual machines,
database-centric abstractions, event-based models, and group-based primitives. En-
viroSuite is different in that its abstractions are not centered about computational
constructs such as queries or sensor groups. Instead, these abstractions are centered
around elements of the physical environment. The aspiration is that at the highest
level of abstraction, the existence of the sensor network itself should be entirely
transparent.

Node-based languages such as nesC [Gay et al. 2003] and galsC [Cheong et al.
2003; Cheong and Liu 2005] are too low-level since they typically take the sensor
node as basic computation, communication and actuation unit. To address this
issue, higher-level languages that export logical nodes [Gummadi et al. 2005] were
proposed to abstract away from physical sensors. EnviroSuite successfully raises the
abstraction level to logical objects mapped from physical elements, thus expedite
the procedure of design and programming compared with node-based languages.

Virtual machines such as Mate [Levis and Culler 2002] and SensorWare [Boulis
et al. 2003] allow large sensor networks to be reprogrammable frequently by writing
application scripts, replicating them through the network and executing them au-
tomatically. However, they usually concentrate on issues related to code replication
and auto-execution rather than raising programming abstraction levels. For exam-
ple, to reduce energy cost of code replication, Mate even provides an instruction-like
language to shorten code length, which actually puts extra burden on programmers
shoulders.

Database-centric abstractions such as TinyDB [Madden et al. 2003] and Cougar
[Yao and Gehrke 2002] view sensor networks as databases that allow users to ex-
press requirements as queries, and to distribute and execute these queries. Com-
paratively, our work, instead of providing a specific data collection and aggregation

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 29

model, attempts to support a wider range of applications by encapsulating not only
computation and communication units but also actuation units into its program-
ming abstractions.

Event-based models such as [Li et al. 2004] are similar with database-centric
abstractions except that they view the sensor field as an active entity that auto-
matically push data streams to users when defined events are triggered instead of
a passive database which only responds upon queries.

Group-based primitives such as Hood [Whitehouse et al. 2004] and Abstract Re-
gions [Welsh and Mainland 2004], provide neighbor discovery and neighborhood
data sharing mechanisms. Compared with EnviroSuite, these abstractions are pas-
sive. In contrast, EnviroSuite abstractions are active objects that encapsulate local
code and aggregate state, as well as share data across neighborhoods or regions.

Another group-based paradigm, State-centric programming [Liu et al. 2003], de-
scribed a programming abstraction mostly related to our work. However, it is
implemented and evaluated only on Pieces simulator built in Java and Matlab,
which can not simulate some critical features of wireless communication including
message collision. In contrast, our paper presents a detailed implementation in
nesC on TinyOS, an operating system for real sensor network devices, and provides
comprehensive evaluation results both in TOSSIM and real sensor devices. Fur-
thermore, the underlying group management protocol [Liu et al. 2003] differs in its
mechanisms for object classification and identity management.

An earlier paper by the authors [Abdelzaher et al. 2004] presented a program-
ming paradigm focusing on tracking applications. In this paper, we expand this
idea and present programming abstractions that successfully support a broader
set of applications including not only event tracking but also regional monitoring
applications.

Finally, we should mention that a criticism of current high-level programming lan-
guages has been that they are too application specific. Hence, intermediate-level
languages such as [Newton et al. 2005] were proposed as a step towards macropro-
gramming. EnviroSuite attempts to cater to a general application pool by diversi-
fying the supported object types.

8. CONCLUSION

In this work, we describe an environmental immersive programming paradigm for
application developers in sensor networks. We present the design, implementation
and evaluation of a framework implementing this paradigm. The EnviroSuite frame-
work successfully exports high-level abstractions, such as objects and inter-object
calls. It implements low-level distributed protocols such as sensing data process-
ing, group management and inter-object communication in an underlying library
EIPLib, transparent to programmers, thus resulting in a considerable potential
to reduce development costs of deeply embedded systems. This paper describes
the first comprehensive design and implementation of all EIP abstractions includ-
ing objects, their attributes, methods and inter-object calls (The concept of EIP
was described earlier in [Blum et al. 2003]). This paper also presented the first
comprehensive evaluation of the performance of real nesC code generated by the
EnviroSuite compiler from EnviroSuite source files. This is to be distinguished from

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

30 · Liqian Luo et al.

prior initial results, which reported some GloMoSim simulations.

REFERENCES

Abdelzaher, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T., Luo, L.,
Son, S., Stoleru, R., Stankovic, J., and Wood, A. 2004. Envirotrack: Towards an environ-
mental computing paradigm for distributed sensor networks. In ICDCS ’04: Proceedings of the
International Conference on Distributed Computing Systems.

Azevedo, S. G. and McEwan, T. E. 1996. Micropower impulse radar. Science and Technology
Review .

Birrell, A. D. and Nelson, B. J. 1984. Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2, 1, 39–59.

Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T., Son, S., and Stankovic, J. 2003. An
entity maintenance and connection service for sensor networks. In MobiSys ’03: Proceedings
of the 1st international conference on Mobile systems, applications and services. ACM Press,
New York, NY, USA, 201–214.

Boulis, A., Han, C.-C., and Srivastava, M. B. 2003. Design and implementation of a frame-
work for efficient and programmable sensor networks. In MobiSys ’03: Proceedings of the 1st
international conference on Mobile systems, applications and services. ACM Press, New York,
NY, USA, 187–200.

Cheong, E., Liebman, J., Liu, J., and Zhao, F. 2003. Tinygals: a programming model for event-
driven embedded systems. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied
computing. ACM Press, New York, NY, USA, 698–704.

Cheong, E. and Liu, J. 2005. galsc: A language for event-driven embedded systems. In DATE
’05: Proceedings of the conference on Design, Automation and Test in Europe. IEEE Computer
Society, Washington, DC, USA, 1050–1055.

Dutta, P., Grimmer, M., Arora, A., Bibyk, S., and Culler, D. 2005. Design of a wireless sensor
network platform for detecting rare, random, and ephemeral events. In IPSN ’05: Proceedings
of the Fourth International Conference on Information Processing in Sensor Networks.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler, D. 2003. The nesc
language: A holistic approach to networked embedded systems. In PLDI ’03: Proceedings of
the ACM SIGPLAN 2003 conference on Programming language design and implementation.
ACM Press, New York, NY, USA, 1–11.

Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., Stankovic, J. A.,
Abdelzaher, T., and Krogh, B. 2005. Lightweight detection and classification for wireless
sensor networks in realistic environments. In Sensys. San Diego, CA.

Gummadi, R., Gnawali, O., and Govindan, R. 2005. Macro-programming wireless sensor net-
works using kairos. In DCoSS.

He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T., Luo, L., Stoleru, R., Yan,

T., Gu, L., Hui, J., and Krogh, B. 2004. Energy-efficient surveillance system using wireless
sensor networks. In MobiSys ’04: Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM Press, New York, NY, USA, 270–283.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System archi-
tecture directions for networked sensors. In ASPLOS-IX: Proceedings of the ninth international
conference on Architectural support for programming languages and operating systems. ACM
Press, New York, NY, USA, 93–104.

Intanagonwiwat, C., Govindan, R., and Estrin, D. 2000. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In MobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking. ACM Press, New York,
NY, USA, 56–67.

Levis, P. and Culler, D. 2002. Mat: A tiny virtual machine for sensor networks. In ASPLOS-X:
Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

EnviroSuite: An Environmentally Immersive Programming Framework for Sensor Networks · 31

Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. Tossim: accurate and scalable simulation

of entire tinyos applications. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems. ACM Press, New York, NY, USA, 126–137.

Li, S., Lin, Y., Son, S. H., Stankovic, J., and Wei, Y. 2004. Event detection services using
data service middleware in distributed sensor networks. Telecommunication Systems, Special
Issue on Information Processing in Sensor Networks 26, 2-4.

Liu, J., Chu, M., Liu, J., Reich, J., and Zhao, F. 2003. State-centric programming for sensor-
actuator network systems. Pervasive Computing, IEEE 2, 4, 50–62.

Liu, J., Liu, J., Reich, J., Cheung, P., and Zhao, F. 2003. Distributed group management for
track initiaition and maintenance in target localization applications. In IPSN ’03: Proceedings
of the 2nd International Workshop on Information Processing in Sensor Networks.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2002. Tag: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, SI, 131–146.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2003. The design of an
acquisitional query processor for sensor networks. In SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD international conference on Management of data. ACM Press, New York, NY,
USA, 491–502.

Madden, S. R., Franklin, M., Hellerstein, J., and Hong, W. 2005. Tinydb: An acquisitional
query processing system for sensor networks. ACM Transactions on Database Systems 30, 1
(March).

Microsoft. 1994. Ole2 programmers reference.

Newton, R., Arvind, and Welsh, M. 2005. Building up to macroprogramming: An intermediate
language for sensor networks. In IPSN ’05: Proceedings of the Fourth International Conference
on Information Processing in Sensor Networks.

U. C. Berkeley. 2005. the motes. http://www.tinyos.net/scoop/special/hardware#mica.

Vinoski, S. 1997. Corba: Integrating diverse applications within distributed heterogeneous envi-
ronments. IEEE Communications Magazine 32, 2 (February), 46–55.

Welsh, M. and Mainland, G. 2004. Programming sensor networks using abstract regions. In
NSDI ’04: Proceedings of the First USENIX/ACM Symposium on Networked Systems Design
and Implementation.

Whitehouse, K., Sharp, C., Brewer, E., and Culler, D. 2004. Hood: a neighborhood abstrac-
tion for sensor networks. In MobiSys ’04: Proceedings of the 2nd international conference on
Mobile systems, applications, and services. ACM Press, New York, NY, USA, 99–110.

Yao, Y. and Gehrke, J. 2002. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31, 3, 9–18.

Received October 2004; revised May 2005; accepted September 2005

ACM Transactions on Computational Logic, Vol. V, No. N, October 2005.

