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Abstract—Wireless rechargeable sensor network is a promising
platform for long-term applications such as inventory manage-
ment, supply chain monitoring and so on. For these applications,
sensor localization is one of the most fundamental challenges.
Different from traditional sensor node, wireless rechargeable
sensor has to be charged above a voltage level by the wireless
charger in order to support its sensing, computation and
communication operations. In this work, we consider the scenario
where a mobile charger stops at different positions to charge
sensors, and propose a novel localization design that utilizes
the unique Time of Charge (TOC) sequences among wireless
rechargeable sensors. Specifically, we introduce two efficient
region dividing methods, Inter-node Division and Inter-area
Division, to exploit TOC differences from both temporal and
spatial dimensions to localize individual sensor nodes. To further
optimize the system performance, we introduce both an optimal
charger stop planning algorithm for single sensor case and a
suboptimal charger stop planning algorithm for the generic multi-
sensor scenario with a provable performance bound. We have
extensively evaluated our design by both testbed experiments and
large-scale simulations. The experiment and simulation results
show that by as less as 5 stops, our design can achieve sub-meter
accuracy and the performance is robust under various system
conditions.

I. INTRODUCTION

Wireless Rechargeable Sensor Networks (WRSN) is an

emerging technology which integrates sensing, communication

and computation capabilities. Different from the traditional

sensor nodes powered by batteries, wireless rechargeable sensor

nodes gather their energy from the transmission of energy

sources such as RFID readers. Given its small form factors

and universal sensing capabilities, it is expected that wireless

rechargeable sensor will be a promising platform for different

applications such as warehouse inventory management [3],

[16], supply chain monitoring [2], [19], authentication [24],

[29] and so on.

For many of such applications, the locations of sensor nodes

are required for them to function properly. For example, for

warehouse inventory management or environmental monitor-

ing, it is usually necessary to identify the location where sensor

readings are originated from. In addition, some geographic

routing protocols and network management optimization [13],

[15] can only be implemented under the assumption that the

location of each sensor is already known.

For traditional wireless sensor networks, there are numerous

localization methods which utilize the arrival sequences of a

specific signal source to localize sensors, e.g., Time of Arrival

(TOA), Angle of Arrival (AOA), Time Difference of Arrival

(TDOA) etc. [12]. Different from traditional approaches, in this

work we exploit the unique wireless charging properties of the

wireless rechargeable sensor nodes and propose the concept of

Time of Charge (TOC), the time for a sensor node to be charged

above its working threshold, to localize individual nodes in a

WRSN.

In this paper, we consider the scenario that a mobile charger

moves and stops at different locations to wirelessly charge

nodes and obtain the time of charge (TOC) for nodes in

its surrounding area. It typically refers to a warehouse or

supermarket where patrol readers monitor status of goods

(e.g. temperature, moisture) reported by attached wireless

rechargeable sensors. The novel idea of TOC is to estimate

each sensor’s location by utilizing Time of Charge sequences

from both temporal and spatial domain. Furthermore, TOC also

optimizes the charger stop positions based on the estimated

sensor locations.

TOC offers several unique benefits over traditional methods.

Firstly, compared with traditional methods such as TOA, AOA

and TDOA which are all rely on the instantaneous readings

from a specific signal source, TOC is an accumulative reading,

which is more robust and resilient to transient signal fluctu-

ations. Secondly, compared with the range-based approach,

TOC does not require additional costly hardware. It works

with existing components of WRSN nodes such as differential

comparators and real-time clock (RTC). Thirdly, compared with

many range-free approaches, TOC only leverages the mobile

charger in WRSN and does not require any anchor node, which

reduces the infrastructure cost. Fourthly, TOC is only based on

the fact that charging time monotonically increases when the

distance increases and does not have any assumption on specific

charging model, making it compatible with different types of

wireless rechargeable sensor networks [22], [26] and designs

in mobile sensor networks [1], [4], [10], [33].

This paper offers the following intellectual contributions:978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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Fig. 1. Charging Power and Charging Time
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Fig. 3. Measurement Unreliability

• To the best of our knowledge, this is the first work

designed for localizing wireless rechargeable sensor nodes

based on the Time of Charge sequences. We identify the

fundamental relationship between the charging time and

the distance between wireless rechargeable sensor nodes

and the charger, based on which we propose the Time of

Charge sequence based localization design (TOC).

• We introduce two novel area division methods for

localizing sensors, i.e., Inter-node Division and Inter-area

Division, which exploit TOC differences among sensors

from time and spatial domain respectively.

• We propose an optimal charger stop solution for locating

a single sensor node. For the more general multi-sensor

scenario, we introduce a sub-optimal solution with a

provable approximation ratio.

• We have implemented our TOC design on a physical

testbed. The experiment results show that by as less as

5 stops, we can achieve sub-meter localization accuracy

for a wireless rechargeable sensor network.

The remainder of this paper is organized as follows. We

introduce some preliminary knowledge of charging pattern in

Section II. In Section III, we define the localization problem

and propose the basic design of TOC. In Section IV, we

propose the extended TOC algorithms. In Section V, we

discuss the impact of occasional charging time flips and provide

corresponding solutions. We extensively evaluate TOC through

testbed experiments and large-scale simulations in Section VI.

Most related work are discussed in Section VII. Finally, we

conclude in Section VIII.

II. PRELIMINARY

One of the most common wireless rechargeable sensor

nodes is the Wireless Identification Sensing Platform (WISP)

developed by Intel Research [22]. WISP is a fully-passive

Ultra High Frequency (UHF) RFID tag that integrates a

processor and several low-power sensors such as accelerometer

and temperature sensors. Through its antenna, a WISP node

accumulates energy from signals of nearby standard UHF RFID

readers (the charger), and stores the harvested energy in its

capacitor for communication and powering other components

of the node.

For the charging process, the exact charging model is usually

difficult to obtain due to factors such as polarization and

antenna impedance. However, one of our major observations is

that the charging power is typically negatively correlated to the

relative distance between the wireless rechargeable node and

the energy source, e.g. the charger. Many mathematical analysis

and experimental results also prove there exists a negative

correlations between the charging power and distance [11]. To

verify this observation, we conduct a series of experiments of

WISP with capacitor of 100µF and a charger with transmission

power of 30dBm.

We first record how the charging power varies with the

charging distance. As shown in Figure 1. It can be observed

that the received charging power decreases monotonically with

the charging distance. For different charging distances, we also

record the charging time by which the voltage reaches 2V from

zero. As indicated in Figure 1, the charging time from 0 to 2V
increases monotonically with the increasing relative distance.

Thus, it can be concluded that despite of the difference

among different charging models, there always exists a negative

correlation between the charging power and distance. In another

word, a positive correlation between the time of charging and

distance. While it is costly to measure the exact charging power

at the low-cost and tiny sensor node, we can alternatively

compute the charging time by monitoring voltage of the

capacitor by the available differential comparators and the

real-time clock (RTC). Thus for our TOC design, we utilize

the simple fact that the node with longer charging time is

further away from the charger, the positive correlations between

the charging time and charging distance to localize individual

nodes.

Besides the ease of measurement, there are other benefits

of utilizing TOC. For the existing sequence-based localization

methods, such as TOA, AOA and TDOA, usually require highly

accurate measurements. For example, TOA [23] needs precise

measurements of time, and the AOA method [18] requires

accurate measurement of angle. However for our TOC design,

we utilize the accumulative charging process in a period of

time and thus is more robust and resilient to the instantaneous

fluctuations of wireless charging power.

To verify the stability and robustness of using time of

charging over instantaneous metrics such as charging power, we

conduct experiments on our WISP-based testbed. We randomly
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place 6 sensor nodes and a charger in an outdoor parking lot

for multiple topologies and record charging curves of each

node. Charging time and power are then calculated based on

the charging curve. Figure 2 shows the coefficient of variation

of charging power and charging time vs. different charging

distances. From Figure 2 we see that the coefficient of variation

of charging power is always higher than 0.4 whereas the

coefficient of variation of charging time remains below 0.1.

Since the coefficient of variation is a normalized measure of

dispersion of a probability distribution, results in Figure 2

validate the robustness of using time of charging over charging

power.

Furthermore, in the experiment we also examine the oc-

currence frequency of occasional charging time fluctuations.

During each stop of the charger, we calculate the difference of

charging time as well as the difference of charging distance for

all node pairs and map them in Figure 3. From Figure 3, we

find that the majority of points located in the first quadrant and

the third quadrant, which further proves the positive correlation

between the charging time and distance. In Figure 3, points

located in the second quadrant and the fourth quadrant are

marked in blue (also shown in a zoomed-in figure in the up-

left corner). From the results we can see that all blue dots

located near axis x = 0. It means that although charging time

fluctuations occur occasionally, they are within a very narrow

band. It is consistent with intuition that such fluctuations are

more likely to happen when two nodes share the similar

charging distances from the reader. Such a property makes it

possible to directly filter out the fluctuated measurements even

such measurement error happens occasionally. In Section V,

we will discuss a simple yet effective solution to resolve such

occasional charging time fluctuations.

III. BASIC TOC DESIGN

In this section, we elaborate the basic TOC design, which

consists of Inter-node Division and Inter-area Division.

A. Settings

Consider N wireless rechargeable nodes randomly deployed

in an area of size S. We define the feasible region for each node

i as the minimal region, where node i is guaranteed to be inside.

At the beginning of the localization process, the feasible region

of each target node is simply the whole region S. Moreover,

in TOC, we set the center of gravity of the feasible region

as the estimated location of the target node. Intuitively, it is

necessary to narrow down the feasible region in order to obtain

an accurate localization result.

To locate target nodes, one charger moves freely within the

area. The charger is able to decide where to stop and turn its

radio on to charge the nearby sensors. Each sensor responses

to the charger once its voltage reaches a threshold. And each

sensor will return to the fully discharged state before the next

recharging due to the workload and highly limited energy

capacity. For example, the discharge rate is around 10−3W for

a typical WISP node equipped with 10µF capacitor, and the

discharging time is around 100ms [20], which is considerably

short. We denote the charging time for reaching a fixed voltage

threshold as the charging time for each node.

Generally, different charger stop positions make the charging

time vary for each sensor. In this part, we show that even

random stop of the charger could greatly reduce the feasible

region of each sensor. In the next section, we will further

discuss how to optimize the charger stop positions for better

localization performance.

For the purpose of introducing the key idea, in this section

we assume the TOC readings at individual nodes are strictly

negatively correlated with their distances to the charger. In

Section V, we will relax this assumption and discuss how to

deal with occasional TOC reading flips in practice.

A

p2

p1

(a) Feasible Region after Two
Stops of the Charger

A

p1

p2

p3

(b) Feasible Region after Three
Stop of the Charger

Fig. 4. Inter-node Division

B. Inter-node Division

We first illustrate the idea of how to narrow down the feasible

region of each node individually with continuous stops of the

charger, which is named as Inter-node Division.

In Figure 4(a), target node A is to be localized, denoted by

numbered circles. The charger randomly stops at two different

positions, which are denoted by numbered squares, i.e., p1
and p2. Since node A is closer to p1, it would have a shorter

charging time for charger position p1 than p2. Therefore, we

can infer that node A must lie on the right of the perpendicular

bisector of these two stop positions.

Suppose the charger stops at another position, denoted by

p3 as in Figure 4(b). We can draw another two perpendicular

bisectors, and further narrow down the feasible region (i.e. the

shaded area) of node A.

Denote t(A, p) as the time of charge for node A when the

charger stops at position p, and d(pi, pj) as the Euclidean

distance between two points pi and pj . This property can be

summarized in the following lemma.

Lemma 3.1: Consider an arbitrary pair of charger stop

positions, p1 and p2, and one node A. If t(A, p1) ≤ t(A, p2)
then d(A, p1) ≤ d(A, p2), and vice versa.

It can be proved that, by Inter-node Division, all feasible

regions remain as convex polygons. In addition, we notice

that the increasing number of stop positions will generate

exponentially increasing number of perpendicular bisectors.

Specifically, the n-th stop of the charger generates n − 1
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perpendicular bisectors. And a total of
n(n−1)

2 perpendicular

bisectors will exist after n times of stops, which will divide

the original feasible region into
(n4−2n3+3n2−2n+8)

8 pieces at

most [25]. Thus it is expected that Inter-node Division will

be very effective to narrow down the feasible regions of all

sensors simultaneously. According to our simulations, even

with random charger stops, the area of feasible region of one

node can be narrowed down to 7.8% of the original region after

only 5 stops of the charger.

C. Inter-area Division

In this part, we show how to further narrow down the feasible

region obtained from Inter-node Division by utilizing the Time

of Charge difference of each pair of sensors for the same

charger position. The novel idea is that each node, which may

not have been accurately localized, can help to narrow down

the feasible regions of their peers.

B

pn

A

(a) Case 1

A

B

pn

(b) Case 2

Fig. 5. Inter-area Division

We explain the idea by a simple example. Suppose node A

and node B are distributed in an area with their initial feasible

regions denoted by RA and RB respectively, as shown in Figure

5. The charger stops at pn to charge A and B simultaneously.

First, if pn is within the feasible region of A as shown in

Figure 5(a), as the charging time of A is shorter than that of

B, we can determine that the feasible region of A should be

inside the circle centered at pn (i.e. the dash dotted line) with

radius equal to the farthest distance between pn and RB (i.e.

the dash line). However, if pn is within the feasible region of

B as shown in Figure 5(b), as the charging time of A is still

shorter than that of B, we can infer that the feasible region of

B should be outside the circle centered at pn with radius equal

to the shortest distance between pn and RA.

Denote dmax/dmin(·, ·) represents the maximal/minimal

distance function. The above properties are summarized in the

following lemma.

Lemma 3.2: Consider an arbitrary pair of nodes, A and B

with initial feasible region as RA and RB respectively. Suppose

the charger stops at pr and the charging time of node A

is less than that of node B, then ∀pA ∈ RA, d(pA, pr) <
dmax(RB, pr), and ∀pB ∈ RB , d(pB, pr) > dmin(RA, pr).

To further understand Lemma 3.2, let us consider the

example depicted in Figure 6(a). If we find that the charging

time of node B is less than that of node A when the charger

stops at the first position p1, then based on Lemma 3.2, we

draw a circle centered at p1 with radius r = dmin(p1, pB) to

further narrow down the feasible region of node A, which is

p1

A

B

(a) Feasible Regions after Three
Stops of the Charger

B

p1

A

B

(b) Feasible Regions after the
Convex Fix

Fig. 6. Inter-area Division

shown in Figure 6(a). Note that although the original feasible

regions after Inter-area Division may not remain to be convex

polygons, for the ease of analysis, we can replace them by their

corresponding convex hulls, which are good approximations of

the original shape (see Figure 6(b)).

IV. EXTENDED TOC DESIGN

Based on the ideas of Basic TOC, in this section we show

how to localize the target nodes more effectively by planning

the charger stop positions. We first present an optimal solution

for the scenario where single node is required to be localized.

Then we extend the solution to solve the general multi-sensor

scenario with a guaranteed approximate ratio.

A. Optimal Region Cutting for One Node

In this part, we introduce an optimal cutting algorithm which

divides a feasible region with a single line. The charger will be

able to decide the optimal stop sequence with this algorithm.

Moreover, the results will provide insights to develop the

solution for the more general scenario with multiple nodes.

v1

v2

v3 v4

v5pi

pj

vv

R1 R2

pm

Fig. 7. Original Feasible Region R

1) Problem Definition: Consider an original feasible region

R and the set of its vertices VR = {v1, v2, v3, v4, v5} as shown

in Figure 7. d(R) represents one diameter among the feasible

region R. After another stop of the charger, one additional

perpendicular bisector can be generated as the cutting line l =
(pi, pj) where pi and pj are intersections with the edges of

R. And this perpendicular bisector divides the region R into

two sub-regions R1 and R2. Since the longest diameter of R1

and R2 is positively related to the localization error, the optimal

cutting problem aims to find the cutting strategy pi and pj so as

to minimize the longest diameter of the resultant sub-regions.

Mathematically, the problem can be written as

Min{Emax} (1)
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where Emax is termed as the Maximal Localization Error and

Emax = Max{dmax(R1), dmax(R2)} (2)

2) Preliminaries: In order to transform the problem into a

more concrete and simplified form, we introduce the following

lemma and its corollary.

Lemma 4.1: With optimal cutting, the maximal localization

error can only be achieved by one pair of vertices at either

R1 or R2. Moreover, such a pair of vertices cannot be two

neighboring vertices of the original region R.

We omit the proof of Lemma 4.1 due to space constraint

(similarly hereinafter). Through Lemma 4.1, we can prove that

one end of the longest distance among two cutting regions

must be the cutting point (i.e. pi or pj). Then Equation 2 can

be reduced as:

Emax = Max{dmax(pi, VR), dmax(pj , VR)} (3)

Formally, we have Corollary 4.2 as

Corollary 4.2: The optimal cutting problem is equivalent to

the problem of finding a point pi that minimizes dmax(pi, VR).
Therefore, for minimizing the longest distance of the two

cutting regions, we only need to find a point pi on edges of

R, which has the minimal distance to the furthest vertex.

3) Algorithm Design: Intuitively, there are an infinite

amount of points on the edges of R. To reduce the search

space for pi, firstly we introduce Theorem 4.3 which makes

our optimal cutting algorithm practical.

Theorem 4.3: For the original region R, we define two sets

of points

1) For any pair of vertices of R, such as vi and vj , define

{pij} as the set of points which belong to the edges of R
and satisfy d(pij , vi) = d(pij , vj). This means points in

{pij} have the same distance between vertex vi and vj .

2) For any edge l(vi, vj), define {pm} as the set of points,

which belong to the edge l(vi, vj) and satisfy l(pm, vk) ⊥
l(vi, vj), where vk ∈ VR and vk 6= vi, vj . This means

points in {pm} are the perpendicular foots of any vertex

on the edges of R.

Then Min{dmax(pi, VR)} must be among the finite set

composed of the above two kinds of points.

Based on Theorem 4.3, to find the optimal cutting, we first

generate all candidate points pij and pm which either satisfies

d(pij , vi) = d(pij , vj) or l(pm, vk) ⊥ l(vi, vj) on every edge

of R. We then compute the distance between each candidate

point and vertices of R. After we put the point with the minimal

value of maximal distance to vertices of R on each edge into

set L. When the algorithm terminates, the line which connects

points in L with the two minimal values is the optimal cutting

line. Then the optimal charger stop position can be obtained

through the fact that the optimal cutting line should be the

perpendicular bisector of the optimal stop position and the

previous stop position.

4) Complexity Analysis: Denote the number of vertices of R
as nv and the number of edges of R as ne, we have nv = ne =
|VR|. Since {pij} and {pm} are non-unique among different

edges of R, we need to iterate through all edges in R in the

optimal algorithm and consequently there are nv choices. For

each edge, we have at most (nv
2) + (nv − 2) candidate points

and we have to compute dmax(p, VR) for [(nv
2)+(nv−2)] ·nv

times. Therefore, the overall algorithm complexity is O(n4
v).

5) Algorithm Performance and Insights: To evaluate the

performance of the optimal cutting algorithm, we conduct the

simulation where the charger chooses stop positions by the

optimal cutting algorithm, and then compare the performance

with Basic TOC where the charger stops randomly.
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Fig. 8. Optimal Cutting vs. Basic TOC (Single Node)

From Figure 8 we can see that both the area of the feasible

region and localization error decrease with the increasing

number of stops of the charger. In addition, the optimal cutting

algorithm outperforms the random stop of the charger in Basic

TOC both in terms of the feasible region area and localization

error. Table I summarizes the percentage improvement of the

optimal cutting algorithm in localization error compared with

Basic TOC. For example, after six stops of the charger, the

localization error decreases by 37.31%.

TABLE I
LOCALIZATION ERROR IMPROVEMENT WITH OPTIMAL CUTTING

Number of Stops 2 3 4 5 6

Improvement 5.99% 14.02% 23.92% 29.20% 37.31%

Furthermore, by examining the results of optimal cutting

algorithm, we observe that the optimal cutting algorithm

tends to cut off the longest diagonals of the feasible region.

Specifically, the first or second longest diagonals are always

being cut off for all simulation runs. Such insights allow

us to design a more efficient approximation algorithm with

performance guarantees in the next section.

B. Cutting for Multiple Nodes

The optimal cutting algorithms for the single node case di-

vides the feasible region with minimized maximal localization

error under the polynomial complexity. However, if the multi-

sensor scenario is taken into consideration, we can no longer

only focus on the feasible region of one node. Moreover,

the Inter-area Division makes the computation even more

complicated as the overall complexity of the optimal single cut

solution is already O(n4
v). To handle this problem, in this part
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we firstly extend the optimal region cutting algorithm for one

node to an approximation algorithm which is proved to be more

general. Then inspired by the approximation solution for the

single node case, we introduce an approximation solution for

the multi-node scenario with a provable approximation ratio.

1) Extension of the Optimal Design: The main idea of

our approximation algorithm is that by cutting more longer

diagonal lines of the original polygon, we are more likely to

minimize the maximal distance of two sub-divided regions.

The process of the approximation algorithm is explained

as follows. Firstly we enumerate all pairs of vertices of the

original polygon, calculate and sort diagonal lines between

each pair of node in the non-increasing order. Then we iterate

through the sorted diagonal lines and check whether there exists

a line that intersects with all previous longest diagonals. To

obtain a line that intersects a set of diagonal lines, we utilize a

StabbingLineSegments(L) function, which is a well-studied

topic in computational geometry [7], [14]. The function returns

false if the line does not exist. Essentially, this algorithm tries

to continuously cut longest diagonal lines until it can not cut

any more. Once the algorithm terminates, we can decide the

corresponding charger stop position which could generate a

perpendicular bisector that intersects the top |L| longest lines

within region R.

Given the number of vertices, nv, the computation complexi-

ty of enumerating and sorting is O(n3
vlgnv). A widely accepted

computation complexity for finding stabbing lines from a set

of lines is Θ(nlgn) [7] where n is the number of lines.

To quantitatively analyze the performance of our proposed

approximation algorithm, we have the following theorem.

Theorem 4.4: Let lopt be the optimal dividing line calculated

from the optimal cutting algorithm and {lapp} be an infinite

set of all feasible lines calculated from the approximation

algorithm. We have lopt ∈ {lapp}.

The insight of Theorem 4.4 is that the result of the optimal

cutting algorithm is a special case among the approxima-

tion results. Based on Theorem 4.4, we have Min{L} ≥
Min{Emax} ≥ Max{D}. In other words, we expand the

optimal result in section IV-A to the range between Min{L}
and Max{D}. Consequently, the approximation ratio of our

algorithm ρ = Max{Min{L}}/Eopt ≤ Min{L}/Max{D}.

2) Cutting for Multiple Nodes: In multi-sensor scenario, it is

intrinsically difficult to obtain the optimal stop position of the

charger due to the high complexity in both spatial and temporal

dimensions. Thus we focus on a heuristic design which extends

the approximation algorithm for single node with guaranteed

localization performance.

The main idea of the algorithm for the multi-node case is

to cut more diagonals of all feasible regions every time with

joint consideration of all nodes. Denote the number of nodes

as N , we first calculate distances among vertices of all nodes

and sort them in set D. After that, we gradually put elements

of D into set L according to the descending order of its length.

Therefore, it can be guaranteed that the longest |L| lines among

all feasible regions will be cut at each step.

In this way, we approximately minimize the maximal

distance among all target nodes in the network. It can be proved

that the approximation ratio of the multi-node algorithm is

ρ = Min{L}/Max{D}. In other words, our approximation

algorithm guarantees that, after cutting, the longest distance

among feasible regions will be less than ρ times of the optimal

solution.

Recall that in Basic TOC, we can draw n− 1 perpendicular

bisectors at the n-th stop of the charger. Therefore to generate

the cutting line, we have n − 1 candidate stop positions.

To make full use of these perpendicular bisectors, among

these candidates we choose the optimal stop position which

minimizes the average localization error.

V. DISCUSSION

In previous sections, we introduce both basic TOC and

advanced TOC under the assumption that the charging time

is strictly negatively correlated with the charging distance. In

this section, we discuss the impact of occasional charging time

flips in TOC design and elaborate solutions on dealing with

such cases.

Typically, the flips of charging times are mainly due to

two major reasons. The first reason is the radio irregularity

and interference in wireless charging. Similar to wireless

communications, such radio irregularity is caused by the non-

isotropic properties of the propagation media and the hetero-

geneous properties of devices [32]. The second reason is the

measurement errors. Such errors are caused by measurement

noises and random wireless communication errors such as

packet loss and collisions. Both of above two reasons could

lead to the change of instantaneous charging powers on WRSN

nodes and cause the flips of charging times.

However, since TOC compares the charging time differences

among individual nodes instead of instantaneous charging

power, it is more robust and resilient to instantaneous charging

power fluctuations caused by various factors. For example,

through our empirical measurement, the coefficient of variation

of charging power is four times as high as that of charging time.

To deal with occasional potential charging time flips, in our

design, we propose a simple yet effective solution. Assume

the charging time of node A is Ti and Tj respectively when

the charger stops at location pi and pj . We divide the feasible

region of node A only when |Ti − Tj| > ε
lg(min{Ti,Tj})

in

Section III-B and Section III-C. Rationale of the equation is

based on two observations: i) the probability of flip is low if

there exists a relatively large gap between charging times of two

nodes; ii) for a fixed difference between charging times of two

pairs of nodes, flip is more likely to happen in the pair of nodes

which are closer to the charger. We term ε as the unreliability

threshold and empirically choose its value for different WRSN

platforms. For example, for our WRSN testbed used in Section
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VI-A, we set ε as 0.2 based on the offline measurement results

in Figure 3. Essentially, TOC with a larger ε is able to tolerate

severer charging power fluctuations as well as greater device

diversity whereas leads to slower localization of the nodes. We

omit the evaluation results due to the space constraints.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of

TOC through experiments. Large-scale simulations are further

proposed in Section VI-C and Section VI-D.

A. Experimental Evaluation

Fig. 9. Experimental Area

We firstly evaluate TOC design on our WRSN testbed

with six rechargeable sensor nodes. During the experiment,

nodes are randomly distributed in an area of 15m ∗ 15m
(shown in Figure 9) where a RFID reader (charger) can stop

at different locations to charge all six nodes. At each stop

position, the charger wirelessly charges all the nodes to a

certain voltage and records the time of charge for each node.

Without any prior knowledge, we randomly choose the first two

stop positions, then calculate the following stop positions based

on our extended TOC design in Section IV-B. The localization

process terminates when the total number of stops reaches 5.
Figure 10 shows how the feasible regions of all nodes

evolves along with each stop of the charger and the summarized

localization results are listed in Table II.

TABLE II
EXPERIMENTAL RESULTS

Number of Stops 2 3 4 5

Area of Feasible Region (%) 47.97% 20.51% 10.84% 2.78%

Mean Localization Error (m) 3.82 2.95 1.82 0.81

From Table II we can see that after three stops of the charger,

80% original area is excluded and the mean localization error

decreases to less than 3m. After 5 stops of the charger,

the average localization error has been reduced to 0.81m.

Specifically, Figure 11 further shows the feasible regions and

localization errors for each nodes after 5 stops of charger. From

Figure 11 we find that all 6 nodes achieve good localization

performance at around 1m and there is a small variation among

different nodes. Since almost no flips of charging times can

be observed on our testbed, we directly set the unreliability

threshold ǫ as 0 during the experiment. In fact, if we increase

ǫ from 0 to 1, around 17% cutting probabilities will be filtered

which will increase the localization error instead.
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Fig. 10. Feasible region after each stop of the charger

1 2 3 4 5 6
0

5

10

15

20

Node ID

A
re

a
 o

f 
th

e
 F

e
a

s
ib

le
 R

e
g

io
n

 (
%

)

(a) Area of Feasible Region (%)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Node ID

M
e
a
n
 L

o
c
a
liz

a
ti
o
n
 E

rr
o
r 

(m
)

(b) Localization Error (m)

Fig. 11. Localization Results among Different Nodes

B. Simulation Settings

TABLE III
DEFAULT SIMULATION PARAMETERS

Parameters Description
Field Area 100× 100 (Grid Unit)

Number of Stops 6
Number of Target Nodes 100
Target Node Distribution Uniform Distribution

Statistics Feasible Region; Localization Error
Random Seed 100 runs

In addition to experiment evaluation, we conduct large-scale

simulation to evaluate the performance of the Basic TOC,

followed by the performance comparison between the Basic

TOC and the Extend TOC. Default simulation parameters are

shown in Table III. Note that due to the positive relationship

between the charging distance and charging time, we do not

need to specify charging model and perform cutting only based

on binary comparison results of each pair of nodes. We adopt

percentage area of the feasible region and the localization

error as two metrics to evaluate localization performance.

The percentage of the feasible region refers to the ratio of

segmented area after each stop over the area of the original

feasible region. The localization error is defined as the distance
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between the estimated position and the real location of the

sensor. In addition, we also calculate the standard deviation of

localization error among different sensors.

C. Performance of Basic TOC
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Fig. 12. Localization Result of the Basic TOC (Number of Nodes = 100)

TABLE IV
DECREASE OF LOCALIZATION ERROR

Number of Stops 2 3 4 5 6

Gain (%) 9.90% 5.74% 4.72% 2.17% 1.07%

TABLE V
DECREASE OF STANDARD DEVIATION OF LOCALIZATION ERROR

Number of Stops 2 3 4 5 6

Gain (%) 21.91% 18.03% 26.00% 24.42% 26.17%

In order to show the effectiveness of Basic TOC, we first

compare the localization performance of purely Inter-node

Division approach with Complete Basis TOC, which combines

Inter-node Division and Inter-area Division. From Figure 12(a)

and Figure 12(b) we can see that Complete Basic TOC does

achieve better performance in terms of both the area of feasible

region and the mean localization error. Table IV summarize

the percentage gain of the Inter-area Division. From Table

IV, we find that the percentage gain of the Inter-area Division

decreases as the charger stops for more times. This is because

the area of the feasible regions of nodes decrease quickly along

with the number of charger stops which makes the inter-area

dividing happen less frequently.

In Table V, we examine the gain in standard deviation of

localization error among different nodes. We find that the

Complete Basic TOC provides a significantly smaller standard

deviation than that of the purely Inter-node Division. For

example after the fourth stop of the charger, the standard

deviation gain is as high as 26.0%. Results of Table V well

support the effectiveness of Inter-area Division which utilizes

the well positioned nodes to help localize other related nodes

so that the error deviation through the network can be kept at

a lower level.

D. Extended TOC vs. Basic TOC

This section illustrates performance of the Extended TOC

over the Basic TOC. To qualitatively analyze localization per-

formance, we also plot the optimal results through exhaustive

search with granularity g = 10 grid unit, which at each step

selects the charger stop position for minimizing the mean

localization error over the network.
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Fig. 13. Extended TOC vs. Basic TOC (Number of Nodes = 100)

In Figure 13(a) and Figure 13(b), by optimizing the charger

stop positions, the Extended TOC is able to reduce both the

area of feasible regions and mean localization errors. And the

localization error decreases monotonically to around 8m after 6
stops. Detailed percentage gain of the mean localization error of

both Extended TOC and the optimal results are shown in Table

VI. For example after 4 stops of the charger, mean localization

error of the Extend TOC is 13.33% less than the result of

the Basic TOC (13.13m vs 15.15m) and the optimal result

owns a 24.84% decrease (11.39 vs 15.15m). Comparing with

the optimal results, we find that the Extended TOC offers a

fairly good localization performance with large computation

complexity degradation.

TABLE VI
DECREASE OF LOCALIZATION ERROR

Number of Stops 2 3 4 5 6

Extended TOC (%) 2.97% 2.09% 13.33% 9.27% 13.16%
Optimal Result (%) 9.81% 16.58% 24.84% 20.47% 30.70%

VII. RELATED WORK

Many work has been proposed to localize nodes in wire-

less sensor networks. Based on the underlying localization

techniques, there are mainly two types of methods: range-

based localization and range-free localization. Range-based

localization method such as GPS, AOA [18], Sweeps [8],

SRIPS [5] and ArrayTrack [27] measure point-point distances

or angles among sensor nodes and/or anchor nodes to compute

per-node position. Although they tend to offer precise locations

of nodes, they incur unfavorable costly additional hardware

or environment profiling. Range-free localization methods [6],

[21], [28], [31], on the other hand, localize nodes based on

their connectivity information or simple sensing of their relative

positions. However, such kinds of localization systems either

need several anchor nodes or precise event distributions which

make them less effective for practical deployment.

Another category of localization algorithm is based on

received signal strength indication (RSSI) [17], [30]. However

due to the inherent variability in wireless signal propagation

characteristics and the presence of severe multipath fading

with multiple reflections, the relationship between RSSI and
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distance is extremely hard to model, limiting the accuracy of

both model-based methods and fingerprinting-based methods.

Wireless power transfer technology has been adopted in

many existing WRSNs. One representative example is Wireless

Identification and Sensing Platform (WISP) which harvest

energy from the off-the-shelf commercial RFID reader [22].

After being first proposed in 2008, there have been many works

on WISP based WRSN [9], [26].

Despite the diversity of work has been done on both localiza-

tion of sensor nodes and wireless rechargeable sensor networks,

little work has been proposed on localization in WRSN. In

this paper, we adopt the fundamental charging principle and

propose a Time of Charge based localization method. Our

design is compatible with most wireless rechargeable sensor

networks as well as wireless energy harvesting technologies.

In addition, it avoids the limitations of range-based, range-

free and RSSI-based localization methods and does not rely

on additional hardware, anchors or generated events.

VIII. CONCLUSION

In this paper, we study the problem of how to use the

Time of Charge sequences of wireless rechargeable sensor

nodes to localize themselves. We first identify the fundamental

relationship between charging time and distance between nodes

and the charger. Based on this principle, we propose two

localization methods, i.e., Basic TOC and Extended TOC.

In the Basic TOC, the charger stops randomly in the field

to charge nodes and divides their feasible regions iteratively.

In the Extended TOC, we further optimize the charger stop

positions based on the estimated sensor locations so as to

achieve higher localization accuracy. To verify our designs, we

perform detailed performance evaluations through analysis and

large-scale simulations. To the best of our knowledge, it is the

first work designed for localization in wireless rechargeable

sensor network by purely using the Time of Charge sequences.
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