
kBF: a Bloom Filter for Key-Value Storage
with an Application on Approximate State Machines

Sisi Xiong∗, Yanjun Yao∗, Qing Cao∗, and Tian He†

∗Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN, US

Email: {sxiong, yyao9, cao}@utk.edu

†Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, US

Email: {tianhe}@cs.umn.edu

Abstract—Key-value (k-v) storage has been used as a cru-
cial component for many network applications, such as social
networks, online retailing, and cloud computing. Such storage
usually provides support for operations on key-value pairs, and
can be stored in memory to speed up responses to queries.
So far, existing methods have been deterministic: they will
faithfully return previously inserted key-value pairs. Providing
such accuracy, however, comes at the cost of memory and CPU
time. In contrast, in this paper, we present an approximate k-v
storage that is more compact than existing methods. The tradeoff
is that it may, theoretically, return a null value for a valid key with
a low probability, or return a valid value for a key that was never
inserted. Its design is based on the probabilistic data structure
called the “Bloom Filter”, which was originally developed to test
element membership in sets. In this paper, we extend the bloom
filter concept to support key-value operations, and demonstrate
that it still retains the compact nature of the original bloom
filter. We call the resulting design as the kBF (key-value bloom
filter), and systematically analyze its performance advantages
and design tradeoffs. Finally, we apply the kBF to a practical
problem of implementing a state machine in network intrusion
detection to demonstrate how the kBF can be used as a building
block for more complicated software infrastructures.

I. INTRODUCTION

Key-value (k-v) storage has been used as a crucial compo-
nent for many different network applications, such as social
networks, online retailers, and cloud computing [1], [2]. Ex-
ample implementations include Dynamo [3], Cassandra [4],
Memcached [5], Redis [6], and BigTable [7]. By storing
most data in the main memory, these implementations allow
query, update, and delete operations of key/value pairs. The
particular keys and values can be highly flexible: an online
retailer can use the keys to represent the product catalog IDs,
and the values to represent their associated metadata, such
as its category or the latest updated price. Because of its
importance, k-v storage has been heavily fine-tuned for the
best performance in terms of cache usage, load balancing, and
response time.

One observation of these different key-value storage ser-
vices is that they are deterministic. For example, if a key-value
pair was previously inserted, a query on the key should always
return its value. Although this is desired, doing so requires

storing and processing complete information of the keys and
values, which introduces overhead. Therefore, in this paper,
we develop a highly compact, low-overhead, but approximate
k-v storage service, by taking inspiration from the bloom
filter [8] (see Section II for a brief survey). However, despite
of their usefulness, bloom filters are designed for testing set
memberships, not key-value operations. Therefore, our goal
is to develop an enhanced version of the bloom filter, so
that it is able to support key-value operations. Specifically, it
should support these following APIs: insert, update, delete,
and query. Our goal is to make this data structure highly
compact, by making the tradeoff that we allow false positives
to occur, just like the bloom filter. This means that querying
a non-existent key may return a value that does not actually
belong to it. Although this may sound counter-intuitive at first,
we argue that there exists applications that such approximate
results are still acceptable: for example, an online shopping
service may store product ID and its category as key-values
to answer users’ queries. If the kBF is used, occasionally
querying a product ID that does not exist may return a category
that is still valid. This, however, will not be a problem because
such false products are fictional in the first place, and adding
additional information to it, such as category, does not make
them valid. By using the kBF, on the other hand, allows us to
speed up such query processing considerably and to narrow
down the list of products quickly.

Developing this data structure, however, is particularly chal-
lenging for two reasons. First, the original bloom filter uses bit
arrays to keep track of the membership of elements. The keys
and values, however, are much more irregular in length, and
can not be directly stored into typical bloom filters. Second,
the original bloom filter does not support deletions. Although
later research, such as the counting bloom filter [9], partially
addressed this problem by using counters to replace bits of a
typical bloom filter, it only keeps the frequency of elements
instead of the values of elements themselves.

Because of these challenges, adding the key-value support
is not straightforward. One naive approach is that we can
store, for each k-v pair, an item that represents the string

BruceLab
Typewritten Text
 978-1-4799-3360-0/14/$31.00 ©2014 IEEE

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

BruceLab
Typewritten Text

(key, value) into the bloom filter. However, to query a key
later, all the possible values must be tried to construct possible
strings for membership tests. This approach is clearly not
scalable when there is a larger number of possible values,
hence not practical.

A more recent approach [10] considers the problem under
the assumption that values are limited in range, and are
distributed within [1, V], where V is a positive integer. The
approach then modifies the conventional bloom filter to use
cells instead of bits to hold the values directly. If there is a
collision in a cell, this cell is then marked as “Don’t Know
(DK)”. To query the value for a key, if at least one of its k
hashed locations has not been marked as DK, the query will be
successful. On the other hand, if all cells are marked as DKs,
then the query returns a DK to the user. The problem with
this approach is that it is not designed for arbitrary key-value
string pairs, and it will also encounter reduced performance
(returning many DKs) when more cells become populated. We
demonstrate the latter problem in Section VI by comparing this
approach with the kBF through an application study.

The approach we present in this paper aims to address
these problems by supporting k-v operations with predictable
performance and accuracy. We call it the “key-value bloom
filter (kBF)”. In particular, it has the following three key
contributions: first, to address the challenge of arbitrary key-
value pairs, we propose a method to encode the values into
a special type of binary encodings that can fit into the cells
of bloom filters easily. These encodings are designed to be
resilient to collisions, i.e., insertions and queries can still
be effectively handled when one or more collisions occur
in a cell. In particular, the decoding allows using k hashed
locations collaboratively, rather than using any single one of
them, so that the successful decoding ratio can be greatly
improved. Second, to address the challenge to handle a very
large number k-v pairs, we design the kBF to be elastic, so
that its capacity can grow and shrink as needed while ensuring
that the desired query performance is achieved. To this end,
we develop growth and compaction operations on the kBF to
support its capacity changes. Third, to address the challenge
to achieve predictable performance, we systematically analyze
the capacity and decoding ratio of the kBF to demonstrate its
performance limits. We derive closed form results to this end,
so that we can closely monitor the runtime performance of the
kBF to ensure a satisfactory quality of service.

In summary, kBF represents a novel type of the bloom filter
that supports key-value operations using compact memory
storage. To further illustrate its effectiveness, we demonstrate
through a specific application example: we use it as a building
block to enforce TCP state transition rules by developing
an approximate concurrent state machine (ACSM). Using
ACSMs, a router can efficiently keep track of many regular
expression matchings simultaneously to detect potential intru-
sions.

The remaining of this paper is organized as follows. Sec-
tion II presents the related work. Section III describes the
problem formulation and the design of the kBF. Section IV

analyzes its performance tradeoffs. Section V evaluates the
performance of the kBF through experiments. Section VI
develops an application of the kBF for detecting TCP flag
transitions. Finally, Section VII concludes this paper.

II. RELATED WORK

In this section, we describe related work in three parts: first
we describe the original Bloom Filter design, then we describe
its variants, and finally, we describe the related work to the
network applications of the Bloom Filter.

The bloom filter, originally developed by Burton H.
Bloom [8], is a space efficient randomized data structure that
answers the question about membership tests. Recently it has
received great attention in the networking area [11], [12], [13].
Specifically, the bloom filter allows insertions and queries of
elements in sets, by hashing an element to k different locations
in a bit array of m bits. To add an element, each of the k bits
is set to 1. To query it, each of the k bits is tested against 1,
and any 0 found will tell that the element is not in the set.
In this way, no false negatives will occur, but false positives
are possible, since all k bits might have been set to 1 due to
other elements have been hashed to the same positions. The
bloom filter is highly compact: it needs 10 bits to store each
element to achieve a false positive rate of 1%, independent
of the number and size of the inserted elements. Therefore,
in situations where only limited on-chip RAM is available, a
bloom filter becomes particularly useful.

After the original Bloom Filter was proposed, many variants
followed [13], [14], [15]. One relevant work is the counting
bloom filter [9], which has m counters along with m bits.
This way, the CBF can support not only deletion operations,
but also frequency queries. However, the CBF is not designed
for key-value operations, hence, is also significantly different
from our work.

In recent years, the Bloom Filter has been widely used
in the context of network intrusion detection and measure-
ment. Examples include identifying heavyhitters [16], iceberg
queries [17] and packet attribution [18]. One typical applica-
tion is approximate state machine, which means that one wants
to monitor a flow’s state in a finite state machine. For example,
in [10], video congestion control and P2P traffic analysis are
utilized to investigate the performance problems. Different
from the approach presented here, however, this approach
makes more strict assumptions on the range of values, and
does not support arbitrary value strings.

III. DESIGN OF KBF

In this section, we introduce the design of the kBF. We
first present the problem formulation. Then, we present an
overview of its structure. Finally we present a detailed de-
scription of its components and related algorithms.

A. The Problem Formulation

We first present the problem formulation. Assume that
we have a collection of n key-value pairs (ki, vi), where
i ∈ [0, n−1]. The keys and values can be arbitrary strings. We

aim to develop kBF to support the following four operations
for the stored k-v pairs:
• insert(key, value) //insert a key-value pair
• update(key, new value) //update a value for a key
• query(key) //query the value for a key
• delete(key) //delete a key and its associated value

B. Architecture Overview

In this section, we present the architecture of kBF, which
is shown in the Figure 1. This figure focuses on the inser-
tion and query operations, and we will describe the delete
and update operations later. The overall procedure works as
follows. When (key, value) pairs are inserted, the algorithm
first performs an one-to-one conversion from their values to
encoded binary strings, using a secondary kBF (s-kBF) as an
assisting component. The pairs of the keys and their encodings
are then inserted into the main kBF, which serves as the
primary storage for the incoming data. On the other hand,
if a key is provided for a query operation, the main kBF will
return a total of k encoded strings. These strings are fed into a
decoding algorithm to obtain the corresponding encoding for
the key, which is further converted into its original value using
a polynomial regression based algorithm. The constructed
(key, value) pair will be returned to the user.

In the following sections, we describe the details of this
process, including how the encodings are formulated, the
details on specific operations, and the growth/compaction of
kBFs.

C. Encodings of Values

The central idea of the kBF is that it maps the values,
represented by a set V = {v1, v2, ..., vn}, into a set of binary
strings. Specifically, such binary strings, denoted as b[vi], are
constructed according to the following two rules:
• Each value vi has a unique string b[vi].
• The XOR result of any two strings, i.e., b[vi] ⊕ b[vj],

should be unique among themselves, as well as to the
values of b[vi].

Given n values, the number of their pairwise combinations
is C(n, 2), or n(n−1)

2 . Therefore, the minimum length of the
binary string, as P , must conform to:

2P ≥ n(n− 1)

2
+ n

For example, if there are only four values that need to be
encoded, a total of four bits is sufficient, by encoding them
as {0001, 0010, 0100, 1000}, so that their combinations will
not cause any collisions. On the other hand, if n = 100,
the theoretically minimal P is 13 (213 > C(100, 2) + 100).
Avoiding collisions is important because this way, the pairwise
XOR results can be uniquely decoded. The entire approach
is slightly similar to the CDMA encoding scheme where the
XOR operation is also used. We emphasize that the procedure
for finding encodings only runs once and is done offline.
Therefore, powerful computational resources can be used to
find a sufficient number of valid encodings for future uses.

Note that sometimes the minimal value of P may not be
achieved. For example, if there are 7 values, the minimum P is
5. However, through an exhaustive search, with 5 bits, there is
no encoding scheme to fulfill the two requirements mentioned
above. Therefore, we develop a greedy algorithm for finding
encodings when the number of values is large. We do not
adopt the exhaustive search due to computational overhead
considerations. The algorithm is shown in Algorithm 1. As
illustrated, we start the search by setting the first encoding to
1. We then increase the successive encoding repeatedly by 1.
If there is no collision, then the new encoding is admitted into
the set of found encodings. Otherwise, the next encoding is
tested. Figure 2 shows the gap between the theoretical minimal
value and the actual value. We also find that even for a large
number of encodings, the gap is quite small. For example,
there is a theoretical lower bound of P = 28 for 214(16, 384)
encodings, and the greedy method is able to find a solution
with P = 30.

Algorithm 1 Search Algorithm for Encodings
1: procedure ENCODING SEARCH(n)
2: v0 = 1
3: insert v0 into a bloom filter BF
4: counter ← 2
5: for j = 1→ n− 1 do
6: while True do
7: vj = counter
8: calculate the XOR result for vj

and vi, for i ∈ [0, j − 1]

9: if there is no collision for vj then
10: Insert vj and all XOR results into BF
11: counter ← counter + 1
12: break while
13: else
14: counter ← counter + 1
15: end if
16: end while
17: end for
18: end procedure

The Algorithm 1 also adopts an optimization in steps 3
and 9 to speed up the search process for a large n. This
optimization is based on the classic bloom filter. Specifically,
it will insert all admitted encodings, as well as their pair-
wise XOR results, into a conventional bloom filter. For every
new encoding being tested, its combinations with existing
encodings are queried against this bloom filter to determine
if it has already been inserted. If yes, then there is a high
probability that a collision has occurred. The algorithm then
proceeds to the next encoding. If a negative result is returned
by the bloom filter, it is guaranteed that there is no collision
for this new encoding because the conventional bloom filter
design never returns false negatives. This optimization allows
each new encoding to be admitted or rejected in constant time.
Therefore, it considerably speeds up our search process.

D. Conversions from Values to Encodings
We next describe how values are converted into encodings,

which involves a secondary kBF (s-kBF) that operates on

Conversion with

s-Kbf (§III.D)

Insertion into

Main Storage

(§III.E)

Original

K-V Pairs

Converted

K-V Pairs

(§III.C)

Populated Main

kBF Storage

(k1, e1) (k2, e2)

Conversion with

Regression (§III.H)
 (e1, e2,…, en)

 XOR Results

Reconstructed

K-V Pair

Decoding XOR

Results (§III.F)
Populated Main

kBF Storage

(k1, e1) (k2, e2)

Insertion Operation

Query Operation

Query

Key

Insert

(Key, Value)

Decoder

Fig. 1. The kBF algorithm architecture, note that when applicable, the corresponding section in the paper is located under the algorithm block

0 500 1000 1500 2000 2500 3000

5

10

15

20

25

30

Number of encodings

N
m

ub
er

 o
f

bi
ts

Actual minimum P

Theoretical minimum P

Fig. 2. Relation between the size of
encodings and the number of bits

0 2000 4000 6000 8000 10 000

1 ´ 108

2 ´ 108

3 ´ 108

4 ´ 108

5 ´ 108

Index

V
al

u
e

Fig. 3. Encoding value trend

values instead of keys. Specifically, whenever a value needs
to be converted, it is queried against the s-kBF to decide if
it has already been assigned an encoding. If yes, then the
encoding will be used. Otherwise, a new encoding is obtained
from the pool of available encodings, and is assigned to this
value. The pair of (value, encoding) is then inserted into
the s-kBF for later queries. Meanwhile, the reverse pair of
(encoding, value) is stored in a separate lookup table for
later conversions from encodings to values. Because s-kBF
only stores (value, encoding) mappings, it is much smaller
than the main kBF. Its operations are exactly the same as the
main kBF, as described in the next section.

E. Operations of the kBF

We now describe the central operation blocks of kBF, i.e.,
their operations. Different from a conventional bloom filter,
each cell in the kBF consists of two components: a counter and
a possibly superimposed encoding result. The counter keeps
track of how many encodings have been inserted: 0 means
the cell is empty, 1 means one encoding has been inserted,
and so on. The encoding part, on the other hand, contains
either an original encoding, or the XOR results of two or more
encodings that are mapped to the same cell. In practice, we
use a 32-bit cell with a 3-bit counter and a 29-bit encoding.

Algorithm 2 kBF Insert Algorithm
1: procedure INSERT(x) . Insert operation
2: for j = 1→ k do
3: i← hj(x)
4: if Bi.counter == 0 then
5: Bi.counter ← Bi.counter + 1
6: Bi.value← Si

7: end if
8: if Bi.counter > 0 then
9: Bi.counter ← Bi.counter + 1

10: Bi.value← Bi.value XOR Si

11: end if
12: end for
13: end procedure

When the insert occurs, kBF first finds k hashed cells.
The counter for each cell is increased, and the encoding is
superimposed into the cells by performing the XOR operation
with the existing contents stored by each cell. Algorithm 2
describes this process.

The second operation, query, works as follows. For each
of the k cells, it will obtain the superimposed encodings as
well as their associated counters. The original encoding can be
recovered as long as one of the following two rules is satisfied:
• if one cell has a counter of 1 and stores an original

encoding,
• if all cells have counters of more than 1, but the inter-

section of their stored encoding sets is unique.
As an example for the second rule, suppose we have

two cells, both of which contain the superimposition of two
encodings. If the first cell contains X and Y , and the second
cell contains X and Z, then the original encoding that hashes
to both cells must be X . Algorithm 3 describes this process.
Note that we will describe the details of the decoding process
of step 6 in the next section.

Algorithm 3 kBF Query Algorithm
1: procedure QUERY(x) . Query operation
2: for j = 1→ k do
3: i← hj(x)
4: Add Bi.value to StateQueue
5: end for
6: State← Decoding(StateQueue)
7: return State
8: end procedure

We next describe the delete operation. This operation is
based on our observation that for any encoding a, a XOR a =
0. Therefore, we can describe this procedure in Algorithm 4.

Algorithm 4 kBF Delete Algorithm
1: procedure DELETE(key, encoding) . Delete operation
2: for j = 1→ k do
3: i← hj(key)
4: if Bi.counter > 0 then
5: Bi.counter ← Bi.counter − 1
6: Bi.value← Bi.value XOR encoding
7: else
8: report error
9: end if

10: end for
11: end procedure

Algorithm 5 kBF Update Algorithm
1: procedure UPDATE(key, encoding) . Update operation
2: encodingold ← Query(key)
3: for j = 1→ k do
4: i← hj(key)
5: if Bi.counter > 0 then
6: Bi.value← Bi.value XOR encodingold
7: Bi.value← Bi.value XOR encoding
8: end if
9: end for

10: end procedure

Finally, we can implement the update algorithm by first
querying the key to obtain its encoding, then delete the
key with its encoding, and finally insert the key with its
new encoding. The process can be combined together and
Algorithm 5 describes its details.

F. Decoding Superimposed Encodings

We next describe how to obtain original encodings from
their superimposed results. Given the way we constructed the
encodings, we can always obtain unique results if only two of
them are superimposed. For more than two encodings’ XOR
results, we may obtain multiple possible solutions.

Therefore, the critical step is, given the number of items and
their XORed result, how to obtain all possible combinations
of original encodings. We first consider the simple case: if
there is an XOR result for two encodings X and Y , then
there are two possibilities: if X = Y , the XOR result is 0.
This is impossible to decode because any X may be possible.
If X 6= Y , then a unique set of {X,Y } can be found. By

pre-constructing a bloom filter that has all encodings, we can
find this unique set in O(N), by iterating through all items,
calculating its XOR result with X ⊕ Y , and checking if the
result can be found in the pre-constructed bloom filter.

We now consider the more complicated case where three
encodings are hashed to the same cell. Since we only know
their XOR result, and the encoding scheme we designed earlier
does not guarantee that the encodings give unique values when
three or more of them are combined, we only provide an
opportunistic approach for three-item decoding. For more than
three items that are mapped to the same cell, we consider the
cell to be non-decodable 1.

The opportunistic algorithm works as follows. For all avail-
able encodings, we store all the pair-wise XOR results of them
into a bloom filter L. We denote the XOR result as R, and
we know that R = X ⊕ Y ⊕ Z, for unknown X , Y , and Z.
During the decoding phase, we iterate through all encodings.
For each encoding E, we calculate E ⊕ R. If E = X , we
know that E ⊕ R = Y ⊕ Z. Therefore, we can use the filter
L to check if E ⊕R exists. If yes, then there is a hit, and we
can find Y and Z as they are unique. Finally, we return the
set of all found (X,Y, Z) as the result.

G. Growth and Compaction of kBFs

Just like a normal BF, a kBF has its capacity in terms of how
many item insertions it is able to support at most. Although its
capacity can be statically allocated if we know the maximum
number of k-v pairs, in real applications, it happens that we do
not know such information in advance. Therefore, we present
the growth and compaction operations of kBFs for dynamic
operations.

For the growth operation, we monitor the number of inserted
k-v pairs for a constructed kBF. Whenever this reaches near its
maximum, we can allocate another kBF of the same size for
new k-v pairs. On the other hand, if we detect that an existing
kBF has too few active k-v pairs after repeated deletions, we
can start the compaction operation. This operation is facilitated
by the bit-vector nature of kBFs. Given two k-v sets, suppose
that they are represented by two kBFs, L1 and L2, we can
calculate the kBF that represents the union set L = L1 ∪ L2

by taking the XOR operation of their kBF cells: CellL =
CellL1⊕CellL2. For the counters, we can add them together
to become the counter for the new cells. Observe that a tradeoff
of this operation is that at the same time it saves memory space
in compaction, it will lose some information during the XOR
operations.

H. Conversion from Encodings to Values

The final step in the operation is to convert encodings to
values for query results. To this end, recall that we maintained
a table of (encoding, value) mappings when encodings are
created for values. In this table, all encodings in the table are
sorted in the ascending order to simplify the lookup process
later.

1Note that this cell may become decodable again when a delete operation
occurs, causing one item from this cell to be canceled out.

To save memory accesses,given the encoding, instead of
using a conventional binary search to find the value for
an encoding, we follow a regression approach in this step.
Specifically, as illustrated in Figure 3, valid encoding val-
ues usually form a curve that can be approximated with a
polynomial function. We choose a quadratic function for this
approximation, i.e., we find y = f(x), where x ∈ [0, n−1] as
the index, and y is the encoding value. We then find the inverse
function x = f−1(y), so that we can calculate the index given
the value of the encoding. Once the index is found, the string
for the value in (key, value) pairs can be directly found by
using the index to access the mapping table.

However, one challenge is that the f function is not 100%
accurate. To find the true location after calculating the index,
we search from the index by observing that the average
step increase of the encoding values can be determined in
advance. Then, based on the difference of the currently found
encoding and the target encoding, we can divide it by the
average step of encodings, and move the index accordingly,
until the index finds the true encoding value. We describe
this procedure through an example. Suppose we have a ta-
ble of 10, 000 encodings, and find its quadratic function as
f(x) = 92884900 + 32952.9x + 1.151x2. The average step
of all encodings is 44294, which is pre-determined. Let us
suppose, in one query, the encoding returned is 237551267.
According to this formula, the first index is found as 3868. By
accessing the encoding corresponding to the location 3868, we
find it as 237525822, which has an error of 25445 compared
to the target encoding being searched. By using the average
step size, the index will search using a step of 1. After two
steps, the true index is found at 3870. This way, only three
memory accesses are needed to find the encoding index and its
associated value, which is much faster than the binary search
method with an average number of memory accesses of 14.

IV. ANALYSIS OF KBF
In this section, we analyze the capacity and error rate of

kBF using a theoretical analysis. The challenge of this analysis
is that a bloom filter is constructed using several parameters,
including its size m, the number of hashing functions k, and
the number of k-v pairs n. It has been pointed out that to
minimize the false positive rate, there exists an optimal k given
a pair of n and m, where kopt = m

n ln(2) [12]. On the other
hand, to maintain the false positive rate of the filter below a
threshold p, we know that

m = − n ln p

(ln(2))2
.

This formula shows that the parameter m must grow linearly
with the size of n, or conversely, given an m, there exists an
upperbound of n, over which the false positive rate can no
longer be sustained. We can therefore define the following
concept of capacity.

Definition The p-capacity of a bloom filter is defined as
the maximum number of items that can be inserted without
violating the false positive probability p.

0 5000 10000 15000 20000
0.033300

0.033302

0.033304

0.033306

0.033308

0.033310

0.033312

0.033314

The value of n

N
on

-
D

ec
od

in
g

Pr
ob

ai
bl

ity

Fig. 4. Relation between n and the
non-decodable probability

k = 10

k = 15

k = 20

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

The value of Ρ

N
o
n

-
D

ec
o
d
in

g
P

ro
b
ab

il
it

y

Fig. 5. Relation between ρ and
the non-decodable probability

It is clear that the p-capacity can be derived using

p-capacity = −m(ln(2))2

(ln(p))
.

Also observe that when p-capacity is reached, the optimal
number of hashing functions k is only related to p, as
k = − ln(p)

ln(2) . In the kBF, whenever there are too many items
inserted, we will allocate a new kBF with the same size.
Therefore, we can guarantee that the false positive rate of each
kBF will not be larger than p.

Now we derive the distribution of encoding superimposition
for a kBF. Assume that this kBF has been inserted with n
items. We use c(i) to denote the number of encodings that
are inserted into the ith cell. If this number is 3 or more,
we consider that this cell is non-decodable. The probability
that this counter is incremented j times is a binomial random
variable as

P (c(i) = j) =

(
nk

j

)
(

1

m
)j(1− 1

m
)nk−j .

Therefore, the probability that any counter is at least j is

P (c(i) ≥ j) =
∑nk

i=j

(
nk

i

)
(

1

m
)i(1− 1

m
)nk−i.

Although it is relatively hard to obtain the closed form
results for this particular function, we simplify it by observing
in our setting, the value of nk and m are both quite large.
Therefore, we can use the extreme limits of the formulas (by
calculating n→∞ and m→∞) to approximate their original
forms. We also use numerical results to demonstrate that this
approach is indeed accurate.

The key observation we use to simplify the derivation comes
from [19]. The result is concerned with the urn-ball model,
of which our model of a bloom filter is a special case.
Specifically, it states that if n balls are randomly assigned
into m urns, and that each ball is equally likely to fall into
any of the urns, suppose we use Mr to denote the number of
urns containing r balls after the assignments are completed,
we have that

E[Mr] = m

(
n

r

)
(

1

m
)r(1− 1

m
)n−r (r = 0, 1, ..., n).

If n,m→∞, with nm−1 → λ <∞, then,

lim
n→∞

E[m−1Mr] =
λr

r!
e−λ.

Apparently, for the case of a bloom filter, we have nk

hashing operations. Therefore, we should replace n in the
formula above with nk instead. Also, by observing that
P (c(i) = j) = Mr/m, we know that

lim
n→∞

P (c(i) = j) =
λj

j!
e−λ.

Next, we consider the scenario that a bloom filter has not
yet reached its p-capacity. Therefore, we have,

nk

m
≤ ln(2)

On the other hand, if a bloom filter has exceeded its p-
capacity, we can define an additional parameter, ρ, as the
capacity coefficient. That is, we can set

nk

m
= ln(2)× ρ

Based on this, we can obtain that

lim
n→∞

P (c(i) = j) =
(ρ ln(2))j

j!
× 2−ρ.

Next, we can estimate the probability of three or more en-
codings combined together, which we deem as non-decodable.
Note that this is a simplified over-estimate, because for such
cases, we can still obtain multiple candidate sets, and it is
possible that we can decode them with more computational
overhead. Therefore, the results here serve as a lower-bound
(a pessimistic value) on the capacity of a kBF. We can find
this probability by

n∑
j=3

P (c(i) = j) =

2−ρ−1
(
2ρ+1Γ(n+ 1, ρ(ln(2)))

)
Γ(n+ 1)

−

2−ρ−1
(
ρ2
(
ln(2)2

)
+ ρ(ln(4)) + 2

)
Γ(n+ 1)

Γ(n+ 1)
.

In this formula, the Γ stands for the gamma function. Its
limit happens to be closed form as

Pn(ρ) = lim
n→∞

n∑
j=3

P (c(i) = j))

= 2−ρ−1
(
−ρ2

(
ln(2)2

)
+ 2ρ+1 − ρ(ln(4))− 2

)
.

To verify, for the non-decodable probability of a single cell,
we calculate the numerical results and plot them in Figure 4.
Observe that the actual non-decodable probability for a single
cell is concentrated around 0.0333313, which is the same as
the predicted value of Pn(1) as 0.0333132. This results shows
that for a single cell, if the kBF has not reached its p-capacity,
the probability that it has three or more encodings stored is
no more than 3.33%, which is independent of the value of p.

Now we calculate the global decodability. We can mathe-
matically write this as

1− [Pn(ρ)k + k × Pn(ρ)k−1 × (P (c(i) = 2))].

The results for this probability with different k values are

plotted in Figure 5. Observe here, for k = 10, to maintain that
virtually all decoding operations as successful (success rate is
almost 1), we can only overload ρ to be less than 2.

V. EXPERIMENT EVALUATION

A. The Evaluation Model

In this section, we systematically present the evaluation of
the kBF. Due to the probabilistic nature of the kBF, we first
focus on its errors. Specifically, there are three types of errors:
false positives, false negatives, and incorrect outputs. Next, we
focus on the performance of the kBF in terms of its memory
overhead. A larger memory allocation (where the m increases)
will provide a higher capacity, which in turn reduces ρ and
the non-decodability probability.

B. Workload Generation

We generate the workload for the experiments based on
the conclusions from a realistic study by researchers at
Facebook [2]. Specifically, they studied several Memcached
pools, and found the statistical distribution of the largest pool
that contains general purpose key-value pairs. The key-size
distribution in terms of bytes was found to be Generalized
Extreme Value distribution with parameters µ = 30.7984,
σ = 8.20449, and k = 0.078688. The value-size distribution,
starting from 15 bytes, were found to be Generalized Pareto
with parameters θ = 0, σ = 214.476, and k = 0.348238. The
first 15 bytes follow a discrete distribution with a specific table
(shown in [2]).

We generate 10 million key-value pairs where the size of
keys follow these reported statistical parameters. The values
are intended to be the most frequent ones, where a total
of 3000 unique values are used. Note that such frequent
values will typically constitute a majority of the (key, value)
instances, for which the kBF is targeted at. In this evaluation,
we keep the specific keys and values random, so that the
evaluation results are the most generic. The number of keys
n inserted to the kBF is 10 million, and we use a false
positive probability p to be between 0.001 to 0.000001 when
we construct the bloom filter. Therefore, the number of hash
functions k, the size of kBF m and the maximum load factor
ρ can be decided. To test the case when kBF has been
overloaded, we also conduct the experiments for the size of
kBF m′ to be m/2 to analyze the performance difference.
The entire kBF takes between 0.5G to 1.5G bytes of RAM to
build on a modern workstation, depending on the parameter
selection.

C. Evaluation Results

First, to obtain the false negative error rate and the incorrect
output rate, we start by inserting all 10 million keys into a
constructed kBF, and then query each key for its value. We find
that in this case, the incorrect output error is always zero. This
can be explained by that as the filter has not been saturated,
all decodings are correct if they are decodable at all. The false
negative error rate, on the other hand, is plotted in Figure 6.
According to the figure, the false negative errors almost do

p=0.001 p=0.0001 p=0.00001 p=0.000001
0

0.2

0.4

0.6

0.8

1

1.2
x 10−3

Preset false positive possibility p

F
al

se
 n

eg
at

iv
e

er
ro

r
ra

tio

m
m/2

Fig. 6. False negative error ratio

p=0.001 p=0.0001 p=0.00001 p=0.000001
0

0.01

0.02

0.03

0.04

0.05

0.06

Preset false positive possibility p

Fa
ls

e
po

si
tiv

e
er

ro
r

ra
tio

m
m/2

Fig. 7. False positive error ratio

p=0.001 p=0.0001 p=0.00001 p=0.000001
0

500

1000

1500

Preset false positive possibility p

M
em

or
y

us
ag

e
/M

B

m
m/2

Fig. 8. Memory usage comparison

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−4

Number of batches

F
as

le
 p

os
iti

ve
 e

rr
or

 r
at

io

p=0.001
p=0.0001
p=0.00001
p=0.000001

Fig. 9. False positive ratios after
each batch deletion, kBF size = m

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of batches

Fa
sl

e
po

si
tiv

e
er

ro
r

ra
tio

p=0.001
p=0.0001
p=0.00001
p=0.000001

Fig. 10. False positive ratios after
each batch deletion, kBF size = m/2

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−6

Number of batches

F
as

le
 n

eg
at

iv
e

er
ro

r
ra

tio

p=0.001
p=0.0001
p=0.00001
p=0.000001

Fig. 11. False negative ratios after
each batch update, kBF size = m

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2
x 10−3

Number of batches

F
as

le
 n

eg
at

iv
e

er
ro

r
ra

tio

p=0.001
p=0.0001
p=0.00001
p=0.000001

Fig. 12. False negative ratios after
each batch update, kBF size = m/2

not exist if the p-capacity is not violated. On the other hand,
if the size of the filter m is decreased by half, for larger p
values, the false negative errors are more frequent, meaning
that the decoding process gives more null results. This is as
expected, as in this case, the filter is over-crowded.

To obtain the false positive error rate, i.e., the rate of
obtaining valid values for incorrect keys, we generate another
10 million non-existent keys, and query them over a kBF that
is populated with the first 10 million keys. If the kBF ever
returns a valid encoding, we consider this as a false positive
error. The results are shown in Figure 7. Observe that if the
p-capacity is not violated, the false positive rate is close to the
value of p (the conventional bloom filter false positive rate) in
their order of magnitude. On the other hand, if the size of m is
reduced by half, the false positive rate becomes higher, as we
expected. We next plot the overhead in terms of memory usage
in Figure 8. Observe that a smaller p leads to a larger memory
usage, which obtains, in turn, better performance in terms of
error rates. We next investigate the effects of deletions of keys.
Specifically, we delete the 10 million inserted keys in batches,
each has 1 million keys. We then query the deleted keys after
each deletion, and plot the false positive ratios. Figure 9 and
Figure 10 show the results. Observe that for a smaller p, the
performance tends to be much better.

Finally, we evaluate the effects of update operations. Similar
to the delete operations, we update keys with new values
in batches. Note that here, instead of calculating the false
positives, we are interested in false negatives, which refer
to null values or incorrect values. The results are plotted in
Figure 11 and Figure 12. Observe again that the performance
will be much better for smaller p values and larger m sizes.

0.1 0.01 0.001 0.0001 0.00001
0

0.005

0.01

0.015

0.02

0.025

Preset false positive possibility p

Fa
ls

e
ne

ga
tiv

e
er

ro
r

ra
te

s

kBF
sBF

Fig. 14. False negative error rates

kBF sBF kBF sBF kBF sBF kBF sBF kBF sBF
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

p=0.1 p=0.01 p=0.001 p=0.0001 p=0.00001

T
ot

al
 e

rr
or

r
ra

te
s

Incorrect output
False negative
False positive

Fig. 15. Total error rates

VI. APPLICATION CASE STUDY: TCP FLOW ANALYSIS

In this section, we describe how to use the kBF for a real
application. We implement an Approximate Concurrent State
Machine (ACSM) [10] based on the kBF, and compare it with
the original approach in [10], which we refer to as the state-
based bloom filter (sBF). For our evaluation, we choose a real
dataset from CAIDA [20], which includes an hour length of
traffic data. The pair of the source and destination IP address
is used as flow-id, and the TCP flag is used as the state.

Specifically, the experiment has the goal of locating sus-
picious TCP flows by using TCP flags. This technique has
been utilized in different network monitoring scenarios, such
as SNORT database [21] and TCP SYN flooding attacks [22].
Whenever the specified TCP flags indicate potential problems,
a warning can be generated. For example, when the “RST” bit
and “FIN” bit are set, which means to reset and to terminate
the TCP connection, it may indicate potential attack [22].

To detect such problems, we emulate the state transitions
of TCP flows with ACSMs. Whenever a flow is encountered,
we query the flow on its state. If it is a new flow, we insert
this flow and its state into the kBF (or sBF [10]). If this flow
is old, we will selectively update its state depending on the
flow information. When a flow terminates, we delete its state

information. All insert, update, query, and delete operations are
readily supported by both kBF and sBF, because in this case,
the number of states is usually very small. To compare them,
we choose four different preset false positive probability p
from 0.1 to 0.00001 to conduct experiments. The total number
of flows, n, is 908522.

The first type of errors, false positives, is related to the mem-
bership tests of bloom filters. Here, a new flow is detected, and
queried against the filter. However, the kBF or the sBF returns
that the flow is old, and will fail to insert the flow and its state
information, due to a false positive error. The second and third
types of errors, false negatives and incorrect outputs, indicate
that the kBF or sBF returns a null state or an incorrect state
for a valid flow. This may be caused by decoding failures, or
for those flows that failed to be inserted due to false positives.

The performance gap between the kBF and the sBF is
mainly in false negative errors. According to Figure 14, as
the preset p value decreases, false negative errors of kBF
decreases dramatically. However, false negative errors of sBF
almost stay constant, due to that it simply returns null value for
those cells with two or more flows. Furthermore, in its update
process, false negative errors will accumulate due to previous
overlappings, which leads to almost invariant false negative
errors even though the size of bloom filter increases. The kBF,
in contrast, still maintains part of the flow information even
when three or more encodings are superimposed, as individual
encodings can still be recovered later if delete operations
occur. Figure 15 shows the total errors of kBF and sBF.
Again, we observe that kBF performs much better in terms
of reducing errors.

Finally, in terms of finding suspicious flows with certain
TCP flags, after querying state of each flow, we find that
there are 900 and 1658 flows with the flags of FIN and RST
accordingly in the dataset. These flows can be marked with
suspicious for further analysis.

VII. CONCLUSIONS

In this paper, by using the classic bloom filter as a base de-
sign, we extend it into a approximate key-value storage scheme
called the kBF. We present a comprehensive investigation on
the algorithm design of the kBF, analyze its performance in
storing large datasets, and evaluate its performance in both
synthetic workloads and a real application study. According
to our experiment results, the kBF is highly compact, and
supports insertion, query, update and deletion operations with
adjustable error ratios. Compared to deterministic schemes,
the kBF is more suitable to be implemented in devices
with limited RAM space and timing constraints, as long as
approximate results are tolerated by application semantics.
We also demonstrate, through an application case study for
detecting suspicious TCP flows, the kBF performs much better
than the related approach in the literature in terms of error
rates. Therefore, we believe that our study of the kBF can
be beneficial for fast and low overhead key-value storage
purposes in a wide range of applications.

VIII. ACKNOWLEDGEMENT

The work reported in this paper was supported in part by
the National Science Foundation grant CNS-0953238, CNS-
1017156, CNS-1117384, and CNS-1239478.

REFERENCES

[1] V. Vasudevan, M. Kaminsky, and D. G. Andersen, “Using Vector
Interfaces To Deliver Millions Of Iops From A Networked Key-value
Storage Server,” in Proceedings of the ACM SOCC, 2012.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis Of A Large-scale Key-value Store,” in Proceedings
of the ACM SIGMETRICS, 2012.

[3] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo
: Amazon’s Highly Available Key-value Store,” in Proceedings of the
ACM SOSP, 2007, pp. 205–220.

[4] Apache Foundation, “Cassandra Website,” http://cassandra.apache.org/.
[5] “Memcached Website,” http://www.memcached.org/.
[6] “Redis Website,” http://redis.io/.
[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2006.

[8] B. H. Bloom, “Space / Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, 1970.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281–293, Jun. 2000.
[Online]. Available: http://dx.doi.org/10.1109/90.851975

[10] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“Beyond Bloom Filters : From Approximate Membership Checks to
Approximate State Machines,” in Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2006, pp. 315–326.

[11] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2003.

[12] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and Prac-
tice of Bloom Filters for Distributed Systems,” IEEE Communications
Surveys and Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[13] T. Chen, D. Guo, Y. He, H. Chen, X. Liu, and X. Luo, “A Bloom Filters
Based Dissemination Protocol In Wireless Sensor Networks,” Journal of
Ad Hoc Networks, vol. 11, no. 4, pp. 1359–1371, 2013.

[14] O. Rottenstreich and I. Keslassy, “The Bloom Paradox: When Not
To Use A Bloom Filter?” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2012.

[15] B. Donnet, B. Gueye, and M. A. Kaafar, “Path Similarity Evaluation
Using Bloom Filters,” Journal of Computer Networks, vol. 56, no. 2,
pp. 858–869, 2012.

[16] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The
blue active queue management algorithms,” IEEE/ACM Trans. Netw.,
vol. 10, no. 4, pp. 513–528, Aug. 2002. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2002.801399

[17] Q. G. Zhao, M. Ogihara, H. Wang, and J. J. Xu, “Finding global
icebergs over distributed data sets,” in Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, ser. PODS ’06. New York, NY, USA: ACM, 2006, pp. 298–
307. [Online]. Available: http://doi.acm.org/10.1145/1142351.1142394

[18] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
B. Schwartz, S. T. Kent, and W. T. Strayer, “Single-packet ip traceback,”
IEEE/ACM Trans. Netw., vol. 10, no. 6, pp. 721–734, Dec. 2002.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2002.804827

[19] N. Johnson and S. Kotz, Urn Models and Their Applications: An
Approach to Modern Discrete Probability Theory. John Wiley and
Sons Inc, 1977.

[20] “CAIDA Website,” http://caida.org/.
[21] “SNORT Website,” http://snort.org/.
[22] B. Harris and R. Hunt, “Tcp/ip security threats and attack methods,”

Computer Communications, vol. 22, no. 10, pp. 885 – 897,
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S014036649900064X

