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Abstract— Recent studies on radio reality provided strong
evidence that radio links between low-power sensor devices are
extremely unreliable. In this paper, we study how to improve
energy efficiency for reliable communication using such unreli-
able links. We identify an optimal bound on energy efficiency
for reliable communication, and propose a new communication
model in the link layer that asymptotically approaches this
bound. This new model indicates a better path metric compared
to previous path metrics, and we validate this by establishing
a routing infrastructure based on this metric, which indeed
achieves a higher energy efficiency compared to other state-
of-the-art approaches. We present results from a systematic
analysis, simulations and prototype experiments based on the
MicaZ platform. The results give us fundamental insights on
communication efficiency over unreliable links.

I. INTRODUCTION

The evolution of radio models has consistently shaped the
upper layers of the communication stack in wireless sensor
networks. Early communication stacks were usually designed
based on over-simplified radio assumptions, such as the unit
disk graph model. Recently, this model has been repeatedly
challenged by empirical measurements. For example, studies
in [31], [26], [8] suggested that wireless links are irregular
and unreliable. These studies also observed highly different
packet delivery ratios for the same link in reverse directions.
The design of communication stacks must take into account
these radio layer realities.

Motivated by these observations, we focus on how to min-
imize overhead while providing reliable end-to-end commu-
nication over these unreliable links. Reliable communication
is important for sensor networks despite the wide use of
aggregation techniques, because realistic applications often
use alarms and other one-time event notifications that need
to be communicated reliably. The successful delivery of such
information has a direct effect on the overall performance of
the system.

Formally, we model an unreliable link between nodes A
and B as (p, q), where p represents the packet delivery ratio
from A to B, and q represents the packet delivery ratio
from B to A. When p and q are less than 100%, we must
use a packet recovery mechanism, such as retransmissions
and acknowledgements, to achieve reliability. The problem of
minimizing overhead, therefore, is equivalent to minimizing
the additional traffic compared to the ideal scenario where
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every link is perfect. To model this traffic, we introduce a
new parameter, Energy Per Bit, or EPB, to characterize the
energy efficiency aspect of communication. EPB represents
the average energy consumption for each delivered bit from the
source to the destination. EPB is decided by several factors,
such as the link layer packet recovery mechanism, the routing
layer path selection, the relative positions of the source and
the destination, and the network topology, among others. Some
of these factors, such as the relative positioning of the source
and the destination, are unique to a particular transport task.
Therefore, we do not aim to optimize EPB across different
transport tasks. Rather, we focus on optimizing EPB for a
given transport task, for example, node A sends 1000 bytes to
B through multiple hops.

The optimization presented in this paper is a joint optimiza-
tion process in two layers: in the link layer, it optimizes how
lost packets are detected; in the routing layer, it optimizes
how paths are selected. More specifically, we present two
corresponding techniques: 1) the lazy packet loss detection
in the link layer and 2) the use of a stream based path metric
in the routing layer. The first optimization technique applies
to a particular chosen path, while the second one applies to
the path selection process. These two optimization techniques
are unified by their consistency: we first analyze the first
optimization technique and demonstrate its effectiveness in
reducing EPB given a particular path. Based on the analysis,
we distill a path metric that features a stream nature, interacts
with the commonly used spanning tree routing structure,
and leads to the second optimization technique. Therefore,
by jointly applying these two techniques, we further reduce
EPB, as validated by an extensive evaluation.

Our optimization techniques have applications in a wide
variety of scenarios. One of them is surveillance [27], [3].
In this type of applications, sensed data, such as temperature,
light or pressure readings, are periodically sampled and relayed
to a central data collection node, referred to as the base
station. Normally, the data reporting rate is relatively low, and
timing requirements are not strict. Since data are generated
periodically, traffic naturally exhibits a streaming nature (i.e.,
a data flow to the base via multiple hops for a long period
of time). Our optimization techniques can therefore be readily
applied to such applications.

The rest of this paper is organized as follows. Section II
presents the lazy lost packet recovery mechanism. We then
derive a general stream path metric based on analysis of
this mechanism. Section III presents a systematic performance



evaluation of the mechanism from two aspects: the end-to-
end delay and the buffer requirements. Section IV integrates
the stream metric into the routing layer design, leading to
the second optimization technique. We compare its perfor-
mance to two state-of-the-art protocols that take into account
the unreliable nature of sensor network communication. We
demonstrate that, by using the joint optimization, our protocol
stack achieves a considerably better EPB value than either
of them. At last, we outline related work in Section V and
conclude this paper with Section VI.

II. LAZY LOST PACKET RECOVERY

We now describe the first optimization technique, called
lazy lost packet recovery. This section is organized into three
parts. First, we describe different link quality metrics based
on empirical experiments. Next, we present the design of the
optimization algorithm, and demonstrate that it approaches the
optimal efficiency bound. At last, we discuss applications of
reliable packet delivery in sensor networks.

A. Link Quality Metrics Overview

Link quality metrics are used to classify and select links.
Prior measurements on link quality reveal that different links
have considerably different packet reception properties [30].
One popular model is to treat a link as a bi-directional
packet reception probability vector (p, q). However, reception
probability is not the only representation of link quality.
Recently, another metric, LQI , or Link Quality Indicator, was
defined by IEEE standard 802.15.4 [1], and was implemented
on the Chipcon CC2420 radio component [7]. The CC2420
radio has been used on MicaZ and Telos nodes. Another
interesting link quality indicator is RSSI (Received Signal
Strength Indicator), also implemented on the CC2420 radio.
In this section, we demonstrate that LQI is closely correlated
with packet reception probability, and either of them can be
used as the underlying metric of our optimization model. On
the other hand, our experiments demonstrate that RSSI is
not a satisfactory indicator of link quality, and should not be
adopted for link classification.

The implementation of LQI , as defined in [1], was that it
“may be implemented using receiver ED (energy detection),
a signal-to-noise ratio estimation, or a combination of these
methods.” The CC2420 radio module implemented LQI based
on a sampling of the error rate for the first eight symbols of
each incoming packet. This sampling generates a correlation
value in the range of [50, 110], followed by a linear conversion
of this value to a range of [0, 255], which is the value provided
to the user.

RSSI is not detailed in the 802.15.4 standard, but it is
provided by the CC2420 radio module together with LQI .
RSSI is also based on eight symbols, but instead of using
the error rate, it uses the average energy level to calculate its
value.

We carried out a series of experiments with both indoor and
outdoor environments during different periods of the day. Due

to space limitations, we only present one representative set of
data in Figure 1.
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Fig. 1. Correlation between the packet receiving ratio and LQI of CC2420
radio at receiver side. At each distance, six rounds of packets are sent from
the sender to the receiver.

In this particular experiment, we use a pair of MicaZ nodes,
one as the sender and the other as the receiver. We vary the
distance from the receiver to the sender from 5ft to 40ft, in
steps of 5ft. At each distance, the receiver sends six rounds of
packets, with 100 packets in each round. The packet reception
ratio, the average LQI and the average RSSI are plotted
for comparison. Both LQI and RSSI are calculated in every
round.

We have three observations. First, we observe a strong
correlation between the averaged LQI values and packet re-
ception probabilities at the receiver. Statistical analysis shows
that the Pearson’s correlation coefficient is 0.90 between these
two variables. Of course, there are still some inconsistencies
observed, especially when the received signal is weak. These
inconsistencies explain why the Pearson’ s coefficient is not
1.0. Nevertheless, the observed correlation is still quite inter-
esting, since LQI is calculated only from those packets that
are received, whereas the packet reception probability takes
into account those packets that are dropped. This correlation
implies that LQI is a good measurable indicator of the packet
reception probability. Second, at each distance, the packet
reception probability has a narrow range of variation that is
less than 20%. Our additional experiments also exhibit the
same property. This observation is consistent with results in
the literature [26]. We, therefore, consider the packet reception
probability as a relatively stable parameter to classify links.
Third, observe that there is a much smaller correlation between
RSSI and the packet reception probability. The Pearson’s cor-
relation coefficient is only 0.56 between the packet reception
probability and the RSSI value. Furthermore, observe that
when the signal is weak, even though there is a considerable
variation in the packet loss rate, RSSI does not change
appreciably. Therefore, we do not recommend using RSSI
as a reliable link quality indicator.



B. The Design of the Lazy Packet Loss Detection

We now describe the lazy packet loss detection algorithm.
The optimization goal is to minimize EPB. Since this algo-
rithm works in the link layer, we assume a chosen path. For
example, we consider the scenario where the source sends
1000 packets to the destination via certain hops. Observe
that the amount of meaningful traffic is fixed. Therefore, the
optimization goal is equivalent to minimizing the overhead.
This goal can also be expressed as maximizing the fraction of
non-redundant data packets.

We now introduce the path efficiency parameter, η. For-
mally, for a path with N hops, let U be the total useful traffic
delivered in bits, and S be the total amount of bits transmitted
from all nodes on this path. We have:

η =
UN

S
(1)

Clearly, for a fixed path, η and EPB are inversely propor-
tional. Therefore, for a given path, we want to maximize η.
Note that, however, η can not replace EPB when the path
is not fixed. For example, one way to maximize η without
a given path is to select only strong links (links with high
reception probabilities), so that very few packets will be lost.
In this case, we obtain a high η value. On the other hand,
by only choosing strong links, we are essentially accepting an
excessively large number of hops, which increases EPB.

The rest of this section optimizes η. First, we consider
the upper bound of η. Next, we present the lazy lost packet
detection algorithm. At last, we show that the reliable com-
munication model, assumed in this paper, generally achieves
a better η than unreliable models.

1) Path Efficiency Upper Bound: We now derive the upper
bound of η. A simplified model is shown in Figure 2.

(p1,q1) (pn,qn)(p3,q3)(p2,q2)Source Sink

Fig. 2. The simplified link model

In this model, we assume a path of n links. Suppose link
Li has a forward packet reception probability of pi and a
backward packet reception probability of qi. Observe that for
a single link, we have:

The path efficiency η over a single link cannot be higher
than its forward packet reception probability p.

The reasoning is intuitive: since useful traffic can only flow
forward, if the sender sends N packets, only pN packets can
be delivered successfully. Therefore, even if (though this is
not practical) the sender knows, without any additional cost,
which packets are lost and re-transmits them, an upper bound
of p nevertheless holds for η.

Next, we consider the path efficiency over multiple links.
Suppose the sender intends to send K bits to the destination
over n hops. Suppose the total traffic flowing over link Li in
both directions is Mi bits. For link Li, we have:

ηi =
K

Mi
≤ pi (2)

On the other hand, we know the path efficiency ηpath over
n hops is (according to Equation 1):

ηpath =
nK∑n
i=1 Mi

(3)

Let the maximal pi for 1 ≤ i ≤ n be pmax, we have:

ηpath =
n∑n

i=1
1
ηi

≤ n∑n
i=1

1
pi

≤ pmax (4)

A tight upper bound on path efficiency η over multiple hops
therefore is n∑ n

i=1
1

pi

. Using this bound, we can investigate

the available reliable communication models. Surprisingly, few
have considered the aspect of efficiency and some intuitive
solutions can never approach this bound. Such is the case with
the popular timeout-based solution.

In a timeout-based solution, the sender generally relies on
a timer to control retransmissions. More specifically, if the
sender does not receive an acknowledgement from the receiver
when the timer fires, it assumes that either the data packet
or the acknowledgement is lost. Therefore, it sends the data
packet again. This solution is intuitive, elegant and has been
proved to be robust in practice. However, despite its merits, we
argue that this timeout-based design is inherently less advanta-
geous for sensor networks for efficiency reasons. Specifically,
let us consider the number of packets it takes for transmitting
one data packet reliably for one hop over a link of reception
probabilities of (p, q) using the timeout-based protocol. Since
the combined packet delivery success ratio for a round of
packet exchanges (i.e., for a pair of data and acknowledgement
packets), is pq, the sender is expected to send the data packet
1/pq times before both the data packet and the corresponding
acknowledgement packet are delivered successfully. Since the
receiver only acknowledges those data packets it receives, it
is expected to send 1/pq × p, or 1/q acknowledgements. Let
the packet length ratio between the acknowledgement packet
and the data packet be λ. The path efficiency η over this
link becomes pq

1+pλ . As λ → 0, or, if the data packet is
sufficiently large compared to the acknowledgement packet, η
approaches pq. Compare this result with Equation 2, as long
as the backward link is not perfect, this efficiency value is
always smaller than its upper bound.

2) Lazy Lost Packet Detection based Communication: So
why does timeout-based design fail to approach the upper
bound? Observe that in this design, the key mechanism the
sender relies on to detect a packet loss is the acknowledgment
packets from the receiver. Unfortunately, the backward link is
not perfect, therefore, the sender wastes bandwidth by retrans-
mitting data packets that have been successful. To avoid this
problem, therefore, the sender must use additional information,
other than the acknowledgements from the receiver, to detect
packet losses. In the design described in this section, we use
a combination of two techniques, overhearing and sequence
number counting, to achieve this purpose.

We present three aspects of the new communication model:
lazy loss detection, implicit acknowledgement, and path effi-
ciency analysis. The basic mechanism is shown in Figure 3.
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Fig. 3. This example shows the basic principle of lazy loss detection. At
each node, packets are sent out in order, although packets may not be received
in order. In this example, A sends out 6 packets in total, and packet 3 is lost
when first sent from A to B. B then detects this packet loss after receiving a
following packet using sequence number counting, and asks A to retransmit
it. Packet 3 is then retransmitted.

Lazy Loss Detection In lazy loss detection, the sender does
not employ any timeout mechanism. Rather, the detection of
lost packets is delayed to the moment when the receiver gets
another packet from the sender. For example, in Figure 3, the
loss of packet 3 is not detected until B receives packet 4 from
node A. We therefore call this loss detection lazy. The receiver
then recovers the lost packets by sending retransmission re-
quest packets (RRPs). Since the link from B to A is also not
perfect, it may take multiple RRPs to inform A of the lost
packet. Therefore, B should periodically resend RRPs, with
an interval larger than the round-trip time, until it recovers
the lost packet. Obviously, to maintain the correct sequence
of packets, we enforce that new packets received by B during
this period should be temporarily buffered.

Implicit Acknowledgement To respond RRPs, a node must
buffer the lost packets. Hence, a node deletes a packet it sent
out earlier only when it decides that this packet has indeed
been received by the receiver. In practice, the sender relies on
implicit acknowledgements. These acknowledgements come
from two sources. First, based on the broadcasting nature of
wireless links, A can usually overhear the packets sent out by
B to downstream nodes. Such overhearing is the first source of
implicit acknowledgement That is, once A overhears a packet
it sent out earlier being relayed, it can safely delete it from
its buffer. For example, in Figure 3, node A can delete packet
1 after it overhears it sent by node B. Second, observe that
RRPs can also serve as acknowledgements, as long as RRPs
for different lost packets are kept in order. That is, once B
decides that a packet has been lost, B should stop relaying
new packets, and immediately switch to sending RRPs. When
A receives a RRP, it can decide that 1) all packets prior to this
lost one must have been successfully received and 2) it should
resend the requested (lost) packet. RRPs therefore serve as

implicit acknowledgements. For example, in Figure 3, when
B sends RRPs to A regarding the lost packet 3, A decides
that previous packets must have been received by B, and can
safely delete them from the buffer.

Observe that some techniques presented here, such as the
packet sequence number counting and the implicit acknowl-
edgement, work only if A continues to send packets to B.
For the last few packets in a stream, the sender should either
switch to sender-timeout mechanism for packet-loss detection,
or it can send additional dummy packets to the receiver. The
dummy packets should assume higher sequence numbers, so
that the receiver can correctly diagnose potential packet losses.

Path Efficiency Analysis We now analyze path efficiency
η in the lazy communication model. We define λ as the length
ratio between a RRP packet and a data packet. For one
link, if the first packet transmission is successful, which has
a probability of 1 − p, there are no retransmissions needed.
Otherwise, when the receiver detects a packet loss, it sends a
request for retransmission. For a link with a delivery ratio of
(p, q), the number of RRP s, after a packet loss, conforms to
a geometric distribution with parameter pq, and the average
number of RRP s sent is 1/pq. On the sender side, since it
only responds to those RRP s it receives, the average number
of retransmissions for a lost data packet is 1/p. Therefore, the
path efficiency is:

η =
1

1/p + (1 − p)λ/pq
=

pq

q + (1 − p)λ
(5)

The interesting fact regarding Equation 5 is that if the length
of data packets is sufficiently large compared to the length
of RRP s, or, if λ → 0, η → p. Remember that p is the
upper bound for efficiency over a single link. Therefore, we
have shown that lazy packet loss detection overcomes the
disadvantage of timeout-based mechanisms and approaches the
path efficiency upper bound. Additionally, this result indicates
that it is beneficial to use various techniques, such as data
aggregation, to increase the length of data packets and decrease
λ.

We can also easily get the expected EPB value over this
link:

EPB = p× 1 + (1− p)× (1 +
1
p

+
λ

pq
) =

1
p

+
1 − p

pq
λ (6)

EPB represents energy consumption. We demonstrate that
once this metric is incorporated into the routing layer design,
it can significantly improve the path energy efficiency of data
streams (which we call the stream model.

C. Why Reliable Packet Delivery is Important

So far, we have assumed our communication model to be
reliable. In this section we explain why. We present a compar-
ison between three communication models on path efficiency
over multiple hops: our new model (denoted stream), the
timeout-resend model (denoted timeout), and the best effort,
non-reliable data communication model (denoted noack). For
the end-to-end path efficiency, we have:



ηstream =
N

∑N
i=1

qi+(1−pi)λ
piqi

(7)

ηtimeout =
N

∑N
i=1

1+piλ
piqi

(8)

ηnoack =
p1 · p2 · · · pn · N

1 + p1 + p1 · p2 + · · · + p1 · p2 · · · pn−1
(9)

For an intuitive understanding of their differences, assume
the link quality p over different links can be approximated by
p̃, and q approximated by q̃. Indeed, such an approximation
is highly simplified, and we shall take into account quality
reception variations in Section III-A. In the simplified case,
we have:

ηstream =
p̃q̃

q̃ + (1 − p̃)λ
(10)

ηtimeout =
p̃q̃

1 + p̃λ
(11)

ηnoack =
(1 − p̃) · p̃N · N

1 − p̃N
(12)

These results show one critical difference between the best
effort communication model (Equation 12) and the reliable
communication model (Equation 10,11): the path efficiency of
the best effort model is relevant to the number of hops, whereas
the path efficiency of the reliable model is not. Therefore,
the best effort communication model is not scalable to long
paths. This fact is even more intuitive if we make a further
simplification by enforcing that λ → 0 and N → ∞. We get:

ηstream → p̃ (λ → 0) (13)

ηtimeout → p̃q̃ (λ → 0) (14)

ηnoack → 0 (N → ∞) (15)

This result shows that as the packet travels over many hops,
the communication efficiency of the best effort communication
model approaches 0! This fact also implies that virtually any
conventional design that primarily relies on end-to-end loss
recovery techniques can not be ported to sensor networks, due
to scalability issues.

Arguably, sensor networks represent a new paradigm for
communication where sometimes it is difficult to motivate
reliable communication. For example, data may be aggregated
along the path. The network may indeed tolerate a certain
amount of packet losses without significantly affecting the
aggregate. However, for the system to scale, the fraction of
delivered packets should remain finite and representative of the
original pool, which means that a certain degree of reliability is
needed to prevent end-to-end communication efficiency from
dropping below a certain minimum with an increased hop
count.

III. UNDERSTANDING THE PERFORMANCE OF THE

STREAM COMMUNICATION MODEL

We now present a detailed investigation on the performance
of communication model, which we call the stream commu-
nication model. We analyze performance from three aspects.
First, we study path efficiency through empirical experiments,
and validate the performance advantages of the new approach.
Next, we analyze end-to-end delay, and validate our results
using simulations. At last, we analyze buffer size requirements.

A. Empirical Validation of the Communication Model

To compare the path efficiency in realistic settings, we
used MicaZ nodes to test our communication model. In the
experiment, sixteen nodes (labeled 1 to 16) were placed in an
indoor hallway. The experiments were carried out at midnight
to avoid external interference. The output power level of each
node was set to be −7dBm. In the experiment, each node first
sent periodic beacons to neighbors to determine the packet
reception probability. This process took 2000 packets for each
node over a period of 100 seconds. Then, node 1 sent out 3200
packets, hop by hop, to node 16. We enforced that nodes relay
the packets sequentially, that is, node 1 sent packets to 2, 2 to
3, etc, at a rate of 2 packets per second. We deliberately chose
a low rate to avoid any potential interference, so that the effect
of unreliable links can be isolated from that of congestion.
Each packet had a payload of 29 bytes, so the overall useful
traffic was approximately 100K bytes. We implemented the
three different communication models mentioned previously
and ran this experiment using each of them separately. Each
node logged the number of transmissions, retransmissions,
requests for retransmissions, and acknowledgements into its
flash. These data were collected after the experiments. The
results presented here are based on the analysis of these data.

First, we determine the link qualities connecting these
nodes. The result is plotted in Figure 4. Note that we only
plot link qualities between nodes adjacent to each other.
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that connect them, represented by the packet reception probabilities. Links
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We observe several well-known phenomena in wireless
communication, such as the existence of link asymmetry and
weak links. These phenomena have been reported in prior
literature. Based on link quality, we can calculate the expected
packet transmission rounds for the stream communication
model. The actual packet numbers fit the predictions very well,
as shown in Figure 5.

There are slight differences between the predictions and
the actual measurements in Figure 5, for two reasons. First,
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Fig. 5. This figure compares the predicted and experimental data traffic. The
former is calculated based on the analysis of the communication model, and
the latter is measured in the experiment.

link quality may change slightly over time. Second, in our
implementation, the sender switches to timeout-based packet
delivery to ensure reliability at the end of the stream. Both
factors lead to slight performance deviations, but Figure 5
demonstrates that these deviations are small and the predic-
tions are still quite accurate.

We also compare the efficiency of the stream communi-
cation model to the other two models. We plot the results
in Figure 6. The path efficiency is calculated based on ex-
perimental data. The efficiency for a particular link refers to
the accumulated path efficiency from link 1 to this link, as
calculated based on the logged data. For example, observe
that link 10 corresponds to an efficiency of 0.75 for the stream
model, meaning that as data flow from link 1 to 10, the overall
efficiency of these ten links is 0.75. Also observe that because
of the poor quality of link 2 ((0.51, 0.29) in the experiment),
all three communication models experience a considerable
decrease in terms of efficiency at link 2. The third observation
is that we have similar results as the analysis in Section II-C:
the best-effort communication model does not scale with path
length and the stream communication model outperforms the
other two models considerably.

B. End-to-End Delay Analysis

To derive the end-to-end delay, observe that this delay
contains multiple random variables conforming to different
distributions. For example, both the time it takes to detect a
packet loss and the number of RRPs sent after the detection
of a lost packet conform to geometric distributions, whereas
the number of hop-wise delivery failures for a packet from
the source to the sink conforms to a binomial distribution.
Despite the fact that it is quite difficult to obtain the accurate
statistical distribution of the end-to-end delay, it is relatively
easy to give an estimate of the expected end-to-end delay.
In practice, this parameter is very useful. We derive an
estimate of end-to-end delay for two types of traffic: periodic
traffic and Poisson traffic. We also validate our analysis using
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simulations. We do not use empirical data due to the fact that
in order to maintain precise time synchronization, which is
necessary for calculating the end-to-end delay, current sensor
networks protocols employ periodic data exchanges to cope
with clock drifts. Such periodic packet exchanges incur a non-
trivial traffic overhead and lead to unexpected interference,
both of which we want to avoid. Therefore, it is hard to
measure precise packet delays without having side-effects on
link quality due to interference. Moreover, our simulations also
allow us to use a much larger traffic volume to get more precise
distribution curves.

We first analyze the end-to-end delay for periodic traffic.
Consider a path with N hops. Let the delivery latency at
each hop be Tl. Let the source generate data packets at a
fixed interval, Td. We assume Tl � Td. Suppose the timeout
for RRPs is Ta. A packet sent over a link with a reception
probability (p, q), has a probability of 1−p of being lost. One
must then wait for a new packet to be successfully transmitted,
so that the lost packet can be detected. On average, it takes 1/p
new packets before one packet can be successfully delivered.
After the lost packet is detected, it takes on average 1/pq
RRPs to recover the packet. Therefore, the total expected
delay over one hop can be approximated by Tl +(1−p)(Td

p +
Ta

pq ). For a path with N links, the end-to-end delay can be
estimated as:

Delay =
N∑

i=1

[Tl + (1 − pi)(
Td

pi
+

Ta

piqi
)] (16)

The analysis for Poisson traffic is quite similar. We model
the packet flow as a Poisson process with parameter λ.
Therefore, the expected time period for 1/p new packets to be
generated is 1/pλ. The end-to-end delay can then be estimated
as:

Delay =
N∑

i=1

[Tl + (1 − pi)(
1

piλ
+

Ta

piqi
)] (17)



Both Equations 18 and 17 only model the expected hop
delay of the first hop, and then extend this approximation to the
remaining hops. Therefore, these results are somewhat sketchy.
However, through simulations with different parameters, we
find that Equations 18 and 17 indeed provide quite accurate
predictions regarding the average end-to-end delay.

In the simulation validation, we use the same link quality
data set as in Figure 4. All other parameters are set strictly
according to MicaZ’s technical specifications. The bandwidth
of MicaZ’s CC2420 radio is 250kbps, therefore, the time to
transmit one packet is roughly 0.001s. We set the timeout
parameter for generating RRP packets to be 0.01s, which is
sufficient for one round of packet exchanges. The end-to-end
delay distribution from the simulation is plotted in Figure 7.
We also plot the theoretical predication of the expected delay,
2.877s, based on Equation 18, along with the average end-to-
end delay calculated from simulation results.

 0

 5

 10

 15

 20

 25

0-1

P
ac

ke
t P

e
rc

en
ta

ge
 (

%
)

End-to-End Delay (second)

Periodic Traffic
Poisson Traffic

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-1212-1313-1414-1515-1616-17

Predicted Average Delay = 2.877s
Periodic Traffic Average Delay = 3.179s
Poisson Traffic Average Delay = 3.167s

Fig. 7. The Distribution of End-to-End Delay

As observed in Figure 7, our earlier theoretical prediction
on the average end-to-end delay fits the simulation results
with an error of approximately 10%. This error is attributed
to the analysis procedure earlier: we simplified the problem
by extending the average delay for the first hop to the whole
path, while in practice, a packet loss could cause cascading
effects, therefore increases the end-to-end delay.

We also briefly compare the end-to-end delay of the stream
communication model with other communication models. For
the best-effort model, it is trivial in that each successfully
delivered packet has the minimal delay. For the timeout-
based model, we assume the most generic case in which the
sender uses a timer to decide whether a packet it sent has
been successfully received. If the timer expires at Ta and no
acknowledgement packet is received, the sender retransmits
the packet. Therefore, we can easily get the expected end-to-
end delay for the timeout-based model as:

Delay =
N∑

i=1

[Tl + (
1
pi

− 1)Ta] (18)

Following the settings in Figure 4, the expected end-to-end
delay is approximately 70.54ms, which is much smaller than

the stream model. The reason is that in the stream model, the
sender relies on subsequent packets to detect potential packet
losses. The experiment settings in Figure 4 feature a relatively
low data rate, therefore introducing a longer end-to-end delay.

C. Buffer Requirement Analysis

We now analyze buffer requirements. We consider this
problem: given a set of links, what is the appropriate buffer
size to avoid packet losses? Although it is much more complex
to model the exact relationship between the buffer size and the
loss rate, it is usually sufficient to provide a lower bound (i.e.,
how large the buffer should be to avoid packet losses with high
probability). We shall answer this question in this section.

There are two requirements that must be satisfied to ensure
that packet losses should not occur. First, packet losses should
be detected in time before the packet is deleted from the buffer,
and second, lost packets should be recovered. Each issue turns
out to be a constraint in the model.

First, in order to detect lost packets in time, we consider
the instant when one packet gets lost. This packet is buffered
by the sender until the buffer is full. Then, the oldest packets
in the buffer are dropped since we enforce that the buffer is
FIFO. During this period, if at least one packet sent after the
lost packet is received, then the receiver can detect the packet
loss based on sequence number counting. Therefore, as long as
the buffer holds enough packets such that at least one packet
following the lost packet can be received, the lost packet
should be detected. Put in another way, the probability that
a packet loss is left undetected is equivalent to the probability
that none of the sequence of packets following the lost packet
is successfully received before the lost packet is deleted from
the buffer. Consequently, for a buffer size of N and a link
with a reception probability of (p, q), the probability of a
packet loss detection failure is (1− p)N . In practice, we want
this probability to be sufficiently small, for example, less than
10−3. Therefore, we have:

(1 − p)N < 10−3 ⇒ N > − 3
log10(1 − p)

(19)

Second, we also need to enforce that lost packets can be
recovered. Consider a period of T and a fixed data generation
interval of Td, we know T

Td
packets are to be transmitted.

Among them, (1−p)T
Td

packets are expected to be lost. Since
recovering one packet requires on average 1/pq rounds of
RRPs, therefore, recovering one packet takes an expected
period of Ta

pq . Over the period of T , at most T
Ta/pq packets

can be recovered. Since the number of recovered packets must
not be smaller than the number of lost packets, therefore, we
have:

T

Ta/pq
>

(1 − p)T
Td

⇒ Td

Ta
>

1 − p

pq
(20)

Interestingly, the buffer size does not appear in this con-
straint, instead, this result implies that both p and q should
not be too small. For example, in our earlier experiment, the
data rate was 2 packets per second and the timeout was 10



milliseconds. Therefore, Td

Ta
= 50. This constraint therefore

enforces that 1−p
pq < 50. All communication links in the earlier

experiment satisfied this constraint.
Above all, Equation 19 appears to be the most relevant

constraint that the buffer size of each node should satisfy.
We use simulations to validate this claim. For simplicity, we
enforce that p = q in all cases, and simulate different p values.
We plot the relationship between the packet loss ratio and the
buffer size from simulations in Figure 8.
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Fig. 8. The Relationship between the Buffer Size and the Data Loss Rate

In this simulation, we still use 15 links. We calculate the
theoretical prediction (we call them bounds in Figure 8) on
buffer size for each link quality setting. These predictions
are circled on the X axis at their corresponding positions in
this figure. Observe that generally the predictions work quite
well. We indeed observe 1 − 5% packet loss even when the
predicted buffer size is allocated. Part of the reason is that
when multiple lost packets are detected simultaneously, it may
take too many rounds of RRPs to recover them, causing the
following packets from upstream nodes not to be buffered.
To make the problem tractable, our model does not take this
effect into account, therefore, slightly larger buffer size should
be allocated to reduce packet losses in practice.

An interesting observation concerning Figure 8 is that
normally, the required buffer size is indeed low. For example,
even with quite unreliable links (0.5/0.5), the buffer size
requirement is merely 16 packets. Hence, our design is space-
efficient, making it suitable for resource constrained sensor
nodes.

We also briefly compare the buffer requirement of the
stream communication model to other communication models.
For the best-effort model, it trivially requires a buffer space
of only one packet. For the timeout model, if the timer has a
much higher firing rate than the data packet arriving rate, as
is the case in our experiment, one packet is almost guaranteed
to be received by the next node before the next data packet
arrives. Therefore, the buffer requirement is also negligible.

IV. ROUTING LAYER OPTIMIZATION

In this section, we present the routing layer optimization
technique. Specifically, we integrate the stream communication

model presented in Section II-B.2 with the spanning tree rout-
ing protocol by taking into account link quality variations. The
rest of this section is organized as follows. First, we describe
in detail the optimization procedure. Next, as a preparation
for the comparison and analysis, we present a brief overview
of two related path selection methods that appeared in recent
literature. Both of them also have taken into account the effect
of path quality, though their path quality metrics are different.
At last, we compare these three approaches and analyze our
results. We use EPB as the primary comparison metric. The
comparison results show that the stream communication model
achieves a considerably higher energy efficiency than the other
two approaches. We believe the performance improvement is
primarily attributed to our joint optimization technique across
the link layer and the routing layer.

A. Spanning Tree Routing Structure Optimization

The optimization of spanning tree routing has two phases:
a link estimation phase where each node independently esti-
mates its link quality to immediate neighbors by exchanging
packets, and a selective flooding phase where each node
obtains its parent node as well as its path cost to the base
station.

In the first phase, each node broadcasts a fixed number
of packets and records the number of successfully received
packets from its neighbors. Each node then exchanges this
information with neighbors, thereby filling its neighbor table
with both outward and inward links with link quality indicators
(p, q).

In the second phase, the base station initializes a selective
flooding procedure to build a weighted routing tree. In the
beginning, the base sets the path cost to itself to 0. All other
nodes consider the path cost to the base as infinitely large.
The base sends out its current path cost to its neighbors. To
handle possible packet losses, it rebroadcasts this information
multiple rounds. Once one neighbor receives such a packet, if
the path cost contained in the packet is smaller than its current
path cost, it recalculates its path cost to the base by adding
the received path cost, for example, from a node V with a
link quality (p, q), with a stream metric cost corresponding to
this link, calculated from Equation 6. This node also records
V as its parent node. It rebroadcasts its updated path cost
after a short waiting period, to avoid congestion. Similarly, it
rebroadcasts the update multiple times. Meanwhile, this node
records all packets sent by its neighbors, thereby maintaining
the path cost information of its neighbors.

After the second phase, each node maintains a path cost
to the base station through its parent node. By following
the parents, one node can reach the base station. We shall
next compare the effectiveness of this approach to related
approaches in the literature.

B. Related Approaches

In this section, we give a brief overview of two related
path selection approaches that appeared in the recent literature.
They are the geographic routing based path selection as



TABLE I

SIMULATION SETTINGS

Radio
Modulation FSK Encoding Manchester

Output Power -7 dBm Frame 50 bytes
Transmission Medium

Path Loss Exponent 3 PLD0 55 dBm
Noise Floor -105 dBm D0 1m

Deployment Configuration
Area Height 200 m Area Width 200 m

Node Number 1000 Range 10-25m

presented in [18] and a high-throughput metric based path
selection as presented in [8].

The authors of [18] compared multiple path selection indica-
tors in the context of geographical forwarding and concluded
the metric PRR × distance product achieves the best per-
formance. Here, for a pair of nodes U and V , PRR stands
for the packet reception probability of V for packets from
U . Distance stands for the distance advanced towards the
destination by node V . Node U computes the metric PRR×
distance among all its neighbors and selects the maximal one
as the best next neighbor. For complete derivations, please
refer to [18].

The authors of [8] proposed another metric ETX (the ex-
pected number of data transmissions required to send a packet
over a link), defined as 1/pq for a link with quality (p, q).
[8] did not optimize a spanning tree, instead, it integrated
ETX with the DSR routing algorithm. If we consider the
base station in the spanning tree as the source node in the
DSR routing algorithm, we are able to optimize the spanning
tree using the ETX metric based on the approach provided
in [8].
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C. Performance Comparison

We set up the simulation to reflect realistic communication
behavior of sensor networks. We use the radio model in
[31], which models many realistic radio features, such as
the existence of the transitional region, radio irregularity, and
antenna directionality, among others. In our simulation, we
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use this model as the radio layer. For a detailed description of
the radio model, please refer to [31]. We set the parameters
of the radio strictly according to the technical specifications
of the MicaZ radio module. There are, of course, several
adjustable parameters of the CC2420 radio on the MicaZ
nodes, such as the output power. In this case, we adjust
the parameters consistently with our earlier experiments. The
complete simulation setup is shown in Table I.

In the simulation, we assume that nodes are randomly
deployed in a square area. The default number of nodes is
1000, and the default area size is 200m× 200m. One node is
positioned at (0, 0) to serve as the base station. After nodes
form a spanning tree structure, we apply different optimization
procedures, and calculate the EPB value for each node. We
assume the energy consumed for transmitting one bit over one
hop at the default power level −7dBm is one unit. We plot
the results for four different mechanisms: ETX based Path
Selection in [8]; Optimized GF Path Selection in [18]; Stream
based Path Selection as proposed in this paper; Hybrid Path
Selection, which uses the ETX metric to select paths and
uses the stream communication model to deliver packets. The
reasoning behind the last path selection is that we want to
isolate the optimization effect of the routing layer.

In each of the following experiments, fifty rounds of sim-



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

-10 -8 -6 -4 -2  0

A
ve

ra
ge

 E
P

B
 (

un
it)

Output Power Level (dBm)

Stream Path Selection
ETX Path Selection
GF Path Selection

Hybrid Path Selection

Fig. 12. Impact of Output Power Level

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1  2  3  4  5

A
ve

ra
ge

 E
P

B
 (

un
it)

Shadowing Standard Deviation

Stream Path Selection
ETX Path Selection
GF Path Selection

Hybrid Path Selection

Fig. 13. Impact of the Shadow Standard Deviation

ulations are carried out and the averaged values from these
rounds are used. A confidence interval of 95% is used where
applicable.

Figure 9 compares the EPB distributions of the four afore-
mentioned path selection mechanisms. A lower EPB means
a better energy efficiency. We observe that the stream based
path selection performs the best, followed by the hybrid path
selection, then the optimized GF path selection, and at last,
the ETX based path selection. As described earlier, one EPB
unit stands for the energy consumption for a transmission of
one bit over one hop at the output power level of −7dBm.

We also study the impact of two adjustable parameters: the
area size and the node density. Figure 10 plots the impact of
the area size, where node density is the same across different
settings. The average EPB for all nodes is used for compari-
son. Observe that the stream based path selection consistently
performs the best. This figure and the three following figures
also have the confidence level plotted.

In Figure 11, we vary the node density. The number of
nodes varies from 800 to 1600, and the area is kept at
200m×200m. An interesting observation is that as the density
increases, EPB slightly decreases. This is quite intuitive since
increased density implies better paths may exist, which leads
to a decreased energy cost. Another consistent observation is

that the stream based path selection performs the best.
Figure 12 considers the effects of different output power

levels. The area size is 200m×200m. Notice that the unit in
this figure still means the energy consumption for transmitting
one bit using an output power level of −7dBm. The energy
consumption values of other output power levels are scaled to
this unit. Interestingly, we observe that by increasing the out-
put power level, the energy consumption grows considerably,
even though we did observe reduced path length in terms of
hops and better connectivity.

Figure 13 considers the effect of a transitional region, in
which the link quality changes abruptly. The existence of a
transitional region has been repeatedly reported in the recent
literature [26], [30], [31]. In the radio model we use, we are
able to tune the parameter σ, the shadowing standard deviation,
to adjust the width of the transitional region: a smaller σ leads
to a narrower transitional region. In this experiment, we change
the value of σ from 0, where the transitional region does not
exist, to 5, where a very wide transitional region appears. The
σ value of MicaZ nodes is approximately 3.8 [31]. We observe
from the results that, generally, a larger transitional region
leads to better performance in terms of EPB. This indicates
that, interestingly, a smart use of the highly varied links in
the transitional zone can improve the performance. In fact,
this is because a wider transitional region provides more links
to choose from. However, we cannot make the assertion that
choosing more links in the transitional region always leads
to better performance. A counterexample is observed in the
following experiment.
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In the next experiment, we consider this interesting problem:
exactly what is the relationship between the link choice and the
energy efficiency? For example, does choosing more links in
the transitional region generally lead to better performance?
To answer this question, we study three distributions: the
distribution of distances of all neighbor pairs, the distribu-
tion of distances of neighbor pairs that have parent-child



relationship using the stream based path selection, and the
distribution of distances between neighbors that have parent-
child relationship using the optimized GF path selection. We
know that the stream based path selection performs better than
the optimized GF path selection, so is this a result of choosing
more links in the transitional region?

As a comparison, we also plot the transitional region based
on the radio model. Observe that the transitional zone spans
roughly from 10m to 30m. Comparing the two sub-graphs
in Figure 14, the first important observation is that links
inside the transitional zone are obviously preferred compared
to other links in both path selection policies. This is consistent
with the observations made in [18]. The second observation
is even more interesting: the optimized GF path selection
uses considerably more links in the transitional zone than the
stream based path selection. We believe the reason is that the
optimized GF path selection is too aggressive in terms of
selecting far away links with poor connectivity. Combine this
fact with our earlier results, we know that choosing links in
the transitional region too aggressively actually degrades the
overall energy efficiency.
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The last experiment studies the distribution of hop count
numbers using different path selection metrics. The hop count
metric is the conventional path length parameter. Since the
hybrid path selection leads to the same path length as the
ETX based path selection, we only need to compare three
metrics. The results are shown in Figure 15. Observe that
the stream based path selection generally leads to the shortest
paths, followed by the ETX based path selection and the
optimized GF path selection.

One very interesting, yet somewhat counter intuitive obser-
vation about Figure 15 and Figure 14 is that the optimized
GF path selection selects more links in the transitional region
(which are expected to be more distant) than the stream based
path selection, yet it still has longer paths. The reason is
that the stream based path selection incorporates a flooding
process to build the routing structure, yet GF only uses
local information to make path selection choices. Therefore,
although the optimized GF approach does choose distant links
more aggressively, such links may not lead the packets in the

globally right direction. Therefore, the paths in the optimized
GF path selection are relatively longer.

D. Conclusion

Based on the comparison results, we can decrease EPB
by using the stream metric in the routing layer. Of course,
one serious limitation of the spanning tree routing structure
is that it can only support a limited number of base stations,
while the optimized GF mechanism presented in [18] can
handle more generalized peer-to-peer communication patterns.
Nevertheless, since many applications indeed use only a few
base stations, we believe our study is quite applicable to
these real systems. Furthermore, we plan to extend the stream
based communication model to more generalized, peer-to-peer
communication patterns in our future work.

V. RELATED WORK

Research on radio properties [6], [30] indicates that the
wireless links between low power sensor devices are extremely
unreliable. Specifically, Woo [26] points out the existence of
three distinct data reception regions within a radio range:
full connected, transitional and disconnected regions. In the
transitional region, the reception of data becomes highly
varied. Meanwhile, it is observed that, in realistic systems, the
radio qualities are severely affected by the multi-path effect,
reflection, diffusion, scattering and ground attenuation [10],
[22], [12].

To achieve reliability over unreliable links, many protocols
have been designed, evaluated and implemented [8], [18],
[17], [21], [27]. Some protocols regard the reliability in data
delivery as a main design goal. For example, RMST [21]
(Reliable Multi-Segment Transport) tracks packet fragments so
that receiver-initiated requests, using NACK control packets,
can be satisfied when individual pieces of an application
payload get lost. Another work is the transport layer design
of Wisden [27]. The transport layer of Wisden shares some
features of RMST and uses overhearing in the same way as
our stream communication model. In addition, robust data de-
livery [9] simultaneously sends packets along multiple paths at
the expense of increased communication overhead. Our work
is different from these approaches in the sense that we achieve
communication efficiency and reliability, simultaneously.

Recently there also have been some protocols designed
to address both reliability and congestion, simultaneously.
Among them are CODA [24] and ESRT [17]. Both protocols
are more focused on how to reduce congestion through various
techniques. Specifically, CODA uses a sampling of the channel
to determine whether the channel is currently congested, and
if it is, nodes decrease the traffic allowed. Alteratively, ESRT
monitors the current network state based on the congestion
conditions in the network. Such conditions guide ESRT to
adjust the reporting frequency of the source node to maintain
event-to-sink reliability dynamically.

The topic of efficiency has been considered less frequently
in the recent literature. Representative protocols include Fu-
sion [11] and a revised geographical forwarding proposed



in [18]. Both protocols discussed possible enhancements on
efficiency. In Fusion, the main topic is how to leverage various
congestion-control mechanisms to increase efficiency. In [18],
the authors studied how to minimize the energy spent in
geographical routing, therefore increasing efficiency as well.
Neither of them, however, presented a systematic study of the
relationship between efficiency and link quality, nor did they
propose any new communication models. Therefore, our work
is quite novel in this aspect and provides significant insight
on communication efficiency.

The study of communication efficiency falls into a larger
research topic: energy efficiency, where solutions are even
more diversified. Lower power microcontrollers [2], radio
circuits and antenna designs [7], [16] significantly reduce
energy consumption in data delivery at the hardware level.
Media Access Control [15], [23], [29] reduces the net-
work contention, hence reduces the number of retransmis-
sions. Sensing coverage protocols [25], [28], [20], [5] provide
surveillance to a certain geographic area with a minimal energy
budget. Data aggregation techniques [14], [19] reduce the
number of messages sent while still distributing information
an application requires. Data cache techniques [4] are also
designed for applications where multiple sinks coexist and
use caching to update and distribute data to leaf nodes at
the minimally requested rate. Cross-layer designs [13], [20]
coordinate the operations of the physical, medium access
control (MAC), and routing layers together to achieve a better
efficiency than what can be achieved by individual protocols.
Since these protocols achieve energy efficiency from different
perspectives, we consider them orthogonal and complimentary
to our work.

VI. CONCLUSIONS

In this paper, we have studied the problem of communica-
tion efficiency based on a quantitative modeling of wireless
link unreliability. We followed a joint-optimization process
that considers both the link layer lost packet recovery and
the routing layer path selection. Our contributions are two-
fold. First, in the link layer, we present a lazy lost packet
detection and recovery technique that proves to be especially
useful in terms of improving efficiency. Second, we develop
and use a stream metric for path selection in the routing layer.
Compared with other state of the art path selection approaches,
our joint optimization considerably decreases Energy Per Bit.
Our simulation and implementation results demonstrate the
correctness of our approach, and give us fundamental insight
into the efficiency aspect of sensor network communication
over unreliable links.
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