
Achieving Realistic Sensing Coverage
in Wireless Sensor Networks

Joengmin Hwang, Tian He, Yongdae Kim
Department of Computer Science, University of Minnesota, Minneapolis

1 Introduction

Despite the well-known fact that sensing patterns in reality
are highly irregular, researchers continue to develop protocols
with simplifying assumptions about the sensing. For example,
a circular 0/1 sensing model [2] is widely used in most existing
simulators and analysis. While this model provides high-level
guidelines, it could cause wrong estimation of system perfor-
mance in the real world.

Our answer to this issue is a sensing area modeling tech-
nique, which obtains the coverage of sensor nodes through event
training. The main idea is using discrete controlled events to
identify the sensing coverage based on event detection results
by individual sensor nodes. A key architectural advantage of
this approach is a lightweight design in sensor node with mini-
mal overhead. Besides communication, each sensor node only
needs to support a simple detection function (with optional time
synchronization requirement). We evaluate our model using a
physical experiment on a testbed consisting of 40 MicaZ motes.
Our evaluation results shows we can identify the sensing area
with low error rate with simple training method.

2 Sensing Area Modeling

In this section, we introduce the design of our system at the
architectural level.

2.1 Assumptions

We assume that we can generate controlled events with
known time and location. This can be done through two ap-
proaches. First, events can be generated by using real targets.
For example, one or multiple robots can move along predefined
traces to activate PIR motion sensors in the field. Other events,
such as vibration and sound, can be generated similarly. Sec-
ond, the controlled events can be injected using special devices
such as infrared radiation generator, Spotlight [1] and our pro-
totype system described. Since the methods to generate con-
trolled events are diversified, we intentionally describe our ap-
proach conceptually independent of the concrete method used.
The targeted application scenarios are 1) to identify the cover-
age of motion sensors with a room, 2) to discover blind spots in
a surveillance area, and 3) to compensate the irregularity of tiny
proximity sensors used for paper-edge detection in printers.

2.2 Main Idea

The main idea of our training-based modeling approach is to
generate controlled events in the space where the sensor nodes
are deployed. An event could be, for example, the presence
of an object in an area or a light spot projected on a plate of
sensors. Formally, an event can be defined as a detectable phe-
nomenon e(t, p) that occurs at time t and at location p ∈ A ⊂R

k

(k = 1,2,3). Without loss of generality, we use k = 2 in the rest
of the paper. An event is said to be controlled if we can enforce

a relationship between the time t and location p. In other words,
a set of controlled events can be described as the event locations
over the discrete time: G : R → R

2, where G(t) = pt = (xt ,yt)
where t ∈ {t1,t2, ...,tn}.

It consists of two major parts: an event generator G and a
set of sensor nodes ni (i ∈ N). The event generator G could
be a single device or multiple distributed devices that can gen-
erate a sequence of controlled events e(t, p) with known spa-
tiotemporal correlation G(t) = p(xt ,yt). We define Si(t, p) as
the detection function of node ni. If node ni can detect event
e(t, p), Si(t, p) = 1, otherwise Si(t, p) = 0. In case of detection,
sensor nodes store the timestamp t locally. By the end of train-
ing, a sensor computes the location of all events it detects by
inputting the timestamps into G(t). Therefore, a set of times-
tamps Ti = {t i

1,t
i
2, . . . ,t i

n} stored in node ni can be converted to

a set of locations Pi = {pi
1, pi

2, . . . , pi
n} within the sensing area.

The location set Pi can be directly used to describe the sensing
area of node ni.

2.3 Design of Event Generator G(t)

Since the overhead and accuracy of the sensing modeling
is largely determined by G(t), it is important to consider sev-
eral solutions to optimize G(t) under different system configu-
rations.

2.3.1 Regular G(t)

To illustrate the basic functionality of an event generator, we
start with a simple sensor system where the sensing area of a
node is a line segment. We shall find out the portion of the line
included in the sensing ranges of sensor node n1 and n2. To
achieve this, the event generator creates discrete point events
along this line [0,L] with constant speed v with same interval
D. Formally, G(t) = t · v where t = kD/v and 0 ≤ k ≤ L/D.
For example, a sensor node n1 collects a set of six timestamps
T1 = {t1,t2, . . . ,t6} at which the events are detected. From func-
tion G, the actual locations of events are converted to a set of
locations P1 = {t1v,t2v, . . . ,t6v}. The sensing coverage of sen-
sor n1 can be defined as the line segment that covers P1. For
the sensor n2, it reports timestamps T2 = {t4,t5,t6,t7} and the
sensing coverage of sensor n2 is defined as the line segment
that covers P2 = {t4v,t5v,t6v,t7v}. The intersection of T1 and
T2, T1 ∩ T2 = {t4,t5,t6} indicates the coverage of two sensors
is overlapped. The regular training can be generalized to the
case when the events occur in a plane by dividing the plane into
several lines with a certain interval.

In addition to the progressive scanning, the G(t) function of
the regular training can generate events with an arbitrary se-
quence as long as every point in the area is covered. Also, as
long as we can match the event and its position we can use any
training method for G(t) which includes unsupervised event.

1

Figure 1. System Setup

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

interval

c
o

v
e

ra
g

e
 e

rr
o

r

fp, var=1
fp, var=2
fp, var=3
fn, var=1
fn, var=2
fn, var=3

Figure 2. Errors in regular G(t) with
varying interval and irregularity

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

last level interval

c
o

v
e

ra
g

e
 e

rr
o

r

fp, var=1
fp, var=2
fp, var=3
fn, var=1
fn, var=2
fn, var=3

Figure 3. Errors in hierarchical G(t)
with varying interval and irregularity

Algorithm 1 Hierarchical G(t) process

Output: Pi: The sensing area of ni.
1: G(t) starts with level-1 events e(t, p) (The number of level-

1 event is decided by the minimum sensing area)
2: Node ni reports Si(t, p) for all level-1 events
3: repeat
4: for all level-k adjacent pair e(tm, pm) and e(tn, pn) do
5: if any node detects only one of events && no event

generated at position
pm+pn

2
before then

6: Generate a level-(k +1) event at position
pm+pn

2
7: end if
8: end for
9: k = k +1

10: until (k = Maximum Level)
11: Pi is a set of positions p where Si(t, p) = 1

2.3.2 Hierarchical G(t)

Hierarchical G(t) is motivated by the observation that the
boundary area of a sensing coverage requires more detail than
the area in the middle of coverage. With the hierarchical G(t),
we can reduce the number of events required to obtain the same
accuracy as regular G(t). A level-1 event divides the area into
four sub-areas, and level-2 events divide the area into 16 sub-
areas. In general, level-i events divide an area into 4i sub-areas.
If an event is a level-i event, it is also a level- j event, where
j ≥ i. Two events are said to be adjacent(or a pair) if they
are neighboring each other vertically, horizontally or diagonally
(e.g., an event could have maximal eight adjacent events). Two
adjacent events are said to be a boundary pair if only one of two
adjacent events is within a sensing range of some node. form a
boundary pair). The event in the boundary pair is called bound-
ary event. The main idea of Hierarchical G(t) is to recursively
generate new events in the middle of boundary pairs. It works
in a way similar to the binary search within a two-dimensional
space. We describe the step by step operation of Hierarchical
G(t) in Algorithm 1.

3 System Implementation

We design and implement a complete version of our sys-
tem which includes regular and hierarchical training on the
TinyOS/Mote platform. The NesC language is used to program
the motes and Java is used to build the regular and hierarchical
generators. The compiled image of a full mote implementation

occupies 14,500 bytes of code memory and 605 bytes of data
memory. For each event we generate, we assign a unique ID.
By using these IDs, we eliminate the need for time synchroniza-
tion. We use an oracle algorithm that assumes the knowledge of
the sensing area of the nodes. Basically, this algorithm activates
a sensor node (e.g., through projecting light to a sensor), if the
controlled event e(t, p) is within the sensing area of the node.
We want to emphasize that the oracle algorithm and generated
ground truth is used only for the purpose of evaluation. This
knowledge is not used in any part of our proposed algorithm.
Figure 1 shows the implementation setting. After each run, the
training results are visualized on the board and compared with
the ground truth.

In experiments, we investigate the impact of training interval
(resolution) and sensing irregularity in both training methods.
We divide error into two types: (1) false positive f p: the area
measured as a part of sensing coverage but is not a part of real
sensing coverage, or (2) false negative f n: the area which is
measured as not in the sensing coverage but is a part of real
sensing coverage. Figure 2 and 3 shows the coverage error in
regular training and hierarchical training respectively. The de-
gree of irregularity of sensing coverage is denoted by var where
higher value means more severe irregularity. Our result shows
that with a small training interval, we can achieve very precise
coverage modeling, f p is almost 0% and f n is at 1% to 8%
and even if we increase the interval, f p is still almost 0%. The
performance of hierarchical training is almost similar to the reg-
ular training, which means we can do an efficient training while
saving the cost of event generation.

4 Conclusion

This paper intends to draw attention to the sensing irregular-
ity issue known but largely ignored by many designers. We con-
tribute to this area by designing and implementing two training-
based methods that accurately identify the sensing patterns of
nodes using controlled events. Our design has been fully im-
plemented and evaluated in a test-bed consisting of 40 MicaZ
motes. We hope this work motivates our community to seri-
ously consider the reality issues existed in the sensor networks.

5 References
[1] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke. High-Accuarcy, Low-

Cost Localization System for Wireless Sensor Networks. In Sensys’05,
November 2005.

[2] T. Yan, T. He, and J. A. Stankovic. Differentiated Surveillance Service for
Sensor Networks. In SenSys’03, November 2003.

2

Hierarchical Training:
With the hierarchical G(t), we can reduce the number of
events required to obtain the same accuracy as regular
G(t).

Research Issue:
Despite the well-known fact that sensing patterns in
reality are highly irregular, researchers continue to
develop protocols with simplifying assumptions about
the sensing. For example, a circular 0/1 sensing model
is widely used in most existing simulators and analysis.
While this model provides high-level guidelines, it could
cause wrong estimation of system performance in the
real world.

Achieving Realistic Sensing Coverage in Wireless Sensor Networks

Joengmin Hwang, Tian He, Yongdae Kim
Department of Computer Science and Engineering, University of Minnesota

{jhwang, tianhe, kyd}@cs.umn.edu

Regular Training:
The sensing area of a node is a line segment. We shall
find out the portion of the line included in the sensing
ranges of sensor node n1 and n2. To achieve this, the
event generator creates discrete point events along this
line [0, L] with constant speed v with same interval D.
Formally, G(t)=tv where t = kD/v and 0 < k < L/D. The
sensing coverage of sensor n1 can be defined as the
line segment that covers P1={t1 v, t2 v, … , t6v}.

Implementation:
We have implemented a complete version of Regular
Training and Hierarchical Training on Berkeley
TinyOS/Mote platform, using 40 MicaZ motes as shown
below.The compiled image of a full mote
implementation occupies 14,500 bytes of code memory
and 605 bytes of data memory.

Conclusion:
This paper intends to draw attention to the sensing
irregularity issue known but largely ignored by many
designers. We contribute to this area by designing and
implementing two training-based methods that
accurately identify the sensing patterns of nodes using
controlled events. Our design has been fully
implemented and evaluated in a test-bed consisting of
40 MicaZ motes.

Acknowledgements:
This work is supported by NSF Nets NOSS Program
More information can be found at
Minnesota Embedded Sensor System Group
Http://mess.cs.umn.edu

Project Overview
Our answer to this issue is a sensing area modeling
technique, which obtains the coverage of sensor
nodes through event training. The main idea is using
discrete controlled events to identify the sensing
coverage based on event detection results by
individual sensor nodes. A key architectural
advantage of this approach is a lightweight design in
sensor node with minimal overhead. Besides
communication, each sensor node only needs to
support a simple detection function (with optional time
synchronization requirement). We evaluate our model
using a physical experiment on a testbed consisting of
40 MicaZ motes. Our evaluation results shows we can
identify the sensing area with low error rate with
simple training method.

Assumptions:
We assume that we can generate controlled events with
known time and location. This can be done through two
approaches. First, events can be generated by using
real targets. For example, one or multiple robots can
move along predefined traces to activate PIR motion
sensors in the field. Other events, such as vibration and
sound, can be generated similarly. Second, the
controlled events can be injected using special devices
such as infrared radiation generator, Spotlight and our
prototype system described. Since the methods to
generate controlled events are diversified, we
intentionally describe our approach conceptually
independent of the concrete method used. The targeted
application scenarios are 1) to identify the coverage of
motion sensors with a room, 2) to discover blind spots in
a surveillance area, and 3) to compensate the
irregularity of tiny proximity sensors used for paper-
edge detection in printers.

Architecture:
We employ an architecture to model sensing coverage.

Evaluation:
We evaluate our architecture with physical system as
well as an extensive simulation with 1,000 nodes.

Fig 1. System Architecture

Fig 10. Error in Hierarchical G(t) with varying interval and irregularity

Fig 8. System Implementation

Fig 9. Error in Regular G(t) with varying interval and irregularity

Fig 1. Directional range

Fig 2. (1) Sensing area of node A (2) Sensing Area of node B

Fig 3. System architecture

Fig 4. Regular training

Fig5. Hierarchical partition Fig 6. Level of detail

Fig 7. Hierarchical training

