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Abstract—In an adversarial environment, various kinds of
security attacks become possible if malicious nodes could claim
fake locations that are different from where they are physically
located. In this paper, we propose a secure localization mechanism
that detects the existence of these nodes, termed as phantom
nodes, without relying on any trusted entities, an approach
significantly different from the existing ones. The proposed
mechanism enjoys a set of nice features. First, it does not have
any central point of attack. All nodes play the role of verifier, by
generating local map, i.e. a view constructed based on ranging
information from its neighbors. Second, this distributed and
localized construction results in quite strong results: even when
the number of phantom nodes is greater than that of honest
nodes, we can filter out most phantom nodes. Our analysis and
simulations under realistic noisy settings demonstrate our scheme
is effective in the presence of a large number of phantom nodes.

I. I NTRODUCTION

With thousands of tiny devices, Wireless Sensor Networks
(WSNs) can support ubiquitous surveillance with a very low
profile, and they can be quickly deployed without infrastruc-
ture. These features make them attractive for a wide varietyof
applications such as environmental and habitat monitoring[1],
surveillance and tracking for military [2]. For many of these
applications, the location of a node plays an important role. It
can be used for 1) identifying the location of specific events
(for example, tracking the positions of enemy’s tanks), 2)
location-based routing algorithms (e.g. such as the geographic
routing [3] and the geographic hash table [4]), or 3) other
location based services such as sensing coverage [5]. These
applications run correctly when the localization error is limited
to a certain range [6]. However, if malicious nodes (attackers)
can distort the coordinate system severely, the performance
of these applications could degrade significantly. To address
these issues, various methods [7], [8], [9], [10], [11], [12],
[13], [14] are proposed. They provide a set of nice mechanisms
to detect and filter out compromised nodes and anchors. Most
approaches depend on a few trusted entities (nodes or anchors),
requiring at least the majority of these entities are not com-
promised. We argue that since the number of trusted entities
in these approaches is relatively small, it would be relatively
easy to break. Naturally, we raise the following question:
Is it possible to design a decentralized secure localization
algorithm that can detect phantom nodes without requiring
any trust entities? The objective and contribution of this work
lie in our answer to this challenging question.
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In this paper, we are targeting the scenarios where attackers
announce phantom nodes, who fake their ranging information,
in proximity of legitimate nodes. Especially we focus on the
development of the local map for individual nodes. A local
map is a visual representation on the locations of neighbors
of a node, which can be constructed correctly by verifying
all location claims of its legitimate neighbors and filtering out
phantom nodes generated by attacks.

Briefly, to find an actual local map without including
phantom nodes, we project the neighboring nodes on a virtual
plane and identify the inconsistency exhibited by the phantom
nodes. Since there are no trusted entities, the process is
speculative in nature. Interestingly, we demonstrate that this
speculative process can filter out the phantom node with a very
high probability when the process is repeated multiple times.
In addition, since this novel speculative process mandates
no agreements among neighboring nodes, it leads to two
immediate benefits: First, a node’s compromised decision does
not propagate to affect other nodes’ decisions. Second, much
less information exchange is required, leading to less energy
consumption. Beside these two benefits, our approach has the
following major contributions: First, we contribute two rules to
prevent phantom nodes generating consistent ranging claims.
Second, our approach recovers a local map agreed by the
majority of consistent information. It projects regular nodes
at their locations, detect/filter phantom nodes, and identify the
source of inconsistent rangings, requiring no trusted anchors
or verifiers. We demonstrate that we can successfully filter out
phantom nodes even the number of phantom nodes is much
larger than the honest nodes. Third, our approach can use any
ranging technique, not specially requiring distance bounding
technique for location verification [9], [12], [13].

The remainder of the paper is organized as follows: Sec-
tion II introduces the assumptions and Section III provides
an overview. The details of our approach are described in
Section IV. We present the experimental results in Section V
and conclude in Section VI.

II. PRELIMINARIES

We assume all legitimate communication channels are es-
tablished bidirectionally: if Nodei hears Nodej, then Nodej
hears Nodei. In asymmetric links, bidirectional links can be
easily established through a two-way handshaking. We also
assume a reasonable network density (e.g.,> 10 nodes per
radio range). For the sake of clarity, we describe the protocol
in a two-dimensional plane. However, our approach can be



applied to higher-dimensional spaces as well. The following
notations are used throughout the paper.

− v: a node which verifies the locations of its neighbors
− Nbr(v): the node set consisting ofv’s neighbors andv
− pk: the location of nodek on virtually computed local plane
− N : the number of neighboring nodes
− M : the number of inter-node distance measurements
− dij : the physical distance between nodesi and j.
− d̂ij : the measureddistance to nodej by i.
− d̃ij : the computed distance between nodesi andj

− D: a set of distance measurements, i.e.{d̂ij | i, j ∈ A}

III. OVERVIEW

The main idea of our approach is based on two factors: First,
we prevent the phantom nodes from generating consistent
ranging (distance) claims1 to multiple honest nodes. Second,
if the phantom nodes generate a set of inconsistent ranging
claims, we can detect them by our proposed speculative
method.
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Fig. 1. The difficulty in generating consistent ranging claims

Our design only allows a node to claim about itsdistances
to other neighboring nodes, not its ownlocation. Therefore, to
disrupt the operation of location-dependent applications, (a set
of) malicious nodes, whose goal is to create a phantom node,
must fake a set of distances to all of its neighboring nodes. If
the locations of neighboring nodes are knowna priori, a set of
fake, albeit consistent, ranging distances can be easily created
by calculating the distances from a fake location to each of its
neighbors’ location. Therefore it is important for our design
to hide the location information during the phase of ranging.
Without the location information of the neighboring nodes,it is
hard for an attacker to generate a set of consistent ranging val-
ues (distances), and hence to fake itself into a different phys-
ical location. For example, as shown in Figure 1a, suppose an
attackerD at the locationp obtains three ranging distances in
the 2-D space from three honest nodesA, B andC, it can only
conclude thatA, B andC are located at the edges of three con-
centric circles centered atp. To claim a different physical loca-
tion p′ within the 2-D space, the attackerD needs to fake three
different ranging distances that are consistent. Without know-
ing the precise locations of the neighbors, such consistency is

1Here, a set of ranging claims is said to be consistent, when such claims
can project a node into a physical location in the 2-D or 3-D space (in case of
3-D localization) and the distances between this physical location and other
nodes’ locations match the claims.

difficult to achieve. As shown in Figure 1a, to move from the
positionp to p′, the attackerD needs to claim two shorter rang-
ing distances to NodesB andC, but a longer ranging distance
to NodeA; However in case of Figure 1b, the attacker D needs
to claim the opposite. Since the locations ofA, B andC are
unknown, the attacker cannot decide which claim to make. We
note that a sensor network normally has a high node density
(≫ 10), which makes a consistent ranging claim practically
impossible without the neighbors’ location information.

Briefly, to prevent phantom nodes generating a set of fake,
albeit consistent, ranging claims, we should follow two simple
design rules: 1)accepting only ranging claims, not location
claims and 2) hiding the location information during the
ranging phase. Once the consistent ranging claims by phantom
nodes are prevented, we can identify the phantom nodes by
detecting the inconsistent ranging claims, which is addressed
in the rest of the paper.

IV. T HE DETAILED APPROACH

In this section, we focus on identifying the phantom nodes
that generate inconsistent ranging from/to the set of honest
nodes. For simplicity, we describe a two-dimensional local-
ization. Formally, we stated the problem as follows:

Definition: A set of nodes isconsistent, if they can be pro-
jected on the unique Euclidean plane (in 3-D case, Euclidean
space), keeping the measured distances among themselves.

Problem: Given a node setNbr(v) that consists of a node
v and its neighbors, and a distance setD that consists of
the measured distance, denoted by{d̂ij |d̂ij = d̂ji, i, j ∈
Nbr(v), i 6= j}, find the largest consistent subset ofNbr(v).

We divide the algorithm into two main phases: distance
measurement phase and filtering phase. In the first phase, each
node measures the distances to its neighbors. In the second
phase, each node projects its neighboring nodes to a virtual
local plane to determine the largest consistent subset of nodes.
After the completion of the two phases, each node establishes
a local view without phantom nodes. Such a local view is
useful in many services such as location-based routing and
sensing coverage. Alternatively, any local coordinate system
can be reconciled into a unique global coordinate system. The
following two sections describe the phases of the approach in
more detail.

A. Distance Measurement Phase

Each nodev measures the distances to neighbors and
disseminate these measurements back to its neighbors. More
specifically, each nodev has following distance measurement
steps:

1) Node v first measures distancêdvi to each neighbor
i through a certain ranging method such as TDOA or
TOA. (Note thatd̂vi denotes the distance measurement
to the neighbori by v.)

2) Node v then announces the measured distances. The
announcement message includesid of the nodev, id of
the nodei and distance measurement toi by v, d̂vi. Note



that even whenv knows about its location, it should not
disclose it in this phase.

3) When a neighbori announces its measured distance to
its neighborj, v collectsd̂ij . (In other words,v collects
neighbors’ announcement on the measured distances to
their neighbors.)

4) After collection of neighbors’ announcements, nodev

compares the data collected. For each collected distance,
if d̂ij = d̂ji, it is included in the filtering phase which
is described in Section IV-B.

We note that it is possible that an attacker holds the
announcements before it collects all the ranging information,
and then calculates the relative locations of the honest nodes.
Consequently, this attacker could fake a set of consistent range
claims. To prevent such type of attack, we require each node
announces one distance at a time in a round robin fashion
within the neighborhood. This can be achieved by using
pairwise ranging techniques [15].

B. Filtering Phase

In this section, we propose a novel speculative procedure,
which can effectively and efficiently filters out phantom nodes.
The filtering procedure is described in Algorithm 1. Initially,
the nodev picks up two neighborsi andj randomly as pivots.
(Note that nodei andj could be phantom nodes themselves).
Using the nodev as the origin, the neighborsi andj and three
distance information amongv, i and j, the local coordinate
system is constructed. In the nodev’s coordinate system, we
use a graphG(V, E) to construct a consistent subset. The set
V is used to contain the nodev and its neighbors, and the setE

is used to keep the edges between two nodes when the distance
information between them maintains consistency. Initially the
graph G is empty. The update process of the graphG is
as follows: The location of the neighbork is determined on
the local coordinate systemL by trilateration [16] from three
nodesv, i, j with measured distanceŝdkv, d̂ki and d̂kj . After
projecting all the neighbors onL, the distance between the
projected neighbors is compared with the measured distance.
For any two nodesi and j the distanced̃ij = |pi − pj | is
calculated from the projected location onL. If |d̂ij − d̃ij | ≥ ǫ,
the edge betweeni andj is not included inE. (the threshold
valueǫ depends on the noise in the ranging measurement. See
Section V for more details.) The largest connected setV that
contains nodev is regarded as the largest consistent subset in
the speculative planeL. This filtering procedure is doneiter
times (iter is a key parameter discussed later), and the cluster
with the largest size is chosen as a final result.

C. Identifying Consistent Subset

Algorithm 1 obtains a connected cluster in each iteration. In
this section, we show that (i) the largest cluster must consist
of only legitimate nodes and (ii) we can determine the case
where a chosen pivot is, unfortunately, a phantom node.

Theorem 1: When all the pivots chosen are honest nodes,
the consistent cluster computed by the proposed solution in
Algorithm 1 does not contain phantom nodes.

Algorithm 1 Speculative filtering
for i = 1 to iter do

each nodev picks up two neighborsi andj randomly
create local coordinate systemL usingv, i, j, d̂vi, d̂vj , d̂ij

initialize undirected graphG(V,E)
for each neighbork ∈ Nbr(v) do

calculate the location ofk, pk, on L by multilateration of
d̂kv, d̂ki and d̂kj from v, i, j

end for
create nodev in V with locationpv

for each neighbork ∈ Nbr(v) do
create nodek in V with locationpk

end for
for each pair of nodesi, j ∈ V and their ranginĝdij do

d̃ij = |pi − pj |
if |d̂ij − d̃ij | < ǫ then

create edgee(i, j) in E
end if

end for
find the largest connected clusterC and save it

end for
Among all savedC, choose the one with the largest size
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Fig. 2. Real plane, node
0,5,6,18 indicated

−300 −200 −100 0 100 200 300
−150

−100

−50

0

50

100

150

200

0 

5 

18 

Fig. 3. Computed plane
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Theorem 2: If at least one of pivots is a phantom node, the
size of largest cluster is smaller than the one when none of
pivots is a phantom node.

Case Study:As an example, Figures 2, 3 and 4 reflect the
properties of Theorem 1 and 2. Figure 2 plots the real
locations of the nodes, among which node 0 is a verifying
node, node 6 is a phantom node, node 5 and 18 are not
compromised, Figure 3 shows the cluster created when the
pivot is not compromised (Theorem 1), Figure 4 is the cluster
when the phantom pivot (node 6) is used, whose size is much
smaller than the size of cluster shown in Figure 3 (Theorem
2).

D. Localized Adversarial Effect of a Phantom Plane

In Section IV-C, due to the speculative nature of our
approach, we assume that with a high probability, a large
phantom plane can not be created consistently among non-
collusive phantom nodes. In this section, we study the impact
if this assumption does not hold, i.e., phantom nodes are able
to launch collusion attack. As shown in the Figure 5, nodev

is located at the intersection of a phantom plane and a real
plane. If the number of phantom nodes on the phantom plane
is larger than the number of node on the real plane, nodev

will be deceived. However, we note that any honest node that
is not located at the intersection, can notperceive the existence
of the phantom planeP ′ from its own local view. It can only
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quired to ensure the correct pivoting

perceive the large real planeP . This observation indicates that
even if a large phantom plane is created through collusion
attack, it can only compromise the views of a limited number
of nodes located at the intersection line. Suppose that there are
N honest nodes in the real planeP and none of three nodes are
collinear. To compromise the views of all these nodes, more
than N2

2
phantom nodes are needed, which is much larger than

the number of honest nodesN . This gives us the insight why
our scheme works well in the presence of a large number of
phantom nodes.

E. Number of Trials Needed for a Successful Speculation

Our algorithm is speculative in nature. Obviously, it is
unacceptable such speculation takes a large number of trials.
From Algorithm 1, we know thatiter controls the number of
trials. In this section, we show the expected number of trials
iter in Algorithm 1 is small even with a large percentage of
phantom nodes.

To identify the largest consistent subset, our speculative
algorithm cannot stop before the nodev successfully selects
two honest pivots. Ifq is the probability that a random
neighbor is a phantom node, the probability that at least one
of pivot is a phantom pivot is1− (1 − q)2. During iter trials,
the probability that at least one of trial succeeds in selecting
two honest pivots is:

P [X ≥ 1] = 1 − (1 − (1 − q)2)
iter

The number of trials required to ensure the successful
filtering with probability 95% and 99% is shown in Figure 6.
Even when 50% nodes are phantom nodes, the number of
trials needed is only 16 to achieve 99% success ratio. We also
note that the number of trials only affects the computation
overhead. No extra communication is needed when the number
of trials increases.

F. Cost Analysis

The cost for our protocol consists of the communication cost
during exchange of distance information, and the computation
cost in filtering phase. In our proposed solution, if a node has
N − 1 neighbors, it generates ranging information with each
neighbor. Therefore,N − 1 number of ranging information
are generated per node to exchange. Each neighbor announces
N−1 distance information in a message and collects(N−1)2

messages from neighbors. The computation cost in filtering

phase isiter × trilateration projection cost per node. For
example, with the node density of 10, to achieve 99% success
rate, we need 16 iterations with 10 trilateration per iteration, a
computation that finishes within several milliseconds in Mica
motes.

V. EXPERIMENTAL RESULTS

In this section, we provide simulation results for our pro-
posed scheme. We test under a wide range of node densities
by generating 5-50 neighbors on the random locations within
a certain node’s range. The node and all of its neighbors
participate in the phantom node detection in a decentralized
manner. We describe simulation results with considerationof
ranging measurement error. We also provide the simulation
result when the sybil node is assumed.

A. Case Study

We first illustrate the speculative filter through a case study.
In this experiment, we speculatively choose a pair of pivots
in each trial (10 trials in total), and record the number of
legitimate nodes and the number of phantom nodes identified
in each trial as shown in Figure 9. In the trial 1, 3 and 8,
the consistent subsets consist of phantom nodes, but it is not
selected as a final result because the size is small compared
to other trials. The trials 2, 4, 5, 6, 7, 9 and 10 are selected
as the final largest consistent subset. In those trials, mostof
phantom nodes (20 phantom nodes are tried by two attackers)
are filtered. A few phantom nodes is included in this example,
but interestingly, these phantom nodes included are projected
to the actual attacker’s locations. Figure 7 shows the real
locations of legitimate nodes (indicated by filled circles)and
fake locations of phantom nodes (indicated by empty circles).
The Figure 8 is the projected location from collected data.
The legitimate nodes are projected to their real locations while
most of phantom nodes are either filtered or projected to their
actual attacker’s locations.

B. Performance

The effectiveness of the proposed scheme is evaluated by
the false positive rate, and by the false negative rate, which
are calculated by:

false positive rate (fp)=
number of honest nodes failed verification

total number of honest nodes

false negative rate (fn)=
number of phantom nodes authenticated

total number of phantom nodes generated

The false negative rate includes the case when the phantom
node is projected to the attacker’s actual location.

C. Localization Error

The ranging measurement error is directly related to lo-
calization error and localization error affects the performance
of phantom node detection. Figure 10 shows the performance
according to various threshold values for the ranging measure-
ment error 1%, 3%, 5%. The threshold valueǫ is the maximum
acceptable difference between the distance estimate in distance
measurement phase and the distance between projected nodes
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on the virtual plane. For a given threshold valueǫ, the false
positive rate trades off with the false negative rate. As shown
in the figure, as the ranging measurement error increases,
the false negative and false positive rate increase. While the
false negative rate decreases sharply in the early stage in the
graph, the false positive rate increases gradually but doesnot
have sharp increase in the later stage. Also, we note that the
false negative rate varies in range of0.05 − 0.25, but the
phantom nodes not filtered are projected to the actual attacker
positions. This indicates that our solution can not only detect
the phantom node but also possibly identify the real locations
of the attackers.

D. Number of Phantom Nodes

We provide simulation results when the number of phantom
nodes the attacker can generate is large (more than the honest
nodes). As shown in Figure 11, when the number of phan-
tom nodes increases, the fraction of honest nodes excluded
increases slightly. The interesting result is shown in the
Figure 12: when the total number of phantom nodes increases,
the percentage of these nodes that can avoid detection reduces.
Most of phantom nodes are filtered even if the number of
phantom nodes increases. This is mainly because the phantom
plane created by phantom nodes can only deceive the nodes
that are located at the intersect line of the phantom plane
and real plane as shown in Figure 5. To deceive other honest
nodes, the attackers need to create a different phantom plane
that intersects with the real plan at the location of individual
honest node. The localized view of individual nodes enablesus
to filter out phantom nodes, even when the number of phantom
nodes is larger than the honest nodes.

VI. CONCLUSION

Our secure localization system speculatively projects the
neighboring nodes into a local map with the largest consistent
subset of ranging claims. This approach authenticates the
locations of honest nodes and detects the existence of the
phantom nodes without relying on trusted agents. It is devised
especially to be efficient when used in distributed way. Our
localized construction results in quite strong results: even
when the number of phantom nodes is greater than that of
honest nodes, we could filter out most of the phantom nodes.
In addition, our analysis and simulation indicate our scheme
detect phantom nodes efficiently with small overhead.
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