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Abstract—In an adversarial environment, various kinds of In this paper, we are targeting the scenarios where attacker
security attacks become possible if malicious nodes couldam  announce phantom nodes, who fake their ranging information
fake locations that are different from where they are physially , hroximity of legitimate nodes. Especially we focus on the
located. In this paper, we propose a secure localization mkeanism L
that detects the existence of these nodes, termed as phamomdevelppmem of the local m_ap for IndIV|duaI_ nodes. A, local
nodes, without relying on any trusted entities, an approach Map is a visual representation on the locations of neighbors
significantly different from the existing ones. The proposd of a node, which can be constructed correctly by verifying

mechanism enjoys a set of nice features. First, it does not i@ all location claims of its legitimate neighbors and filteyiaut
any central point of attack. All nodes play the role of verifie, by phantom nodes generated by attacks.

generating local map i.e. a view constructed based on ranging . . . . .
information from its neighbors. Second, this distributed and Briefly, to find an actual local map without including
localized construction results in quite strong results: een when phantom nodes, we project the neighboring nodes on a virtual
the number of phantom nodes is greater than that of honest plane and identify the inconsistency exhibited by the pbiant
nodes, we can filter out most phantom nodes. Our analysis and nodes. Since there are no trusted entities, the process is
simulations under realistic noisy settings demonstrate auscheme o0 ative in nature. Interestingly, we demonstrate that this
is effective in the presence of a large number of phantom node b . . g, .
speculative process can filter out the phantom node withya ver
high probability when the process is repeated multiple $ime
In addition, since this novel speculative process mandates
With thousands of tiny devices, Wireless Sensor Networkg agreements among neighboring nodes, it leads to two
(WSNs) can support ubiquitous surveillance with a very loynmediate benefits: First, a node’s compromised decisi@s do
profile, and they can be quickly deployed without infrastrugot propagate to affect other nodes’ decisions. Secondhmuc
ture. These features make them attractive for a wide vaokty|ess information exchange is required, leading to lessggner
applications such as environmental and habitat monitdfihg consumption. Beside these two benefits, our approach has the
surveillance and tracking for military [2]. For many of tiees following major contributions: First, we contribute twoles to
applications, the location of a node plays an important.fitle prevent phantom nodes generating consistent ranging laim
can be used for 1) Identlfylng the location of Specific even§econd, our approach recovers a local map agreed by the
(for example, tracking the positions of enemy’s tanks), Zhajority of consistent information. It projects regulardes
location-based routing algorithms (e.g. such as the gebira at their locations, detect/filter phantom nodes, and ifiettie
routing [3] and the geographic hash table [4]), or 3) oth&purce of inconsistent rangings, requiring no trusted arsch
location based services such as sensing coverage [5]. Thgs@erifiers. We demonstrate that we can successfully filer o
applications run correctly when the localization erroiinsited phantom nodes even the number of phantom nodes is much
to a certain range [6]. However, if malicious nodes (atta&ke |arger than the honest nodes. Third, our approach can use any
can distort the coordinate system severely, the performangnging technique, not specially requiring distance baumd
of these applications could degrade significantly. To asklreechnique for location verification [9], [12], [13].
these issues, various methods [7], [8], [9], [10], [11].]l12 The remainder of the paper is organized as follows: Sec-
[13], [14] are proposed. They provide a set of nice mechaision || introduces the assumptions and Section Ill provides
to detect and filter out compromised nodes and anchors. Mggt gverview. The details of our approach are described in

approaches depend on a few trusted entities (nodes or &)ch&ection Iv. We present the experimental results in Section V
requiring at least the majority of these entities are not Corgnd conclude in Section VI.

promised. We argue that since the number of trusted entities

in these approaches is relatively small, it would be reddyiv I
easy to break. Naturally, we raise the following question:

Is it possible to design a decentralized secure localization We assume all legitimate communication channels are es-
algorithm that can detect phantom nodes without requiring tablished bidirectionally: if Node hears Node/, then Nodej

any trust entities? The objective and contribution of this workhears Node. In asymmetric links, bidirectional links can be
lie in our answer to this challenging question. easily established through a two-way handshaking. We also

_ , N _ , assume a reasonable network density (exg.10 nodes per
This research was supported, in part, by University of Mguta McKnight-

Land Grant Professorship award, and NSF grant CNS-0626848:0615063 '2di0 range). For the sake of clarity, we describe the patoc
and CNS-0626609. in a two-dimensional plane. However, our approach can be

I. INTRODUCTION

. PRELIMINARIES



applied to higher-dimensional spaces as well. The follgwirdifficult to achieve. As shown in Figure 1a, to move from the
notations are used throughout the paper. positionp to p’, the attackeiD needs to claim two shorter rang-
v: a node which verifies the locations of its neighbors ng dlstan.ces to NodeB andc, b.Ut a longer ranging distance
— Nbr(v): the node set consisting ofs neighbors and: to NogleA, Howeve_r in case of Figure 1_b, the attacker D needs
—  p: the location of node: on virtually computed local plane t0 claim the opposite. Since the locations4f B and C' are
—  N: the number of neighboring nodes unknown, the attacker cannot decide which claim to make. We
—  M: the number of inter-node distance measurements note that a sensor network normally has a high node density
—  di;: thephysical distance between nodésand j. (> 10), which makes a consistent ranging claim practically
‘fijf the measureddistance to nodg by i. , impossible without the neighbors’ location information.
B %? : the tCOTg.UttEd distance betweetn ncgfe"ﬁhd? 4 Briefly, to prevent phantom nodes generating a set of fake,

- a set of distance measurements, {4 | i,j € A} albeit consistent, ranging claims, we should follow two [sien

I1l. OVERVIEW design rules: lpccepting only ranging claims, not location

The main idea of our approach is based on two factors: Firgl(?jrr_‘s and 2) hiding the location information during the

we prevent the phantom nodes from generating consistéftd'Nd phase. Once the consistent ranging claims by phantom

ranging (distance) claimigo multiple honest nodes. Second,nOdes_ are prgvente(_j, we can !denufy_ the ph_ant(_)m nodes by
ecting the inconsistent ranging claims, which is adurés

if the phantom nodes generate a set of inconsistent rangﬁjﬁih  th
claims, we can detect them by our proposed speculati\'fb e rest of the paper.
method.

IV. THE DETAILED APPROACH

In this section, we focus on identifying the phantom nodes
that generate inconsistent ranging from/to the set of hones
nodes. For simplicity, we describe a two-dimensional local
ization. Formally, we stated the problem as follows:

Definition: A set of nodes isconsistent, if they can be pro-
jected on the unique Euclidean plane (in 3-D case, Euclidean
space), keeping the measured distances among themselves.

Problem: Given a node seiVbr(v) that consists of a node
a) b) v and its neighbors, and a distance detthat consists of
the measured distance, denoted fi;|di; = dji,i,j €
Nbr(v),t # j}, find the largest consistent subset/ébr(v).

Our design only allows a node to claim aboutdtstances We divide the algorithm into two main phases: distance
to other neighboring nodes, not its ovatation. Therefore, to measurement phase a_nd filtering p_hase._ In the first phade, eac
disrupt the operation of location-dependent applicatiéaset node measures the distances to its neighbors. In the second

of) malicious nodes, whose goal is to create a phantom nof§ase. each node projects its neighboring nodes to a virtual

must fake a set of distances to all of its neighboring nodes./fc@! Plane to determine the largest consistent subsetd#sio

the locations of neighboring nodes are knoapriori, a set of A\fter the completion of the two phases, each node estaslishe
fake, albeit consistent, ranging distances can be easited a Iocal_wew Wlthout_ phantom nodes. _Such a local view is
by calculating the distances from a fake location to eaclsof ysefql In many Services SL_‘Ch as Iocaﬂon-based_ routing and
neighbors’ location. Therefore it is important for our dgsi Sensing coverage. Alternatllvely, any local cpordmatetesms

to hide the location information during the phase of rangin¢an be reconciled into a unique global coordinate systera. Th
Without the location information of the neighboring nodies  ollowing two sections describe the phases of the approach i
hard for an attacker to generate a set of consistent ranging J1°re detail:

ues (distances), and hence to fake itself into a differegsph o pigtance Measurement Phase

ical location. For example, as shown in Figure 1la, suppose an i ,

attackerD at the locatiorp obtains three ranging distances in  =ach nodev measures the distances to neighbors and
the 2-D space from three honest nodesB andC, it can only disseminate these measurements back to its neighbors. More

conclude thatt, B andC are located at the edges of three Con'ipecifically, each node has following distance measurement

centric circles centered at To claim a different physical loca- St€PS: )

tion p’ within the 2-D space, the attack®&rneeds to fake three 1) Node v first measures distancé,; to each neighbor

different ranging distances that are consistent. Withoutk i through a certain ranging method such as TDOA or

ing the precise locations of the neighbors, such consigtanc TOA. (Note thatd,; denotes the distance measurement
to the neighbot by v.)

IHere, a set of ranging claims is said to be consistent, wheh slaims 2) Node v then announces the measured distances. The
can project a node into a physical location in the 2-D or 3-Bcgp(in case of

3-D localization) and the distances between this physmedtion and other announcgment.message includeof the nOd?U' id of
nodes’ locations match the claims. the node and distance measurementitoy v, d,,;. Note

Fig. 1. The difficulty in generating consistent ranging wlai



that even whemn knows about its location, it should notAlgorithm 1 Speculative filtering

disclose it in this phase. for i =1 to iter do
3) When a neighboi announces its measured distance to ~ €ach node picks up two neighbors andj randomly

its neighborj, v collectsd;;. (In other wordsy collects fr:ﬁizt”ezéoﬁﬁhﬁzgghngtrz ;%/;s(t‘e{n;)smgv, 6 Js iy dug, dig
neighbors’ announcement on the measured distances t0 or gach neighbok € Nor(v) do

their neighbors.) calculate the location of, pi, on L by multilateration of
4) After collection of neighbors’ announcements, nade div, di; anddy; from v, i,

compares the data collected. For each collected distance, end for

7 J . itia i i A ; create node in V' with location p,
!f di; = 'dﬂ, |.t is |ncl.uded in the filtering phase which for each neighbot: € Nbr(v) do
is described in Section IV-B. create node: in V' with location py,

We note that it is possible that an attacker holds the end for .
announcements before it collects all the ranging inforomati for each pair of nodes, j € V' and their rangingl;; do
and then calculates the relative locations of the honestésiod fiif = |pi = pyl
Consequently, this attacker could fake a set of consistetge i Lciga?edgj‘ z(e. th)einn B
claims. To prevent such type of attack, we require each node o4 if gets.g
announces one distance at a time in a round robin fashion end for
within the neighborhood. This can be achieved by using find the largest connected clusi€rand save it

pairwise ranging techniques [15]. end for _ _
Among all saved”, choose the one with the largest size

B. Filtering Phase

In this section, we propose a novel speculative procedu; &
which can effectively and efficiently filters out phantom red
The filtering procedure is described in Algorithm 1. Iniyal
the nodev picks up two neighbors and; randomly as pivots. ) )
(Note that node andj could be phantom nodes themselves* .
Using the node as the origin, the neighboisand;j and three Teemmom O
distance information among,: and j, the local coordinate Fig. 2. Real plane, nodeFig. 3. Computed plane Fig. 4. Computed plane
system is constructed. In the nodis coordinate system, we 0:5:6:18 indicated from pivot 05,18 form pivot 0,6,18
use a graplG(V, E') to construct a consistent subset. The set

V is used to contain the nodeand its neighbors, and the g6t Theorem 2:1f at least one of pivots is a phantom node, the

IS used t_o keep the edges between two nod_es when t.h e OIIStasri]zceeof largest cluster is smaller than the one when none of
information between them maintains consistency. Inititiie

graph G is empty. The update process of the gra@his pivots is a phantom node.

as follows: The location of the neighbéris determined on Case Study:As an example, Figures 2, 3 and 4 reflect the
the local coordinate syster by trilateration [16] from three properties of Theorem 1 and 2 Figure 2 plots the real
nodesv, i, j with measured distances,,, dx; anddy;. After |ocations of the nodes, among which node 0 is a verifying
projecting all the neighbors on, the distance between thEnode, node 6 is a phantom node, node 5 and 18 are not
projected neighbors is compared with the measured distanggmpromised, Figure 3 shows the cluster created when the
For any two nodes andj the distanced;; = [p; — p;| is  pivot is not compromised (Theorem 1), Figure 4 is the cluster
calculated from the projected location énf |d;; —d;;| > ¢, when the phantom pivot (node 6) is used, whose size is much

the edge betweenand  is not included inE. (the threshold smaller than the size of cluster shown in Figure 3 (Theorem
valuee depends on the noise in the ranging measurement. 3ge

Section V for more details.) The largest connectedisehat ) _
contains node is regarded as the largest consistent subsetbh Localized Adversarial Effect of a Phantom Plane

g
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the speculative plané. This filtering procedure is donger In Section IV-C, due to the speculative nature of our
times (ter is a key parameter discussed later), and the clustgproach, we assume that with a high probability, a large
with the largest size is chosen as a final result. phantom plane can not be created consistently among non-

C. Identifying Consistent Subset _coIIl_Jsive phant_om nodes. In this §ection, we study the impac
if this assumption does not hold, i.e., phantom nodes are abl
Algorithm 1 obtains a connected cluster in each iteration. {q |aunch collusion attack. As shown in the Figure 5, node
this section, we show that (i) the largest cluster must &nsjs |ocated at the intersection of a phantom plane and a real
of only legitimate nodes and (ii) we can determine the cagane. If the number of phantom nodes on the phantom plane
where a chosen pivot is, unfortunately, a phantom node. s |arger than the number of node on the real plane, node
Theorem 1: When all the pivots chosen are honest nodes, will be deceived. However, we note that any honest node that
the consistent cluster computed by the proposed solution in is not located at the intersection, can petceive the existence
Algorithm 1 does not contain phantom nodes. of the phantom plané’ from its own local view. It can only



Phonfom Plane P . /, phase isiter x trilateration projection cost per node. For
’ example, with the node density of 10, to achieve 99% success

rearenst rate, we need 16 iterations with 10 trilateration per iferata
g computation that finishes within several milliseconds ircMi
: motes.
« Sensor V. EXPERIMENTAL RESULTS
© Phantom Node /
" o ofosescompromed” " In this section, we provide simulation results for our pro-
Fig. 5. Real plane vs. phantom posed scheme. We test under a wide range of node densities

| Fig. 6. The number of trials re- . . . .
pane qugi‘red to ensure the correct pivoting PY generating 5-50 neighbors on the random locations within

a certain node’s range. The node and all of its neighbors
participate in the phantom node detection in a decentdhlize
perceive the large real plan®. This observation indicatesthat manner. We describe simulation results with consideradion
even if a large phantom plane is created through collusion ranging measurement error. We also provide the simulation
attack, it can only compromise the views of a limited number  result when the sybil node is assumed.
of nodes located at the intersection line. Suppose that there are A Case Sud
N honest nodes in the real plafeand none of three nodes are Y
collinear. To compromise the views of all these nodes, moreWe first illustrate the speculative filter through a casestud
than 2> phantom nodes are needed, which is much larger thihthis experiment, we speculatively choose a pair of pivots
the number of honest nodég. This gives us the insight why in each trial (10 trials in total), and record the number of
our scheme works well in the presence of a large number |§gitimate nodes and the number of phantom nodes identified

phantom nodes. in each trial as shown in Figure 9. In the trial 1, 3 and 8,
_ _ the consistent subsets consist of phantom nodes, but ittis no
E. Number of Trials Needed for a Successful Speculation selected as a final result because the size is small compared

Our algorithm is speculative in nature. Obviously, it i$0 other trials. The trials 2, 4, 5, 6, 7, 9 and 10 are selected
unacceptable such speculation takes a large number dof. tri@s the final largest consistent subset. In those trials, wiost
From Algorithm 1, we know thatter controls the number of phantom nodes (20 phantom nodes are tried by two attackers)
trials. In this section, we show the expected number ofsria@re filtered. A few phantom nodes is included in this example,
iter in Algorithm 1 is small even with a large percentage oput interestingly, these phantom nodes included are pegjec
phantom nodes. to the actual attacker’s locations. Figure 7 shows the real

To identify the largest consistent subset, our speculatif@cations of legitimate nodes (indicated by filled circlesid
algorithm cannot stop before the nodesuccessfully selects fake locations of phantom nodes (indicated by empty cijcles
two honest pivots. Ifg is the probability that a random The Figure 8 is the projected location from collected data.
neighbor is a phantom node, the probability that at least oh&€ legitimate nodes are projected to their real locationgew
of pivot is a phantom pivot ig — (1 — q)2, During iter trials, most of phantom nodes are either filtered or projected ta thei
the probability that at least one of trial succeeds in silgct actual attacker’s locations.

two honest pivots Is: B. Performance
iter

PX>1=1-(1-(1-¢)? The effectiveness of the proposed scheme is evaluated by

. . he false positive rate, and by the false negative rate, twhic
The number of trials required to ensure the successfjﬂje calculated by:

filtering with probability 95% and 99% is shown in Figure 6. _ o
Even when 50% nodes are phantom nodes, the numbersgfe positive rate (fp)- number of honest nodes failed verification
trials needed is only 16 to achieve 99% success ratio. We also total number of honest nodes

note that the number of trials only affects the computatiogise negative rate (fny -~ m2er of phantom nodes authenticated
overhead. No extra communication is needed when the number total number of phantom nodes generated
of trials increases. The false negative rate includes the case when the phantom
node is projected to the attacker’s actual location.

F. Cost Analysis

The cost for our protocol consists of the communication coSt Localization Error
during exchange of distance information, and the comprtati  The ranging measurement error is directly related to lo-
cost in filtering phase. In our proposed solution, if a nodg haalization error and localization error affects the perfance
N — 1 neighbors, it generates ranging information with eaabf phantom node detection. Figure 10 shows the performance
neighbor. ThereforeN — 1 number of ranging information according to various threshold values for the ranging measu
are generated per node to exchange. Each neighbor announoest error 1%, 3%, 5%. The threshold valuie the maximum
N —1 distance information in a message and collédfs-1)?> acceptable difference between the distance estimatetandis
messages from neighbors. The computation cost in filteringeasurement phase and the distance between projected nodes
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nodes and the locations attacker innodes and phantom nodes on virtualygges verified (10 trials) various ranging measurement error
tended to fake plane

°
°

e error 1% > error 1%
013] - eror 3% - ermor3%
o error 5%

o error 5%

°
°
°
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positions. This indicates that our solution can not onlyedet
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