uSense: A Unified Asymmetric Sensing Coverage
Architecture for Wireless Sensor Networks

Yu Gu, Joengmin Hwang, Tian He, David Hung-Chang Du
{yugu,jhwang,tianhe,du} @cs.umn.edu
Department of Computer Science and Engineering, University of Minnesota

Abstract— As a Kkey approach to achieve energy efficiency in
sensor networks, sensing coverage has been studied extensively. Re-
searchers have designed many coverage protocols to provide various
kinds of service guarantees on the network lifetime, coverage ratio
and detection delay. While these protocols are effective, they are not
flexible enough to meet multiple design goals simultaneously. In this
paper, we propose a Unified Sensing Coverage Architecture, called
uSense, which features three novel ideas: Asymmetric Architecture,
Generic Switching and Global Scheduling. We propose asymmetric
architecture based on the conceptual separation of switching from
scheduling. Switching is efficiently supported in sensor nodes, while
scheduling is done in a separated computational entity, where
multiple scheduling algorithms are supported. As an instance, we
propose a two-level global coverage algorithm, called uScan. At the
first level, coverage is scheduled to activate different portions of an
area. We propose an optimal scheduling algorithm to minimize
area breach. At the second level, sets of nodes are selected to
cover active portions. Importantly, we show the feasibility to obtain
optimal set-cover results in linear time if the layout of areas satisfies
certain conditions. We evaluate our architecture with a network of
30 MicaZ motes, an extensive simulation with 10,000 nodes, as
well as theoretical analysis. The results indicate that uSense is a
promising architecture to support flexible and efficient coverage in
sensor networks.

I. INTRODUCTION

Wireless Sensor Networks (WSNs), consisting of thousands
of low-cost sensor nodes, have been used in many application
domains such as military surveillance [1], habitat monitoring [2]
and scientific exploration. Limited power supplies and difficulties
in harvesting ambient energy make energy conservation a critical
issue to address. Energy-efficient sensing coverage extends sys-
tem lifetime by leveraging on the redundant deployment of sensor
nodes. Within a couple of years, sensing coverage has become a
well studied subject which provides either full coverage in both
time and space [3], [4], [5], [6], [7], [8], coverage with guaran-
teed delay and connectivity [9], [10], [11], [12], or guaranteed
target detection within a certain stealth distance [13], [14]. These
algorithms are designed to be well distributed and localized,
providing solid performance gains with a certain guarantee on
service (e.g., a bounded delay in detection or a guaranteed lift-
time). While the state-of-the-art is encouraging, we believe there
are some aspects that need further investigation. First, currently
different sensing coverage algorithms focus on different service
guarantees (e.g., coverage vs. detection delay). Any single de-
sign is not general enough to meet a wide range of sensing
requirements under different operating scenarios. Second, in most
algorithms, extending system lifetime is achieved essentially
through coordination among neighboring nodes. The local node
density, therefore, imposes a theoretical upper bound on the
system lifetime, if a continuous sensing coverage or a partial

coverage is required. Such a bound can be surpassed through
global scheduling. However, the overhead of global scheduling
would increase significantly if the coordination among the nodes
goes beyond the neighborhood.

To address these two issues simultaneously, in this paper,
we introduce a new sensing architecture, called uSense, which
features three novel ideas: Asymmetric Architecture, Generic
Switching and Global Scheduling. The key concept of uSense is
the decoupling of sensing coverage into two separated functions:
scheduling and switching. The former calculates the parameters
of a working schedule for individual nodes, while the latter turns
on/off the sensors according to the scheduling parameters. We
employ an asymmetric architecture to improve the flexibility and
extensibility of the design. Switching is a lightweight generic al-
gorithm, taking two parameters as inputs. With these parameters,
it can faithfully execute the sleep/awake schedule of individual
nodes decided by any existing coverage algorithm. Switching
must be supported in the sensor nodes, since a node has to be
on to provide coverage and has to be off to save energy. On
the other hand, it is not absolutely necessary to implement the
scheduling within constrained sensor nodes. We opt to support
scheduling on a powerful computational entity, which can be
implemented at the second-tier nodes (e.g., Intel Stargate used
in TENET [15] and ExScale [1]), or on an outside server, or on
a cluster of servers to avoid single point of failure.

Asymmetric design is now considered as a promising guiding
principle for sensor networks. By decoupling the scheduling
function and implementing it outside the network core, we
can achieve efficiency and performance simultaneously. This is
because firstly, with fewer functions sharing the limited resources
on a node, we can build the switching functions, the ones
that must be embedded into individual sensor node, in a less
stringent design space. Secondly, we can design and implement
the scheduling functions outside of sensor networks, free of
resource constrains inherent in the sensor nodes, therefore, will
be more sophisticated and powerful, leading to a significantly
improved overall performance.

Before describing the uSense design in detail, we identify the
objectives and intellectual contributions of this work as follows:

« Asymmetric Sensing Architecture: The asymmetric archi-

tecture enables us to design sophisticated coverage algo-
rithms in an unconstrained design space and represent such
intelligence with a lightweight algorithm implemented in
sensor nodes.

« Generic Switching Algorithm: To the best of our knowl-

edge, we propose here the first generic and lightweight
switching algorithm that is suitable for sensor nodes with

limited resources. We demonstrate our lightweight design
at the sensor side is very effective.

« Global Scheduling Algorithms: We design two new global
scheduling algorithms, using the concept of set-cover. Dif-
ferent from all previous work, we demonstrate the feasibility
to identify a minimum cover set in linear time when the
coverage area is a continuous curve.

o System Implementation and Extensive Evaluation: We
have invested significant amount of effort to evaluate our
design. We have implemented and evaluated the design on
the TinyOS/Mote platform, using 30 MicaZ motes. We also
provide a 10,000-node large scale simulation to compare
with state-of-art solutions, lower-bonds and upper-bounds.

The rest of this paper is organized as follows. Section II
introduces the overarching architecture of uSense. Section III
describes the design of uScan, a two-level global scheduling
algorithm. Section IV provides an analytic study of the pro-
posed scheduling algorithms. Section V describes our system
implementation and provides evaluation on the TinyOS/Mote
platform. The results of the 10,000-node simulation are presented
in Section VI to compare the performance of uSense and uScan
with state-of-the-art solutions. Section VII discusses the related
work. Section VIII concludes the paper.

II. USENSE ARCHITECTURE

One of key new ideas of this work is the conceptual separation
of switching from scheduling. In this section, we provide an
overview of our asymmetric sensing architecture.

A. Motivation

Our work is aiming at flexibility and efficiency in sensing
coverage. It is often the case that a sensor network needs to
support multiple operating scenarios. For example, a military
surveillance network could be required to provide full coverage
during a red alert (a spatial coverage requirement), however,
it may allow a certain detection delay (a temporal coverage
requirement) on other occasions to aggressively conserve energy.
Two algorithms ([7] and [9]) have been successfully designed to
meet these two design goals. However, neither of them, unfortu-
nately, is flexible enough to meet both requirements. Evidently,
with these two algorithms, we can achieve both functionalities
by downloading two separate program images and switching
between them (as supported by Deluge [16]). Clearly, separate
images introduce excessive overhead in terms of communication
bandwidth, energy and storage, putting flexibility and efficiency
at odds with each other.

We observe that the wakeup/sleep schedules of individual
sensor node can be described by two parameters, which are
independent of the methods to obtain them. Therefore, the
conceptual separation of switching from scheduling becomes a
natural approach to resolve the conflict between flexibility and
efficiency. In the uSense architecture, changing scheduling algo-
rithms only affects the values of the parameters, not the switching
logic implemented at the nodes. Consequently, flexibility can be
achieved by disseminating only a few parameters.

Switching Side Scheduling Side

Computational

nsor rk .
Sensor Netwo! Entity
o0 Algorithm 1
Sensor j = -
(-—Parameters E Algorithm 2
Sensor k =
Switching . %
Algorithm ——Connectivity—m- g

Fig. 1. Overview of uSense Architecture

B. uSense Design

The uSense architecture decouples switching from scheduling
as shown in Figure 1. The switching algorithm is implemented
in the sensor nodes, which takes two scheduling parameters as
input. The scheduling algorithm, which is implemented sepa-
rately, is responsible for generating these scheduling parameters.
It takes the schedules decided by various sensing coverage
algorithms and translates them into the two parameters to be used
by the switching algorithm. The uSense architecture requires
bi-directional communication, because that (i) most scheduling
algorithms need the location information of the sensor nodes
in order to create a wakeup/sleep schedule for individual node,
and (ii)uSense needs to disseminate the scheduling results to the
nodes within the network, where the actual switching happens.
Obviously, in a static sensor network, these costs are very small,
compared with the amount of sensing data transmitted by the
sensor network. Furthermore, various existing protocols such
as SPIN [17] and PSFQ [18] already can effectively perform
energy efficient information dissemination and gathering in low
power sensor networks. In the next two sections, we focus on
the sensing coverage, describing the switching and scheduling
algorithms, respectively.

C. Part I: Generic Switching Algorithm

The switching algorithm should be lightweight to run on re-
source constrained nodes and should be generic to accommodate
various types of schedules. In our switching algorithm design,
two parameters are used for each node, namely the schedule bits
S and switching rate R.

o Schedule bits S is an infinite binary string in which 1
denotes the active state and 0 denotes the inactive state.
The duty cycle of a node is the percentage of 1s in S.

o Switching rate R defines the rate of toggling between
states. For example, a switching rate of 0.5HZ requires
a node to read one bit from the schedule S every 2
seconds. When transient energy consumption is negligible,
ideally a high switch rate R leads to a small detection
delay. However, R cannot be arbitrarily small because: (i) a
sensor has a warm-up delay before it can perform reliable
samplings, (ii) in most detection algorithms, it is not robust
enough to take just one sample to make a decision, so a
sampling delay proportional to the number of samples is
often introduced. These delays impose an upper-bound on
the switching rate R.

Although our switching algorithm is simple and lightweight,
it is powerful enough to support many types of coverage al-
gorithms. Theoretically, when the switching rate R approaches
infinity, schedule bits, as an infinite string, can precisely charac-
terize on/off behavior generated by any coverage algorithm. As
mentioned, the switching rate is finite in reality, therefore in the
worst case, a node might need to extend a wake-up period by %
seconds to guarantee the coverage.

1) Regular Expression: A switching algorithm takes schedule
bits S and switching rate R as inputs. Schedule bits S is
formally defined as an infinite binary string. Obviously, it is
practically impossible to disseminate an infinite binary string.
Fortunately, the sensing coverage schedule is usually periodic,
follows a certain pattern. Therefore, we can express S with
a regular expression. For example, (0010)* can be used to
denote a repeated off-off-active-off schedule. For a very dense
network, after scheduling, the duty cycle of an individual node
is usually low. In other words, the number of 1s in a schedule
is comparatively small. In this case, we can use index values to
represent the positions of active bits.

2) Timed Finite Automata: For a given schedule S described
as a regular expression, a node builds a finite automata (FA).
A straightforward method is to use a timer at the rate of R to
drive the state transitions within the FA. However, this requires a
node to wake-up the processor periodically, introducing excessive
energy consumption. To address this issue, we therefore build
a Timed Finite Automata (TFA). In a TFA, a state transition is
triggered by 01 or 10 segments in the schedule .S, and the delays
of transitions are the gaps between 01 or 10 segments.

D. Part II: Scheduling Algorithms

As shown in Figure 1, a sensor scheduling algorithm is
implemented separately (e.g., at the second tier). Free of resource
constraints inherent in the sensor nodes, we can support a large
number of coverage algorithms. In this section we focus on
the generic scheduling framework, before proposing concrete
scheduling algorithms in the next section.

To accommodate different sensing coverage algorithms, we
need to convert the output of a coverage algorithm into two
parameters understandable by the generic switching algorithm.
To illustrate the idea, we use the algorithm presented in [8] as a
case study.

Round 0 (Duration T) Round 1

Ref Ref ven Ref
| | | | | |
Ti Tt Tt Tons Tim T
0001111 11100001 111111000000 111111100
Fig. 2. Schedule Translation

In [8], the sensing phase of nodes is divided into rounds with
equal duration 7. The schedule for a node is determined by a
tuple with four parameters: (T, Ref, Tfront, Tend). As shown in
Figure 2, Ref is a random time instance chosen by a node within
[0, T). Tfront is the duration of time prior to the reference point
Ref, and T, is the duration of time after reference point Ref. To

build a schedule bits S, we check whether a time instance %, ke
[0,T - R] is located within the active periods. For example, the
schedule shown in Figure 2 can be expressed as (00111111100)*.

Computational

uScan

Algorithm 2 |}
o uScan

Tile-Level Scheduling

Line
Scanning

Systolic
Scanning

fes!
=
. 2.
. =
: <

o
=)
B
=z
E
=
=
5]
o
£
<
3
a

Algorithm n

v

‘ Node-Level Scheduling

Fig. 3. The Design of uScan

III. GLOBAL SCHEDULING ALGORITHMS

Conceptually, uSense can support many existing coverage
algorithms. Due to its asymmetric architecture, it is especially
friendly to the global scheduling algorithms. Since a global
scheduling allows many more nodes to activate in turn rather
than the localized ones that only schedule the nodes within neigh-
borhood, it leads to a significant energy savings. In this section,
we propose a global scheduling algorithm called uScan. Figure 3
shows the relation between uScan and uSense. Essentially, uScan
is one of sensing coverage algorithms that are supported by the
uSense architecture.

The outputs of uScan are the schedule bits .S and switching rate
R for individual nodes. uScan is a two-level schedule algorithm,
which works as follows: Suppose we provide sensing coverage
to a given area using uScan as shown in Figure 4. First, uScan
divides the area into small regions, and decides the working
schedules for these regions. This level of scheduling is conceptu-
ally independent of the deployment of the nodes. At the second-
level, we assign nodes to cover the active regions at different
time intervals, using a set-cover technique. By combining the
first-level schedule and the set-cover assignment, we can decide
the schedule bits .S for individual nodes.

The biggest advantage of this two-level schedule algorithm
is the separation of sensing pattern from the underlying node
scheduling. The application only needs to specify the desired
sensing behavior on the field in the first level of scheduling,
and the second level of uScan can take various specified sensing
patterns as input and produce the final working schedule of each
individual sensor device. The two-level schedule of the uScan
provides flexibility, reusability and efficiency to the sensing
component of sensor applications by freeing various sensornet
applications from designing their own scheduling protocols under
different application requirements.

A. Assumptions

For the clarity of the protocol description in the rest of the
paper, we assume that nodes are time-synchronized and their
locations are precise. We refer the sensing area of a node as a
circle with a nominal radius r centered at the location of the
node. These are common assumptions for many sensor network
applications [1], [2].

° ° ° ° O | Acive |o o | Slep ©
° A Tile ° © &
L] o
L] o
i 0 o
L] ° o]
hd L] o]
'y d . [
° o | Anoddwith schedule bits 1101000(.001 °©
L Ld °)
o ° o
L] ° o] ©
° L] [¢]
Fig. 4. Regular Tessellations Fig. 5. Horizontal Scan Fig. 6. Systolic Scan

B. Level I: Tile Scheduling

In uScan, we partition an area under surveillance into some
small regions of the same shape, a process called tessellation.
These small regions are called tiles, which can be regular
triangles, rectangles or regular hexagons in a 2-D space. One
simple example of tessellation is the rectangle-based partition,
as shown in Figure 4. The size of tiles is set to be smaller than
the minimum target size, so that a target is detected as long as a
portion of a tile is covered. As a reminder, nodes within a sensor
network only support a generic switching algorithm, which has
neither the concept of tiles nor the partition information of the
tiles. All the complex logic resides outside of sensor nodes. In
this section, we describe two simple, yet effective methods for
the tile-level scheduling. They differ in the energy consumption
rate and the detection delay.

1) Line Scan: We start with a simple tile-level scheduling as
shown in Figure 5. Instead of trying to cover all tiles, we only
cover a column/row of tiles in a certain interval of time during
one round of scan. The covered columns/rows are increasing or
decreasing consecutively. Because only a small percentage of
tiles are sensed at a specific point of time, line scan leads to a
significant reduction in energy consumption, compared with full
coverage [8].

Specifically, in the line-based global scanning, we introduce
the concept of scanning speed v, which represents the speed
of scan from one end to the other, horizontally or vertically.
This scanning speed determines the maximum detection delay a
network experiences. The scanning speed v can be transformed
into the switch rate R. Suppose we have a rectangle-based
tessellation, the length and width of a tile are L; and L,
respectively. For a given scan speed v, if we want to scan
horizontally, the switch rate R is set to be LL, Similarly, the
switch rate is Liw, when we scan vertically. Starting from 0,
we index the tiles in a row-major order. Therefore a tile with
coordinates (row, col) is assigned the index of row*col 4+ col
(cOliaz is the maximal column index). To cover a tile ¢(i) with
a coordinates (row, col) in a scanning round, schedule bits .S for
this tile is as follows:

Sk (i) = (000..0001 000..000)* (Hscan)
col—1 cOolmar—col
S, (i) = (000..0001 000.000)* (Vscan)

row—1 TOWp gy —TOW

Moreover, we can perform horizontal and vertical scans si-
multaneously. Both directions share the same scanning speed v.

We can obtain the schedule bits of a two-way scan by applying
the bitwise OR operation on .S}, and .S, obtained in Equation 1:

S(i) = Sp(i)|5u(4) 2

2) Systolic Scan: Systolic Scan emulates the cardiac cycles
of a beating heart. Figure 6 shows the design of systolic scan.
The tiles are scanned from the inner layer to the outer layer,
as denoted by different gray-levels in Figure 6. Without loss of
generality, we describe the method with a simple case where
COlpay = TOWmq, = N. Clearly, the length of schedule bits in
a scanning round is [N/2]

For the first time interval (represented by the first digit in the
schedule bits), the tiles at the center of the area set their first
digit of schedule bits to 1, and the schedule bits for these tiles
are (1000..000)*.

——
[N/2]-1

Similarly, for the n" time interval, the tiles whose coordinates

meet one of follow four conditions:

row ==n & col>n—-1 & col<N-n
row==N-n & cl>n—-1 & cll<N-n 3
col==mn & row>n—-1 & row<N-—-n &)
col==N-n & row>n—-1 & row<N-n
set their schedule bits as follows:
S(2) = (000..000 1000..000)*
—_—— ——
[N/2]-n—1 n “4)

7 =1row *x N + col

where n = 0,1,2...,[N/2] — 1 and ¢ is the index of tiles that
satisfies the requirements.

Both line scan and systolic scan specify only the set of tiles
need to be activated (covered) at a given point of time. The task
of covering each tile set is accomplished by the second-level
node scheduling, which will be described in the next section.

C. Level II: Node Scheduling

Tile-level scheduling determines the set of active tiles T'S; at
the time interval ¢. For example, in a horizontal line scan, the ith
column is activated at time interval <. In this section, we describe
how we can translate a known tile schedule into a corresponding
node schedule bits S, which can be interpreted directly by a
generic switching algorithm.

Fig. 7. Physical Coverage

Fig. 8.

1) Main Idea: Before we discuss the complete algorithm, we
first illustrate our approach with a simple example. Figure 7
shows one column of tiles T'S = {T1,T5,T3,T4,T5} that is
covered by a set of nodes NS = {Ny, No, N3, Ny, N5 }. Since
we set the tile size smaller than the minimal target size, a
tile is said to be covered as long as a portion of this tile is
covered. Figure 7 can be mapped to the Coverage Bipartite
Graph shown in Figure 8 according to the coverage relationship.
Node scheduling consists of two steps. First, we keep identifying
one-cover set with minimal number of nodes, until the size
of one-cover set is above a certain threshold. For example, as
shown in Figure 7, we identify three one-cover sets for 1'S:
CcS! = {Nl,N5}, CcS? = {NQ,Ng} and CS3 = {N17N4} to
ensure that all nodes are used. Three sets C'S*, C'S? and C'S®
can provide coverage to the tile set 7'S in a round-robin fashion.
To do this, we create a node schedule that has three segments,
each of which has a length of the tile schedule. If a node belongs
to the C'S* set, the k' segment has the same value as the tile
schedule. Otherwise, the kt" segment has an all-zero value. For
example, if the tile schedule of T7'S is 0010, the final schedules
for the nodes shown in Figure 7 are:

Sy = (00100000 0010)* S = (00000010 0000)*
N N N~ —— N N~
1 2 3 1 2 3
S3 = (0000 00100000)* S4 = (0000 00000010)*
1 2 3 1 2 3
Ss = (0010 0000 0000)*
N N N~
1 2 3

2) Identifying Minimum Set-Cover within Linear Time: To
save energy at each time interval, we need to identify a minimum
set of nodes to cover an active tile set. This is a typical set-cover
problem, which can be formally defined as:

Definition Given a collection C' of subsets of a finite set 7', find
a set cover C’ (C" C C) for T, such that every element in T
belongs to at least one member of C”.

The generic Minimum Set Cover (MSC) problem has been
proven NP-Hard and any polynomial algorithm can only find
results of 14In|T'| optimum [19]. Fortunately, line scan coverage
is a special case of the generic set cover problem, because a node
can cover only a continuous segment of tiles. The main idea of
our polynomial algorithm is to map Coverage Bipartite Graph

Bipartite Graph

Fig. 9. MSC using DAG

(figure 8) into a Directed Acyclic Graph (DAG) (figure 9). The
one-to-one mapping rules are as follows:
1) We map N tiles in T'S; into N vertices V' = {vy, ...
and add one extra vertex vy 1.
2) If a node covers a set of tiles {T},...,T;4+n}, We create
n directional edges (v;,v;) where v; = viq1, ..., Vitnt1.
Each edge has a unit cost.

avN}

Through this mapping, the tile set cover problem can be
reduced to the problem of finding out the shortest paths from
v1 to vn41. The mapping process takes O(|V]) + O(|E|) time.
For an arbitrary graph, the shortest path algorithm finishes within
O(|V'|?) using the Dijkstra algorithm. Since the graph we create
is DAG, we can find the shortest path in O(|E|) time, using a fast
reaching algorithm [20]. Therefore the whole algorithm finishes
in O(|V]) + O(E]).

To illustrate the idea, Figure 9 shows a DAG which is mapped
from Figure 8. To identify the minimal set cover, we need to
find out the shortest path from v; to vg. In this simple case,
we can cover all the tiles using one of following node sets:
{Nl, Ng}, {Nl, N4}, {Nl, N5}, {NQ, Ng} or {NQ, N4}, which
are five corresponding shortest paths from v; to vg.

We note that the proposed polynomial algorithm does not
apply to generic tile scheduling. When a tile set does not form a
continuous curve or a node can cover multiple segments of a tile
set simultaneously, the polynomial algorithm can not guarantee
the complete coverage of active tiles. In these cases, we adopt
a greedy set-cover method by choosing the node that covers the
most number of tiles first.

3) Selecting Cover Sets for Multiple T'S: Up to now, node
scheduling has been described using a simple example that
assumes a node only needs to cover one tile set. Obviously,
to support line scan or systolic scan in a 2-D space, we need
to identify cover sets for the whole area (not just for a single
column). Thus a node may need to cover multiple tile sets 7'S;.
The detailed process to cover the area is as follows:

1) Each node maintains a counter SC to record how many
times it has been selected into final Cover Sets (for the
purpose of energy balance).

2) For a tile set T'S;, the algorithm calculates the minimum
cover set MCS, among the nodes with minimum SC
values. If the nodes with minimum SC values can not
form a complete cover set, nodes with higher SC' values

are used.

3) After we obtain all MC'S;, the smallest eligible MC'S;
(SMCS) is selected and recorded for the purpose of node
scheduling, and the SC' values of nodes within this SMCS
set are incremented.

4) Each T'S; has a coverage threshold, denoting the maximum
number of nodes that can be used in a selected MC'S;.
These thresholds are calculated based on the concept of
redundancy. If the first MCS; chosen for T'S; includes
M nodes, the number of nodes in the following MC'S;
for T'S; should not differ significantly, in order to reduce
redundancy in coverage. We set the threshold for T'S; as
M X % according to the redundancy in circle cover-
ing [21].

5) The SMCS selection process is repeated until the size of
all MC'S; are larger than their thresholds.

4) Create Node Schedule Bits R : Suppose K one-cover sets
are selected for a tile set T'S; with a tile schedule St (from
Section III-B), we create a node schedule S; for node N;, which
has K segments. The value of each segment is either St or
zero. If a node belongs to the kP one-cover set, the value of the
kth segments is S7. Otherwise, the kth segment has an all-zero
value. Since in a 2-D space, a node might need to cover different
tile sets in a single round. Supposing a node needs to cover M
different tile sets, the final node schedule S is:

M
S = 9,}1{(57?)*- (6)

5) Support Differentiated/Robust Surveillance: Differentiated
surveillance [8] can be supported easily by uScan, due to its set-
cover based approach. Instead of turning on one set of nodes
to cover a column/row, uScan can turn on multiple disjoint set
of nodes to increase the degree of coverage. This leads to a
higher detection confidence, but at the cost of network lifetime.
Similarly, fault tolerance can be achieved by turning multiple
sets on. It is interesting to emphasize that nodes actually have no
concept of set, which leads to a nice property for fault tolerance:
To fix the failure of nodes, we only need to modify the schedule
bits S’ of the nodes in the neighborhood of failed node and no
coordination between nodes is needed.

IV. DESIGN ANALYSIS

Different from full coverage algorithms in [7], [22], uScan
covers only a part of a network. On one hand, this approach
significantly increases the network lifetime, but on the other
hand, it introduces a certain delay in target detection. In this
section, we provide analytic results on the performance of uScan.
Here, we focus on the tile-level analysis instead of the node-level.
Let’s consider an area with N by N tiles.

A. Detection Delay for Static Targets

To evaluate the detection delay for static targets, we assume
that a target is randomly located in an area and is detected after
a neighboring node turns on for % seconds. In line and systolic
scan, in order to guarantee detection, a tile must be turned on
once per round. The minimal detection delay happens when a
target shows up in a tile right before this tile is turned on. In
this case, the detection delay is %. The maximum detection delay

- Target Direction > Scan Direction
Breached Arca o Breached Area _er
2R+7) Fo
Un-breached Arca
2([1:’" N-r Un-breached Area N-r
+r)
Rr R+r
N » - » -
< > %
N-r >
2R+r)
N-r N-r
2(R+7) VR =r?

a) Systolic Scan (Outward) b) Line Scan (Left to Right)

Fig. 10. The Breached Area

happens when a target shows up in a tile right after this tile
is turned on. In this case, the detection delay is % for line

scan and % for systolic scan. Since the delay is uniformly
distributed in a round, the expected delay is % for line scan
and % for systolic scan. Under the same configuration, the
detection delay for full coverage algorithms is zero. To reduce
the detection delay in uScan, we can divide a network into
sub-networks, where multiple line scans and systolic scans are

executed in parallel.

B. Breached Area for Mobile Targets

In a full coverage scenario, the worst-case breach area is zero.
A mobile target is detected once it enters into the area. In the
scanning approach, a target would reach a certain portion of the
area before it is detected. We define the largest percentage of
the area that a target can reach without being detected as the
Worst-Case Breach (WCB). A smaller WCB indicates a better
performance in mobile target detection. To calculate WCB, we
assume the following mobility model: A target can only enter
from outside of the network, and the maximum speed of any
target is r tiles per second.

1 %/
08 § 1
06 o q
3 ¢
Q g
= 8
]
0.4 3 4
o}
o}
4
OY’
02 ¢ i
@
] WCB of Systolic Scan —+—
of Line Scan ---e---
o)) WCB of Line S‘can at Double s‘peed B
0 20 40 60 80 100
Target Speed r (Scan speed R= 100)
Fig. 11. Performance Comparison

The worst case breach scenario for systolic scan (outward
direction) is shown in Figure 10(a). In this scenario, the worst-
case breach happens when a target enters at the beginning of the
scan round. The distance this target can breach without detection
is %. Therefore, the WC Bs(r, R) for systolic scan under
the target speed r and switching R is:

2R+ r)r

WCB,(r,R) = T

@)

uSense System Setup

Fig. 13.

The worst case breach scenario for line scan is shown in
Figure 10(b), which has four more sophisticated cases:

1) If a target enters from the left edge (the same direction as
the scan), the distance this target can breach is é\’f -~

2) If a target enters from the right edge (opposite direction as
the scan), the distance this target can breach is RN—L.

3) If a target enters from the top or bottom edge. In order to
achieve the maximum breach, a target should enter with
an angle o = arctan(ivRi_’"z). In this case, the maximum
distance that this target can breach is %.

4) If a target has a speed of (v/2—1)R or greater, it can enter
the area from the left to reach at least LQ percent of the
area and it can also enter the area from the right to reach
at least 1 — % percent of the area. Therefore, the whole

area is breached.

By combining these four cases, we get WCB;(r, R) for line
scan , assuming target speed r and switching R:

2R 2 2R
RQ_:Q + \/R;fr? (1 - RQ_:,Q)

WCB =
{ 1 r>(\2-1R
(®)
Now we are ready to compare two global scheduling algo-
rithms. As shown in Section III-B.2, for a given switching rate
R, systolic scan consumes twice as much energy as line scan
does. To obtain a fair comparison, we thus double the switching
rate of line scan. By comparing WCB; and WC B, it is easy
to prove that WC By (r,2R) > WCB,(r, R) at all target speeds.
In other words, systolic scan is better than line scan in terms
of minimizing the breaching area. Actually we have proven
that systolic scan is an optimal scanning algorithm in terms of
preventing area breach when the target speed r is very fast. Due
to the space constraint, we omit the detailed proof here. On the
other hand, the line scan algorithm has its own advantages. As we
have shown in Section III-C.2, we are able to obtain optimal set-
cover results for line scan within a polynomial time. To illustrate
the difference further, Figure 11 shows the WCB values under
different target speeds r (0-100), when the switching rate R is
100. Clearly, the difference is significant. For example, when
the target speed is half of scanning speed(r=50), systolic scan
protects about half of the area, while line scan cannot protect
any portion of the network.

Injecting Events

Fig. 14. 5x5, 2x10, 1x 15 Layouts

V. IMPLEMENTATION AND EVALUATION

We have implemented a complete version of uSense (with
uScan) as designed in Section II and III.

o The generic switching algorithm is written with the
NesC language, running on the TinyOS/Mote platform. The
compiled image of a full implementation occupies 21,040
bytes of code memory and 907 bytes of data memory. A
simple timer-driven FA logic is implemented to turn a mote
on/off according to the schedule bits. We use FTSP [23]
for the purpose of time synchronization among motes and
Deluge [16] for the purpose of wireless reprogramming. The
synchronization accuracy is at tens of microseconds, which
is sufficient for most sensing scheduling algorithms.

o The scheduling algorithms are written in Java, runs on a
laptop. Since sensor nodes have no concept of scheduling,
the global scheduling algorithm uScan and other coverage
algorithms are written only in Java. The schedule bits S and
the switching rate R are disseminated from the base, using
a single packet. We also implement an evaluation engine
using Java, which generates virtual targets using the light.
To accurately measure the delay, we implement an NTP-
like two-way handshaking synchronization protocol over a
serial cable to synchronize the base mote and laptop. This
synchronization protocol is not part of uSense and is only
used for the evaluation purpose.

As shown in Figure 12 to evaluate uSense and uScan, we
attach 25 MicaZ motes on a veltex board (4 feet by 12 feet) using
velcro straps. We use a DELL 2300MP projector to generate
light spots on the veltex board. These light spots are used to
emulate static and mobile events. For example, the static events
are randomly generated in the grid to trigger the detection, as
shown in Figure 13. After the nodes detect the light events, they
report timestamps to the laptop, where the delay is calculated.

As shown in Figure 14, three grid layouts are used in the
experiments: 15 by 1, 10 by 2 and 5 by 5. In addition, we evaluate
uScan with random placement as well. The locations of nodes in
the random placement are obtained through a random generator.
Each node is assigned an energy budget (the number of times a
node can be turned on), which is used to evaluate the lifetime
of the sensors. Events are repeated hundreds of times to obtain
results with high statistical confidence.

;
;w 08
kS
2 o6
[}
(=9
=
S 04
31
2
|53
A o2
Random Placement —&—
0 Grid Placement -@-
15 30 45 60 . 75 920 1056 120 135
Time
Fig. 15. Detection Over Time under Different Node Placements
! Line Scan —&— P
Systolic Scan & &
0.8
0.6
23
a
®)
0.4 f
o
vl &
0
150 300 450 600 . 750 900 1050 1200 1350
Detection Delay
Fig. 17. Detection Delay of Line and Systolic Scan for Static Targets

Line Scan-Same direction —&—

1400 Line Scan-Perpendicular direction ~-+€-

Line Scan-Opposite direction &
Systolic Scan &

1200

1000

800

Detection Delay

150 200 250 300 350 400 450 500 550 600

Switching Delay

Fig. 19. Detection Delay Under Different Switching Delays

A. Testbed Evaluation

The system evaluation focuses on the detection delay for static
and mobile targets, the detection probability for mobile targets
and the node lifetime. All the experiment are repeated 10 times.

1) Detection Probability Over Time: In this experiment, we
inject static targets through the DELL projector into the network
to evaluate the detection probability over time. A target is missed
only if a tile is not covered (i.e., a node runs out of power).
We test uScan under the random placement and grid placement
using 10 MicaZ motes. The results are shown in Figure 15.
Since nodes in the grid placement have well balanced duty-
cycles, they provide full coverage until all of them run out
of energy simultaneously. In the random placement, the sparser
areas become uncovered first, and coverage degrades gradually
over time. For example, random placement still keeps about 40%
coverage when coverage reduces to zero in the grid placement.

2) Detection Delay for Static Targets: In this experiment, we
investigate the detection delay for static targets under different
minimum target sizes. Static targets are injected at random time
intervals into the area. Since the tile size is determined by the
minimum target size, the number of columns needed to cover
the same area reduces when the minimum target size increases,
therefore the detection delay reduces as well. Figure 16 shows the
Cumulative Density Function (CDF) curves of the delays for two

4
Target Size = 1 —5— i
Target Size = 2 &

CDF

500 1000 1500 2000 2500 3000 3500 4000 4500
Detection Delay

Fig. 16. Detection Delay of for Static Targets under Different Target Sizes
1 = —
e 4 L
@&8 W
A&
X
& '
A
I £
5 .
®)
Layout 5 by 5 Line Scan-Same direction —E—
Layout 10*2,Line Scan-same direction --©-
Layout 15*1,Line Scan-Same direction A
800 1600 2400 3200 . 4000 4800 5600 6400 7200
Detection Delay
Fig. 18. Detection Delay of Line Scan for Mobile Targets
Line Scan-Same direction ==z
Line Scan-Perpendicular direction Esmssss
Line Scan-Opposite direction
> Systolic Scan
£
Z o
o
W)
= 0
g
=]
3 o
°
A 0.
J SEn
150 300 450
Switching Delay
Fig. 20. Detection Probability Under Different Switching Delays

target sizes. Clearly, a larger target size leads to smaller delays.
For example, when the target size is one, the maximum delay
on detection is 4834ms, while the maximum delay is 2378ms
with a target size of two.

3) Comparison of Detection Delay: In this experiment, we
use 25 MicaZ to form a 5 by 5 grid and compare the detection
delay of static targets for line and systolic scan, again using CDF
curves. From Figure 17, we can see that under the same switching
rate, the detection delay of systolic scan is about one-half of line
scan, which is consistent with the length of schedule bits shown
in Section III-B. In the 5 by 5 grid layout, the average detection
delays for systolic and line scan are 380ms and 706ms.

4) Impact of the Network Size and Scan Direction: In this
experiment, we study the impact of the network size using three
network layouts. The target moves in the same direction as line
scan. As shown in Figure 18, as the network size reduces, the
detection delay decreases accordingly. For example, the average
detection delays for the 1 by 15, 2 by 10 and 5 by 5 layouts
are 3758ms, 2284ms and 1051ms, respectively. This indicates
that to guarantee a certain detection delay, we should partition a
large area and perform scans within the sub-areas.

5) Impact of the Switching Delay and Scan Direction:
Figure 19 studies the detection delay under different switching
delays (the reciprocal of the switching rate R) and different

target directions. This investigation is intended to reveal the
importance of designing fast hardware and detection algorithms.
We use a 5 by 5 layout, generate mobile targets from three
different directions, and measure the delays before the mobile
targets are detected. Figure 19 shows four curves, representing
three target moving directions on line scan and one direction on
systolic scan. Systolic scan has the smallest detection delay at
all switching rates. Line scan in the opposite direction of a target
moving direction provides the second smallest detection delay.
The longest delay happens when we scan at the same direction
as the target moving direction.

In addition, Figure 19 shows that, generally, when the switch-
ing delay increases, the detection delay increases linearly. In-
terestingly, there are two data points that do not follow this
trend. It is because that line scan misses the targets when the
scan speed is below twice the target moving speed (when both
move in the same direction). In our setup, this happens when
the switching delay is longer than 300ms. Under these slow
scanning speeds, uScan may miss targets and record only the
short detection delays, leading to a small average detection delay.
This is also confirmed by the detection probability results in
Figure 20, which indicate when targets move oppositely to the
direction of line scan, we can ensure the 100% detection of
mobile targets. However, if the scanning direction is the same
as the target moving direction, the detection probability drops to
45% at the long switching delay of 600ms.

VI. LARGE SCALE SIMULATION: COMPARING WITH
STATE-OF-THE-ART

Experiments on the test-bed indicate that uSense can be
efficiently implemented on the resource constrained devices
and reveal its nice features. In this section, we compare the
performance of uScan with several state-of-the-art sensing cov-
erage algorithms integrated into uSense architecture, validate
the benefit of asymmetric sensing architecture and the two-level
scheduling approach.

In this simulation, up to 10,000 sensor nodes are randomly
distributed in a 300mx300m square field. The sensing range is
10m. The sensor nodes are deployed with a random distribution
into the square field. To avoid performance distortion due to
the edge effect, we set the coverage area as the 290mx290m
square in the center of the square field and do statistics on the
central 275mx275m field. The following baselines and bounds
are adopted for purposes of comparison:

1) Baseline-I: All-Working: The full coverage mode with all
nodes on.

2) Baseline-II: DiffSurv: Differentiated Surveillance for sen-
sor networks proposed in [8] integrated into the uSense
architecture.

3) Baseline-III: Virtual Patrol: Coverage-oriented patrols
using wireless sensor networks proposed in [24] integrated
into the uSense architecture.

4) Upper Bound-I: Optimal full coverage using 2/+/27r2
circles with a honeycomb layout.

5) Upper Bound-II: Ideal upper bound for line scan, which
assumes that nodes are placed optimally such that | M C'S;|
for each time interval is minimized.

All the experiments are repeated 100 times with different ran-
dom seeds and node deployments. The 95% confidence intervals
are within 1~15% of the mean, which is not plotted for the
sake of legibility. The following metric is used to evaluated the
performance of uScan.

« Network Half-life: We define the half-life of a sensor
network as the time from the beginning of the deployment
until exactly half of the nodes are still alive. This metric
indicates the energy efficiency of the network as a whole.

A. Performance under Full Coverage Mode

If the tile set TS to be covered includes all the tiles in
the network, uScan essentially provides a full coverage. In this
experiment, we compare uScan with other solutions under Full
Coverage Mode to evaluate the effectiveness of the set-cover
approach in uScan. Figure 21 shows the network half life of four
different solutions: uSense, DiffSurv, all-working lower bound
and theoretical upper bound (by assuming a honeycomb layout).
From Figure 21, we can see that the half lives for all cases
are increasing linearly when the node density increases. The
slope of uSense is larger than DiffSurv, which implies that as
the node density increases, the difference in half-life between
uSense and DiffSurv increases as well. For example, at the node
density 1, the half life for DiffSurv and uSense are 1.19 and
1.35, respectively. And when the node density reaches 4, the
corresponding two half lives are 4.91 and 6.99 and the half-life
difference increases from 13.4% to 42%.

Ideal Upper Bound
10 DiffSurv j;:

uSense -
All Working ~©

System Half Life

25 35 4
Node Density

Fig. 21. System Half Life vs. Node Densities

B. Performance under Scanning Mode

In [24], Gui and Mohapatra propose a virtual patrol solution
similar to our line scan scheme. The main difference between
virtual patrol and uScan is that virtual patrol only provides single-
level of scheduling. At each time, if a node’s distance to the
patroller is within its sensing range, the node is active; otherwise
it is in sleep state. Figure 22 shows the half life of the line scan
for uSense, virtual patrol and ideal upper bound. From the Figure
we can see that as the node density increases, the system half
life of the uSense increases almost linearly. On the contrary, the
half life of the virtual patrol remains steady and cannot take the
advantage of the increased node density. When the node density
reaches 10, the half life of the uSense is 379.88, while the virtual
patrol has a half life of 13.99, which is about 27 times energy
inefficiency than the uSense. The major reason for such large
performance gap is that virtual patrol activates all the nodes can
sense the patroller, while the uSense only use a minimized subset
of the eligible nodes to provide the desired coverage.

600

Upper Bound-Il —5—
Virtual Patrol g

uSense

System Half Life

4 7

5 6
Node Density

Fig. 22. System Half Life vs. Node Densities

VII. RELATED WORK

Physical sensing coverage is the research focus in the begin-
ning. In [7], authors support full surveillance coverage based on
an off-duty eligibility rule. DiffSurv [8] provides differentiated
surveillance to an area with a certain degree of coverage. In [22],
surveillance coverage is achieved through probing. Several other
works focus more on the theoretical results of sensing coverage.
Kumar et al. [5] identify a critical bound for k-coverage in
a network, assuming a node is randomly turned on with a
certain probability. In [25], Kumar et al. investigate the k-barrier
coverage problem, identifying the critical condition for weak k-
barrier coverage. Several algorithms are designed based on the
concept of set cover. In [4], Cardei et al. propose two heuristic
algorithms to identify a maximum number of set covers to
monitor a set of static targets at known locations. In [3], Abrams
et al. propose three approximation algorithms for a relaxed
version of the previously defined SET K-COVER problem [6].

To achieve a higher energy efficiency, several recent works
focus on the partial coverage within a fixed time delay. In [9],
nodes coordinate to guarantee the worst-case detection delay and
to minimize the average detection delay. Another type of tempo-
ral guarantee is to analyze the detection delay in the context of
tracking. In [13], [14], [24], they assume the network is partially
covered and provide a theoretical analysis and simulation on the
delay before a target is detected.

Our work is unique in the following aspects: (i) uSense is
a unified architecture instead of an individual solution. We are
the first to propose the concept of generic switching. (ii) uScan
demonstrates a novel two-level global scheduling method that
can significantly reduce energy consumption. (iii) Our set-cover
is uniquely implemented at the second level, allowing the first-
level optimization. For example, we demonstrate optimal cover
sets can be obtained in linear time when the coverage area is a
continuous curve. In contrast, single-level set-cover approaches
[4], [3] could be inefficient under non-uniform node distribution.

VIII. CONCLUSION

In this work, we propose a unified sensing architecture called
uSense. It features an asymmetric design, which supports various
kinds of coverage algorithms with a simple generic switching al-
gorithm in sensor nodes. It allows us to flexibly change coverage
algorithms with only two parameters. Another major contribution
of this work is a two-level global scheduling algorithm called
uScan, which is seamlessly supported by the uSense architecture.
In the first level, we propose an optimal scheduling algorithm

10

in terms of minimizing area breach. In the second level, we
propose a linear algorithm to address the set-cover problem
when the layout of tiles satisfies certain conditions. We have
invested significant effort to evaluate our design, which includes
a network of 30 MicaZ motes, an extensive simulation with
10,000 nodes, as well as theoretical analysis. With three novel
ideas: Asymmetric Architecture, Generic Switching and Global
Scheduling, our work has successfully achieved flexibility and
efficiency for the sensor network coverage problem.

ACKNOWLEDGEMENT

This work was supported in part by NSF grant CNS-0626614
and General Dynamics Research Fellowship.

REFERENCES
(11

A. Arora and et al., “ A Wireless Sensor Network for Target Detection,
Classification, and Tracking,” Computer Networks (Elsevier), 2004.

R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler, “An Analysis
of a Large Scale Habit Monitoring Application,” in SenSys’04, 2004.

Z. Abrams, A. Goel, and S. Plotkin, “Set K-Cover Algorithms for Energy
Efficient Monitoring in Wireless Sensor Networks,” in /EEE IPSN, 2004.
M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-Efficient Target Coverage
in Wireless Sensor Networks,” in IEEE INFOCOM, 2005.

S. Kumar, T. H. Lai, and J. Balogh., “On k-coverage in a Mostly Sleeping
Sensor Network,” in Mobicom, 2004.

S. Slijepcevic and M. Potkonjak, “Power Efficient Organization of Wireless
Sensor Networks,” in /IEEE ICC, 2001.

D. Tian and N. Georganas, “A Node Scheduling Scheme for Energy Con-
servation in Large Wireless Sensor Networks,” Wireless Communications
and Mobile Computing Journal, 2003.

T. Yan, T. He, and J. A. Stankovic, “Differentiated Surveillance Service for
Sensor Networks,” in SenSys’03, November 2003.

Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards Optimal Sleep
Scheduling in Sensor Networks for Rare Event Detection ,” in IPSN 05,
2005.

C.-F. Chiasserini and M. Garetto, “Modeling the performance of wireless
sensor networks,” in IEEE INFOCOM, 2004.

C.-F. Hsin and M. Liu, “Network Coverage Using Low Duty-Cycle Sensors:
Random & Coordinated Sleep Algorithms,” in IPSN’04, 2004.

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
Coverage and Connectivity Configuration in Wireless Sensor Networks,”
in Sensys’03, November 2003.

C. Gui and P. Mohapatra, “Power Conservation and Quality of Surveillance
in Target Tracking Sensor Networks,” in MobiCom’04, 2004.

S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang, “Analyzing Object
Tracking Quality under Probabilistic Coverage in Sensor Networks,” ACM
MC2R, vol. 9, no. 1, 2005.

O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler, “The tenet architecture for tiered sensor
networks,” in SENSYS, 2006.

J. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale,” in SenSys, November 2004.
W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols
for Information Dissemination in Wireless Sensor Networks,” in Proc. of
MOBICOM, August 1999.

C. Y. Wan, A. T. Campbell, and L. Krishnamurthy, “PSFQ: A Reliable
Transport Protocol for Wireless Sensor Networks,” in WSNA 02, 2002.
V. T. Paschos, “A Survey of Approximately Optimal Solutions to Some
Covering and Packing Problems,” in ACM Computing Surveys, June 1997.
Kolmogorov-smirnov test., E.W. Weisstein. MathWorld, 2004,
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html.

R. Williams, Geometrical Foundation of Natural Structure:A Source Book
of Design. Dover Publications Inc, New York, 1979.

F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A Robust Energy Conserving
Protocol for Long-lived Sensor Networks,” in /CDCS, May 2003.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The Flooding Time
Synchronization Protocol,” in SenSys’04, 2004.

C. Gui and P. Mohapatra, “Virtual patrol: a new power conservation design
for surveillance using sensor networks,” in /PSN, 2005.

S. Kumar, T. H. Lai, and A. Arora, “Barrier Coverage With Wireless
Sensors,” in MobiCom 2005, 2005.

(2]
(3]
[4]
(51
(6]
(71

(8]
[91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

