
Tracking with Unreliable Node Sequences

Ziguo Zhong, Ting Zhu, Dan Wang and Tian He

Computer Science and Engineering, University of Minnesota

200 Union Street SE, Minneapolis, MN, USA

Email: {zhong, tzhu, tianhe}@cs.umn.edu

Abstract—Tracking mobile targets using sensor networks is a
challenging task because of the impacts of in-the-filed factors such
as environment noise, sensing irregularity and etc. This paper
proposes a robust tracking framework using node sequences, an
ordered list extracted from unreliable sensor readings. Instead of
estimating each position point separately in a movement trace, we
convert the original tracking problem to the problem of finding the
shortest path in a graph, which is equivalent to optimal matching
of a series of node sequences. In addition to the basic design, multi-
dimensional smoothing is developed to enhance tracking accuracy.
Practical system deployment related issues are discussed in the
paper, and the design is evaluated with both simulation and a
system implementation using Pioneer III Robot and MICAz sensor
nodes. In fact, tracking with node sequences provides a useful
layer of abstraction, making the design framework generic and
compatible with different physical sensing modalities.

I. INTRODUCTION

Wireless sensor networks (WSN) have been considered as a

promising system for area surveillance applications. Low-cost

sensor nodes are deployed randomly or deliberately in an area to

accomplish the task of monitoring, including event/target detec-

tion, localization and tracking with or without cooperation from

the target itself. Due to extremely limited resource constrains

for each sensor node, accurate large scale mobile target tracking

still remains to be one of the challenging issues in the WSN

community.

Many excellent ideas have been proposed for target track-

ing with WSN [1][2][4][5][6][7][8][11][16]. In most systems,

tracking is achieved through sequential localization [3][16][2]

or moving velocity measurement [5][7], cooperating with target

movement modelling, estimation and filtering [1][6][11] (e.g.,

Kalman filter [10], Particle filters [9], Bayesian networks [33]).

However, model based methods not only bring about a complex

system design, but also require some maneuver-related assump-

tions about the mobile target. For sensor networks deployed in

a wide area to detect unexpected events, it could be difficult

and unrealistic to predetermine the movement parameters for

possibly occurring mobile targets. On the other hand, tracking

and localizing targets using ranging-based methods, in which

point-to-point distance or angle measurements are required,

could make the system costly for adding per-node additional

hardware [3][16][12][13], or requiring careful environment pro-

filing [3][14], both of which are highly unfavorable.

This paper investigates a new approach for mobile tar-

get tracking with sensor networks. Without assumptions of

target movement models and without accurate range-based

localization, mobile tracking is accomplished by processing

node sequences, which can be easily obtained by ordering

related sensor nodes according to their sensing results of the

mobile target. As a range-free approach, tracking by processing

node sequences provides a useful layer of abstraction: as long

as the node sequences obtained reflect the relative distance

relationships among the target and the sensor nodes with known

positions, specific format of the physical sensing modality (e.g.,

heat/RF radiation, acoustic/sematic wave) is irrelevant to the

tracking algorithm. Thus, the design is very generic, flexible,

and compatible with different sensing modalities.

The major challenge in this system is that node sequences

are unreliable due to combined factors such as irregular signal

patterns emitted from the target, environment noise, sensing

irregularity [15] and so on. By applying the space and time

domain constrains that are universally appropriate for any

moving object, we demonstrate that our design owns better

tracking accuracy than the base-line method using sequential-

based localization, especially in the scenarios where consider-

able noise exists.

The rest of the paper is organized as follows. Section II gives

an overview about the design. Section III and IV detail the

system design. Section V discusses several issues concerning

practical system deployment. Section VI and VII evaluate the

design with extensive simulation and a real system implementa-

tion. Section VIII briefly discusses related work, and section IX

concludes the paper.

II. SYSTEM OVERVIEW

This section gives an overview of the tracking system, which

is composed of three parts, as shown in Fig.1.

In Fig.1(a), after the deployment of sensor nodes, the map

of the area under surveillance can be divided into lots of

small regions, named faces, according to the positions of the

sensor nodes, obtained during the network deployment and

initialization period [19][20]. Using the center of gravity of

each face as vertices, a neighborhood graph can be built for the

purpose of preventing biased movement estimation caused by

sensing noise. In practice, both map dividing and neighborhood

graph building can be pre-computed as soon as the network has

been deployed.

When a mobile target enters the monitored area, sensor nodes

detect certain forms of physical signals emitted from the target.

Due to different geographic distances between each sensor node

and the target, the sensing results at each sensor node vary, e.g.,

different signal strength, time-of-arrival. This naturally gives an

ordering of the sensor nodes called a detection node sequence,

1

2

3

4

5

(a) Map Dividing and Neighborhood Graph Building

(b) Detection Node Sequences Obtained for the Mobile Target

1 2 3 4 5...

1 3 2 4 5

...

2 3 4 5 1

5 4 3 1 2

...

1 2 3 4 5

...

1 3 2 4 5

...

2 3 4 5 1

5 4 3 1 2

...

2

1

4

3

5

1

2

3

4

5

1

2

3

4

5

(c) Tracking with Unreliable Node Sequence Processing

Target moving trace
Estimated trace

Target moving trace

Center of gravity point
Edge between neighbor faces

1 Senor Node 1

2

1

4

3

5

A detection

node sequence

A series of

detection sequences

Fig. 1. Tracking System Overview

or for short, a detection sequence. Along the moving trace of

the target, periodic sensing results from related sensor nodes

produce a series of detection sequences, as shown in Fig.1(b),

which embed relative position relationships among the sensor

nodes and mobile target. Then, with pre-computed map division

and neighborhood graph, the trace of the mobile target can

be estimated by processing a series of detection sequences, as

shown in Fig.1(c).

In the following, we concentrate on the abstract layer of

node sequence processing rather than a certain type of sensing.

For the sake of clarity, we first present the design without

considering some practical issues such as system scalability,

all of which are addressed later in section V.

III. BASIC SYSTEM DESIGN

After the deployment of the sensor networks, pre-tracking

preparation builds the neighborhood graph at the sink node

with the location information of all sensor nodes, for limiting a

continuous estimated trajectory of the target so as to filter out

errors brought about by unreliable sensing results. Neighbor-

hood graph building is based on the map division introduced

below firstly.

A. Division of the Map

The division of the map is based on the fact that, ideally,

the geographic distance between a sensor node and the target

has a monotonic impact on the sensing readings, such as

signal strength, signal time-of-fly, and etc. For example, radio,

acoustic, and heat radiation signals attenuate monotonically

with increasing distance in free space [21][22], and so does

the time of fly for signal propagation.

(a)

1

2

Div(1, 2)

(b)

2

1

3

f3
 (2, 3, 1)

f4
 (3, 2, 1)

f5
 (3, 1, 2)

f6
 (1, 3, 2)

f1
 (1, 2, 3)

f2
 (2, 1, 3)

Div(1, 2)

Div(2, 3)

Div(1, 3)

f1 : Sf1 = (1, 2)

f2 : Sf2 = (2, 1)

Center of gravity point 1 Sensor �ode 1

Fig. 2. Map Divding Examples

As shown in Fig.2(a), given node 1 and 2 with known

positions, the whole area can be divided into two parts by

the perpendicular bisector Div(1, 2) for the dotted segment

connecting two nodes. By geometry, every position point in

the gray area under Div(1, 2) is closer to node 1 than to node

2. So if node 1 and node 2 are ordered by increasing distance

at each position point, all the position points in the gray area

have a common node sequence: (1, 2). We call such an area

composed of position points with identical node sequences as

a face f , and the corresponding node sequence as the signature

node sequence of face f , or for short, signature sequence Sf .

For example, in Fig.2(a), there are two faces: f1 and f2 with

signature sequences Sf1
= (1, 2) and Sf2

= (2, 1), respectively.

With n sensor nodes, there are C2
n = n(n−1)

2 perpendicular

bisector lines, which divide the whole map into O(n4) faces,

according to geometry study [23]. So, with an increasing

number of sensor nodes, the whole map will be divided into

more faces with smaller sizes. Fig.2(b) shows an example with

three sensor nodes. The whole map is divided into six faces

with distinct signature sequences. One fact about map division

is that each face has a unique signature sequence.

Proof: Going from any fi to fj (i 6= j) along a straight line,

we need to across the boundary of fi to reach fj . The boundary

is a perpendicular bisector for a pair of nodes in the map, say

node u and node v. Since we follow a straight line, we can

only cross this perpendicular bisector once. Therefore, when

we arrive at fj , the order of node u and v must get flipped in

Sfj
from Sfi

, namely Sfj
6= Sfi

.

In ideal case, the geographic distance between a sensor node

and the target has a monotonic impact on the sensing readings.

So, the signature sequence Sf of face f reflects the perspective

ranking of in-the-field sensor nodes according to their sensing

results, if the target locates in f . Therefore, with map division

results, a simple localization system works as follows. Given

a detection sequence Sd, target can be localized by matching

Sd with each Sfi
. The face making the best match shows the

estimated position area of the target.

B. Unreliable Detection Node Sequence

In ideal case, a detection sequences Sd should be identical

with one of the face signatures. However, in a real system,

sensing at each sensor node could be irregular and affected by

many factors including environment noise, obstacles and etc. Sd

is unreliable, which could be either a full detection sequence

including all the related sensor nodes, or a partial detection

.
.
.

.
.
.

.
.
.

 .
 .
 .
 .
 .
 .

Detection Sequence

Domain
Face Signature

Sequence Domain

∑
= −

n

k kn

n

1)!(

!
)(4nO

Detection sequence
Face signature sequence
Maximum likelihood matching

.
.
.

Fig. 3. Detection Sequences v.s. Face Sequences

sequence, in which some of the nodes supposed to appear are

missing. In addition, nodes in Sd could get flipped due to noisy

sensing.

A node sequence with k sensor node elements has P (k, k) =
k! possible permutations. In addition, Sd could be a partial

sequence, so the total number of possible unreliable detection

sequences in a system with n sensor nodes is:
n∑

k=1

P (n, k) =

n∑

k=1

n!

(n − k)!
(1)

On the other hand, for n sensor nodes, there are O(n4) faces
with distinct signature sequences. This is a much smaller space

than that of the detection sequences in Equation 1. Therefore,

as shown in Fig.3, given a detection sequence Sd, during most

of the time there is no direct face matching; instead, we need

to search for a face with the maximum likelihood.

Before going further, there are two questions need to answer

firstly: (i) how to evaluate the likelihood between a detection

sequence Sd and a signature sequence Sfi
? (ii) is there a

monotonic relationship between the likelihood and the geo-

graphical distance? Next subsection addresses both questions

by defining a metric, explaining the insight, and proposing

computing algorithms.

C. Sequence Distance

Given two node sequences S1 and S2, the Sequence Distance

SD(S1, S2) between them is defined as the number of flipped

node pairs between S1 and S2.

2

1

3

f2
 (2, 1, 3)

SD(Sf1, Sf2) = 1

SD(Sf1, Sf3) = 2

Sf1 = (1, 2, 3), Sf2 = (2, 1, 3)

Sf1 = (1, 2, 3), Sf3 = (2, 3, 1)
Div(1, 2)

f1
 (1, 2, 3)

f3
 (2, 3, 1) f4

 (3, 2, 1)

f5
 (3, 1, 2)

f6
 (1, 3, 2)

(1, 2) (2, 1)

(1, 2) (2, 1)

(1, 3) (3, 1)

Fig. 4. Sequence Distance Example

Fig.4 shows an example, for f1 and f2, Sf1
= (1, 2, 3) and

Sf2
= (2, 1, 3). Only one pair of nodes gets flipped from Sf1

to Sf2
, namely (1, 2) =⇒ (2, 1). So the sequence distance

SD(Sf1
, Sf2

) = 1. Similarly, two pairs of nodes get flipped

from Sf1
to Sf3

, so SD(Sf1
, Sf3

) = 2.

1) The Insight of Sequence Distance: The insight of node

pair flips is crossing the bisector lines in the map. For example,

in Fig.4, if we go from f1 to f2 along a straight line, we need

to cross the perpendicular bisector Div(1, 2), which causes

the distance relationships for node 1 and node 2 get reversed.

Similarly, going from f1 to f3 needs to cross two bisector lines,

shown with the dashed arrow, so two node pairs get flipped.

For two faces fi and fj (i 6= j), now there are two types

of distance: (i) the geographical distance GD(fi, fj) between

the center points of fi and fj , and (ii) the sequence distance

SD(Sfi
, Sfj

). For these two distances, we have the following

observation I :

SD(Sfi
, Sfj

) ∝ GD(fi, fj) (2)

Equation 2 indicates that the sequence distance between

two faces is approximately proportional with their geographical

distance. This is because longer geographical distance creates

chances for crossing more bisectors, resulting in more flipped

node pairs. Fig.5 depicts a simple example for this observation:

faces with identical sequence distances to f1 are filled with

identical pattern.

2

1

3

4

Seq. Distance = 1

Seq. Distance = 2

Seq. Distance = 3

Seq. Distance = 4

Seq. Distance = 5

Seq. Distance = 6f1

Fig. 5. Sequence Distance vs. Geographic Distance

2) Extended KT Distance Algorithm: The total number of

discordant node pairs on ordering between two sequences is

called the Kendall Tau Distance [24], or KT distance. Tra-

ditional KT distance addresses only the situation that two

sequences have identical length and digit sets. As analyzed

before, the detection sequence in our system could be partial,

so traditional KT distance can not be applied directly.

In our system, nodes from any detection sequence is always a

subset of the node set of signature sequences, since a signature

sequence includes all nodes that can possibly detect the targets.

So, given a detection sequence, it can only be (i) a full sequence

with the same length as any signature sequence, or (ii) a shorter

sequence composed of a subset of the nodes in the map. We

define an Extended KT Distance (EKT Distance) to address

both cases above. For case (i), EKT distance degrades to the

traditional KT distance.

Definition: The EKT distance between a detection sequence

Sd and a signature sequence Sfi
equals the total number of

flipped node pairs, considering the missing nodes in Sd.

The basic idea for calculating the EKT distance is to use

wildcard characters, shown in Fig.6. In Fig.6(a), if the detection

sequence Sd is shorter than the signature sequence Sfi
, add ∗

at the end of the Sd to make S′

d with the same length as Sfi
.

Then, for every node pair in Sfi
, search in S′

d to check if the

ordering of this pair gets flipped. There are three cases: (i) if

two nodes u and v, appear in both S′

d and Sfi
, simply compare

their ordering; (ii) if one node, saying u, is missing from S′

d,

call it a flip if the order is (u, v) in Sfi
, otherwise, it is a match;

(iii) if both u and v are missing in S′

d, consider no flip.

...

... ...

Sd

Sfi

...

... ...

1 2

1 3 2

Matching Flip

EKT(Sd , Sfi) = 1

1 2

1 3 2

Matching

1 2

1 3 2

1 2

1 3 2

(a) (b)

...Sd’

Sfi

Sd

Sfi

Fig. 6. EKT Distance Example

Fig.6(b) shows a simple example. There are three ordered

node pairs in Sfi
: (1, 3), (1, 2), and (3, 2). Correspondingly,

three ordered node pairs in S′

d: (1, ∗), (1, 2), and (2, ∗). Clearly,
we can match the first two ordered pairs from two sequences,

and we can find a flip between (3, 2) and (2, ∗). Counting the

number of flips, we can conclude that the EKT (Sd, Sfi
) = 1.

The rationale behind adding wildcards at the end of a

detection sequence is that if a node is missing in Sd, it is likely

to be further from the target than those nodes appearing in Sd,

thus it is assumed to be at the end of the sequence.

D. Neighborhood Graph

In this subsection, the neighborhood graph is introduced for

filtering out errors brought about by the unreliable detection

sequence.

Most of the mobile targets follow the observation II :

△Xmax = Vmax · △T (3)

meaning the maximum moving offset of the target △Xmax,

within the time interval △T between two sensing operations of

a sensor node, is bounded by its maximum speed Vmax times

△T . This is because that with limited maximum speed, a target

moves from one position to another following a continuous

trace rather than performing a “hyper-space jump”.

According to Equation 3, we can conclude that if the target

currently locates in one face in the map, at the next sampling

instance, the target is either still in the current face or at most

moves into a neighbor face which is defined as follows:

Definition: If the geographic distance between the closest

points of two faces are shorter than △Xmax, these two faces

are neighbor faces to each other.

As shown in Fig.7(a), the gray area is f1. If a target is

currently in f1, after △T , its location is bounded by the offset

boundary depicted with a thick gray curve. Therefore, the

dashed faces illustrated in Fig.7(b) are the neighbor faces of

f1. Connect the center of gravity points of neighbor faces with

2

1

4

3

5

Edge for neighbor faces

Neighborhood of f1

2

1

4

3

5

(a) (b)

Offset boundary of f1

f1 f1

Fig. 7. Neighborhood Graph Building

that of f1, as shown in Fig.7(b), indicating that it is possible

for the mobile target to move from f1 to those linked faces

during △T , and vice versa. Connecting all the faces with their

neighbor faces builds a neighborhood graph G, shown in Fig.8.

The vertex set V (G) is composed of center of gravity points

of all faces, and the link set E(G) limits possible inter-face

movements within △T .

E. Tracking as Optimal Path Matching

Given a series of detection sequences Sd(k), k =
0, 1 · · · , M , instead of performing per-sequence face matching,

a path composed of faces f(k) with minimal accumulated EKT

distance to Sd(k) owns maximal overall likelihood. Now, the

tracking problem turns into an optimal path matching issue:

minimize

M∑

k=0

EKT (Sd(k), Sf(k))

subject to f(k) ∈ V (G)

∀k, edge(f(k), f(k + 1)) ∈ E(G) (4)

Section III-A mentioned that with n sensor nodes, the map

can be divided into O(n4) faces. The tracking accuracy gets

significantly enhanced with increasing number of sensor nodes,

verified by Fig.8 showing example G with increasing n. How-
ever, G becomes extremely complicated with larger n. Finding
the optimal path becomes so challenging that a naive algorithm

would lead to exponential complexity growth with n.

1) Optimal Path Matching: This subsection presents a for-

ward dynamic programming based method for solving the

optimization problem shown by Equation 4.

Fig.9(a) shows a simple example for a neighborhood graph

G. In the figure, each vertex stands for a face, namely face

f1, f2, f3, f4 and f5. For the sake of clarity, temporarily assume

that at time k = 0, the starting face s of the target is f1. Later,

we will address the issue of unknown starting face s.
Starting with s = f1 at k = 0 in G, at k = 1, the target can

only either remain at f1 or move into f2 or f3. So, f1, f2, and

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Sample Neighborhood Graph (4 Sensor Nodes)

 x−coordinate (by meters)

y
−

c
o

o
rd

in
a
te

 (
b

y
 m

e
te

rs
)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Sample Neighborhood Graph (8 Sensor Nodes)

 x−coordinate (by meters)

y
−

c
o

o
rd

in
a
te

 (
b

y
 m

e
te

rs
)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Sample Neighborhood Graph (12 Sensor Nodes)

 x−coordinate (by meters)

y
−

c
o

o
rd

in
a
te

 (
b

y
 m

e
te

rs
)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Sample Neighborhood Graph (16 Sensor Nodes)

 x−coordinate (by meters)

y
−

c
o

o
rd

in
a
te

 (
b

y
 m

e
te

rs
)

Fig. 8. G Examples with Randomly Deployed 4, 8, 12 and 16 Sensor Nodes

f1

s

k = 0

f1

f2

f3

k = 1

Sd (1)

f1

f2

f3

k = 2

Sd (2)

f4

f5

(b) Candidate Path Graph H

...

...

...

…

..
.

e

s

f3

f1

f4f2

f5

(a) G

s

(c) Shortest Path in H

..
.
..
.

k = 0 k = 1 k = M-1 k = M

Fig. 9. From Optimal Path Matching to Shortest Path Searching

f3 are candidate faces for time k = 1, listed under k = 1 in

Fig.9(b). Connecting f1 under k = 0 with its candidate faces

under k = 1 adds edges to the graph in Fig.9(b). Repeating

this process, we can list candidate faces for k = 2 and add

corresponding edges wiring to vertices under k = 1. Given two

detection sequences Sd(1) and Sd(2) for time instance k =
1 and k = 2, compute the EKT distance from the signature

sequence of each face under k = 1 and k = 2 to Sd(1) and

Sd(2), respectively. We can obtain a candidate path graph H ,

in which each vertex in column k is a possible face to reach at

time k, and carries a weight of EKT distance to Sd(k).

As shown in Fig.9(c), finding an optimal path in G with

overall maximum likelihood to a series of detection sequences

(Sd(1), Sd(2) · · ·Sd(M)) is equivalent to searching for a path

in H from k = 0 to k = M with minimum accumulated vertex

weight. Defining the accumulated vertex weight of a path in H
as the length of the path, now the problem turns into a shortest

path problem in graph H , which can be solved with forward

dynamic programming with polynomial complexity [25]. The

basic idea is to keep only the best path to each vertex under

each k in H . Then choose the vertex under k = M with the

minimum path length as the terminal vertex e, and recursively

trace back to build the whole shortest path.

In practice, without knowing s at k = 0, the matching

algorithm starts from k = 1 by choosing c faces, where

1 ≤ c ≪ O(n4), with the smallest EKT distance to Sd(1).
Later simulation reveals that a small number c (e.g., c = 3) is
sufficient to get sound results.

2) Algorithm and Complexity: The grid-like structure of

graph H conveniently supports both off-line tracking, which

computes an overall optimal path after collecting all detection

sequences, and on-line tracking, which processes a new de-

tection sequence immediately by adding another column in H
and outputs an optimal path so far. Algorithm 1 illustrates the

computation structure applicable for both systems.

Line 1 initializes the faces for H(k = 1) by selecting c faces

in G with the shortest EKT distance to Sd(1). The H graph

is built between line 2 and 10. Line 3 prepares the faces for

H(k), each of which is processed between line 4 and 9 by

computing EKT distance, finding its single optimal preface,
and accumulating the path cost. Finally, an overall optimal path

P can be obtained by recursively tracing back from H(M) to

H(1) at line 11.

Each H(k) contains at most O(n4) faces for a system

with n nodes. EKT distance calculation costs a complexity

Algorithm 1: Optimal Path Matching

input : Detection sequences Sd(k), k = 1, · · · , M
Neighborhood graph G

output: Optimal path P

H(1).faces = Initialization (Sd(1), G) ;1

repeat2

H(k).faces = Neighbor (H(k − 1).faces, G) ;3

repeat4

f = Unprocessed (H(k).faces) ;5

f.dis = EKT(Sf , Sd(k)) ;6

f.preface = Min (H(k − 1).faces.cost) ;7

f.cost= f.preface.cost + f.dis ;8

until all faces in H(k) are processed ;9

until k = M ;10

P = TraceBack (minimum{H(M).faces.cost}) ;11

Radio ...Infrared Acoustic Magnetic

Detection Node Sequence Layer

Tracking Algorithm

Temp.

Fig. 10. Multi-Modality Integration

of O(n log(n)) with a bubble-sort algorithm [26]. Preface

searching at line 7 costs O(1) since the optimal preface can

be obtained at line 3 when listing all neighbor faces. So, the

time complexity for Algorithm 1 is O(M · n5 log(n)) for off-

line systems and O(n5 log(n)) for updating in on-line systems.

The storage complexity for both systems is O(M ·n4). For the
moment, the complexity seems high due to O(n4) faces. In later
section, we will explain how the complexity can be significantly

reduced to a feasible level for large-scale networks.

IV. MULTI-DIMENSIONAL SMOOTHING

This section introduces multi-dimensional smoothing in the

modality domain, time domain, and space domain, working

together to contribute to the accuracy and generality of the

whole system design.

A. Modality Domain Smoothing

If a sensor node is capable of sensing the environment

with multiple modalities (e.g., acoustic, infrared and etc), it

could be hard to merge those sensing results at the physical

layer. For example, comparing a 10dB acoustic signal with a

−60dBm RF strength is meaningless. In our design shown in

Fig.10, by converting the sensing results from each modality

into node sequence at the sink, an abstract layer is provided

for integrating sensing results from diverse modalities. Given

detection sequences from Q modalities for time k, denoted as

Si
d(k) (i = 1, 2 · · · , Q), final EKT distance to face f , Df (k),

can be obtained by smoothing over individual EKT distance

for each modality i with different weight wi according to its

precision and reliability:

Df (k) =

Q∑

i=1

(
wi · EKT (Si

d(k), Sf)
)

(5)

For the tracking algorithms on top of the sequence layer,

specific physical modalities become invisible.

B. Time Domain Smoothing

Time domain smoothing over continuous detection results

is commonly used for filtering out random noise in many

systems. Unlike most of the other systems conducting time

domain averaging at the physical modality layer, in our design,

smoothing can be performed conveniently at the node sequence

layer. The basic idea is to average the EKT distance to each

face f along the timeline over a smoothing window with odd

length L:

Df (k) =

∑(L−1)/2
i=−(L−1)/2 Df (k + i)

L
(6)

The length of the averaging window can vary in specific

applications. The EKT distance to a face roughly reflects the

geographic distance, so averaging EKT distances has an effect

similar to averaging sensing results directly.

C. Space Domain Smoothing

The design presented so far maps the position of the mobile

target at each time instance to the center of gravity point of

a face in the map. This results in two phenomena: (i) many

positions in the true trace are projected to the same estimated

position, and (ii) estimated positions scatter at both sides of

the true trace. It is not a good idea to plot the estimated trace

by simply connecting those estimated positions without space

domain smoothing, because it could give a curve oscillating

around the true trace. A better trace estimation can be obtained

by smoothing over the estimated positions using a smoothing

window with odd length L′:

x̃k =

∑(L′
−1)/2

i=−(L′−1)/2 x̂k+i

L′
ỹk =

∑(L′
−1)/2

i=−(L′−1)/2 ŷk+i

L′
(7)

where (x̂k, ŷk) are estimated position coordinates for time

k before space domain smoothing, which actually are the

coordinates of the center of a face; (x̃k, ỹk) is the final estimated

position after space domain smoothing.

V. DISCUSSION

This section discusses issues for real system implementation,

including system scalability, multiple targets tracking, time

synchronization, and energy efficiency.

A. System Scalability and Multiple Targets

An observation for large-scale systems is that only a small

portion of sensor nodes close to the mobile target are effective

for target detection at any time instance.

As it is shown in Fig.11, the gray area depicts the signal

pattern emitted from the target. So, the length of a detection

sequence is much shorter than n (total number of sensor nodes

deployed). Setting a range R for an effective area large enough

to cover perspective signal pattern with high confidence, shown

in Fig.11, map division can be done locally with sensing range

R instead of including all the sensors in the map. Now face

Effective area IEffective area II

Sensor Node Mobile Target

Target I
Target II

R

R

Fig. 11. Scalability and Multiple Targets

k = T-1 k = T

...

...... ...

k = T-M +1
...

k = T-M

...

k = 1

...

M

N

Fig. 12. Reduced Candidate Path Graph H

signature sequences have diverse length but not longer than m
which is the maximum number of sensor nodes in an effective

area with radius R. The EKT distance can be computed with

complexity of O(m log(m)) rather than O(n log(n)), where

m ≪ n.

When the target stays in the monitored area for a long time,

the shortest-path-searching graph H illustrated in Fig.9 could be

too big to store. Fig.12 illustrates the basic idea for effectively

truncating H . A processing window with length M and height

N is applied to the original graph H . Horizontally, when a

column moves out of the dashed window (e.g., k = T − M),

the decision for the shortest path until this column is made and

stored. Then the system works as if there is a new starting vertex

in k = T −M for columns K = T −M + 1, · · · . Vertically, if
the faces under k = T − 1 have more than N neighbor faces,

only let faces under k = T − 1 with smaller accumulated path

costs post their neighbors (totally no more than N) as candidate

faces under k = T .

Now, the computation complexity is not directly related to the

total number of sensor nodes n, but turns to O(T ·(N log(N)+
N · m log(m))), where N log(N) is for sorting, and storage

complexity becomes O(M · N) for all the vertices within the

dashed window.

Multi-target tracking (MTT) [27] is not an easy extension

of single target tracking because of inherent data association

ambiguity. To disambiguate, MTT should be able to uniquely

identify the signature of each target, which is beyond the

capability of this paper. In our design, if targets are far apart

from each other, the tracking system is able to differentiate

them and achieve simultaneous tracking. Fig.11 depicts a simple

example. If a distributed tracking system is available, the

processing terminal close to effective area I could handle target

I, and another processing terminal close to effective area II

could handle target II. If only a single sink is used for detection

sequence processing, the sink is able to differentiate detections

for target I from those for target II, since the set of sensor nodes

in area I is geographically distant from that in area II.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Position Points by Direct MLE

 x−coordinate (meter)

y
−

c
o

o
rd

in
a
te

 (
m

e
te

r)

Anchor Nodes

Enter Point

Exit Point

Ground Truth of Moving Trace

Estimated Positions

(a) Position Points by D-MLE

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Position Points by Path Matching

 x−coordinate (meter)

y
−

c
o

o
rd

in
a
te

 (
m

e
te

r)

Sensor Nodes

Target Enter Point

Target Exit Point

Ground Truth of Moving Trace

Estimated Positions

(b) Position Points by PM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 Smoothed Tracking Results by Path Matching

 x−coordinate (meter)

y
−

c
o

o
rd

in
a
te

 (
m

e
te

r)

Sensor Nodes

Target Enter Point

Target Exit Point

Ground Truth of Moving Trace

Estimated Moving Trace

(c) Smoothed Result by PM

Fig. 13. Visualized Simulation Example

B. Time Synchronization and Energy Efficiency

Current time synchronization techniques can achieve mi-

crosecond level accuracy (e.g., FTSP [28]) The sampling rate of

each sensor could be from several HZ to hundreds of HZ. The

time interval between two samples varies from microseconds to

seconds. So if a short timestamp is attached to each sensing re-

sult, the sink or the distributed tracking terminals can correctly

assemble the detection sequences for different time instance.

Energy efficiency is vital in sensor networks. Most of the

time, sensor nodes keep a low duty cycle until some event

or target appears in the monitored area. Nodes near the target

increase their sampling rate and alert only nodes close to the

projected moving trace [29], keeping others remain in sleep. On

the other hand, working nodes can dynamically adjust sampling

rate according to realtime tracking results. For instance, if

the sensing results vary slowly, meaning that the target slows

down, sensor nodes can reduce the sampling rate, vice versa. In

addition, nodes adjusting their sampling rates may also notify

related nodes helping them prepare for the coming target.

VI. SIMULATION EVALUATION

We evaluated the system design with both simulation and

testbed implementation. In this section, we compare the track-

ing performance of the optimal path matching (PM) proposed

in this paper with sequential maximum likelihood estimation,

or Direct MLE [30].

In the simulation, we model the monitored area as a grid map.

A movement trace of the mobile target is generated with the

random waypoint mobility model (RWP) [31]. An estimation

error at one point in the trace is defined as the geographic offset

between the estimated position and corresponding true position.

The mean tracking error is defined as averaged error of all the

points in the trace. All the statistics are averaged over 50 runs

for high confidence. The following table illustrates the default

simulation setup:

Parameter Description

Field Area 100 (meters)×100 (meters)

Noise Model Logarithmic (β = 4, σX = 6)

Number of Sensor Nodes 10, randomly deployed with uniform distribution

Sensing Sampling Rate 10Hz

Target Velocity Random between 1 ∼ 5 (meters/s)

Averaging Window 2.9s (Time Domain), 99 points (Space Domain)

A. Noise Models

A linear delay noise model for time-of-fly based detection,

depicted in equation 8, and a logarithmic attenuation noise

model for signal-strength based detection [22][21], described

by equation 9, are used for simulation evaluation.

Si(k) ∝
1

(1 + α) · di(k)
, α ∼ N(0, σ2

α) (8)

Si(k) ∝ −10β log(
di(k)

d0
) + Xi(k) (9)

d0 = 1 and Xi(k) ∼ N(0, σ2
X)

Si(k) stands for the sensing result of senor node i at time

instance k. di(k) is the physical distance between node i and

the target at time k. In the linear model (equation 8), α is a

random variable for time delay following a normal distribution

with 0 mean and variance σ2
α. In logarithmic model, β is the

signal fading factor and Xi(k) is a random noise at time k
for node i following a normal distribution with 0 mean and

variance σ2
X .

B. An Example by Figures

This subsection gives an intuitive comparison between Direct

MLE (D-MLE) and path matching (PM). Detailed analysis is

provided in later sections.

Fig.13(a) and Fig.13(b) show all the position points estimated

by D-MLE and PM, respectively. From these two figures, it

is clear that position points given by PM are much more

closely distributed around the true trace. Fig.13(c) illustrates

the smoothed traces for PM.

C. Simulation Results

1) Impact of Sensing Noise: Fig.14(a) illustrates the perfor-

mance of both methods under different σα for the linear noise

model (Equation 8). Fig.14(a) indicates: (i) noise introduces

tracking error; (ii) path matching-based tracking is very robust

to noise (error increases slightly with larger noise), while the

Direct MLE degrades quickly. For example, when σα = 0.4,
the D-MLE has doubled the error rates of PM. (iii) when noise

is 0 (σα = 0), the results of two methods converge. This

is because if noise is 0, identical faces are chosen by both

methods. Similarly, Fig.14(b) shows the performance trend of

both methods under different σx for the logarithmic noise model

(Equation 9). The figure indicates that (i) greater sensing noise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

45

50

 Impact of Noise (Linear Noise Model)

σ
α

T

ra
c
k
in

g
 E

rr
o

r
(m

e
te

r)
Maximum Error of Direct MLE

Maximum Error of Path Matching

Mean Error of Direct MLE

Mean Error of Path Matching

(a) Linear Noise Model

4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Impact of Noise (Logarithmic Noise Model β = 4)

σ
x

T

ra
c
k
in

g
 E

rr
o

r
(m

e
te

r)

Maximum Error of Direct MLE

Maximum Error of Path Matching

Mean Error of Direct MLE

Mean Error of Path Matching

(b) Logarithmic Noise Model: σx

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

Impact of Noise (Logarithmic Noise Model σ
x
 = 6)

β

T

ra
c
k
in

g
 E

rr
o

r
(m

e
te

r)

Maximum Error of Direct MLE

Maximum Error of Path Matching

Mean Error of Direct MLE

Mean Error of Path Matching

(c) Logarithmic Noise Model: β

Fig. 14. Impact of Sensing Noise to Tracking Error

6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

45

50

 Impact of the Number of Sensor Nodes

 Number of Sensor Nodes

T

ra
c
k
in

g
 E

rr
o

r
(m

e
te

r)

Maximum Error of Direct MLE

Maximum Error of Path Matching

Mean Error of Direct MLE

Mean Error of Path Matching

Fig. 15. Number of Sensor Nodes

1 2 3 4 5 6 7 8 9
20.2

20.3

20.4

20.5

20.6

Impact of the Number of Starting Faces

 Number of Starting Faces

M

a
x
 E

rr
o

r
(m

e
te

r)

Maximum Error of Path Matching

1 2 3 4 5 6 7 8 9
5.083

5.084

5.085

5.086

5.087

 Number of Starting Faces

M

e
a
n

 E
rr

o
r

(m
e
te

r)

Mean Error of Path Matching

Fig. 16. Number of Starting Faces

Maximum Error Mean Error
0

5

10

15

20

25

30

35

 Impact of Smoothing

T

ra
c
k
in

g
 E

rr
o

r
(m

e
te

r)

Without Smoothing

Only Modality−domain Smoothing

Only Time−domain Smoothing

Only Space−domain Smoothing

Multi−dimensional Smoothing

Fig. 17. Effectiveness of Smoothing

brings in larger tracking error, and (ii) path matching-based

tracking is more robust to noise compared with the Direct MLE.

Fig.14(c) shows the performance trend as β increases for the

logarithmic noise model. We can see that bigger β reduces the

tracking error. This is because the distance owns more weight

with increasing β, and noise has less impact comparatively.

From the above three figures, we can conclude that the path

matching based method is superior to the Direct MLE based

solution, especially when the noise is considerable.

2) Impact of the Number of Sensor Nodes: We compare

the path matching method with Direct MLE under a different

number of sensor nodes, ranging from 6 to 14 in steps of 1.

Fig.15 depicts that (i) with the increasing number of deployed

sensor nodes, the tracking error is reduced, and (ii) the path

matching system outperforms the system using Direct MLE.

3) Impact of the Number of Starting Faces: In order to

achieve an optimal path, theoretically searching should start

from every face in the graph. Simulation results shown in Fig.16

indicate that (i) increasing the number of starting faces from 1

to 2 enhances the system accuracy considerately, while (ii) more

than 3 starting faces gets little performance gain. So, we can

safely use 5 starting faces as the default system setup.

4) Effectiveness of Smoothing: Fig.17 illustrates the effec-

tiveness of smoothing at each dimension individually and in-

tergraded together. For modality domain smoothing, we assume

that a node has two sensors for acoustic and RF signal strength

detection, respectively. The figure shows that both smoothing

at individual dimension and working together help enhance the

system accuracy.

VII. SYSTEM EVALUATION

A system implementation of the design is conducted in the

outdoor environment. A Pioneer III robot is used as a mobile

target. 10 MICAz motes are used and 9 of them are deployed

as a cross “+” shape in a lawn as shown in Fig.18. The robot,

carrying a MICAz sensor nodes continuously sending out radio

packages in every 100 ms, is programmed to move along a

“⊓” shape trace in the field at a velocity of 10 cm/s. The
robot moves with a relatively slow speed since the grass land

is not even and the robot itself is heavy. The sensor nodes

deployed in the lawn record the RF signal strength as well as

the timestamps of the packages received. The data is processed

off-line and Fig.19 illustrates the results.

The true movement trace of the robot is a distorted “⊓” since
the grass ground is not flat. We can see from Fig.19 that (i) the

system gives a good tracking result; (ii) larger estimation error

appears at two corners of “⊓”, when the robot was turning and

the antenna radiation pattern was changing; (iii) there is a small

burr in the estimated trace near x = 80, y = 80. We checked

the data and found that there were 3 packages only received by

the node located at x = 60, y = 30 when the robot was close

to x = 80, y = 80. However, this strong noise is almost filtered

out in the estimated trace. From the outdoor system evaluation,

we can see that the design proposed in this paper is robust to

the strong noise and works in a real system.

VIII. RELATED WORK

Target tracking in sensor networks has been an active re-

search topic recently [17][18][1][27]. Due to space constraints,

we can only mention a few directly related works here.

Fig. 18. Outdoor System Evaluation

0 20 40 60 80 100 120
0

20

40

60

80

100

120

 Smoothed Tracking Results by Path Matching

 x−coordinate (0.1 meter)

y

−
c

o
o

rd
in

a
te

 (
0

.1
 m

e
te

r)

Sensor Nodes

Robot Moving Trace

Estimated Moving Trace

Fig. 19. Robot Tracking Results

Two recent works MSP [32] and Sequence-based [30] local-

ize the node/target by processing node sequences. Both methods

address only stationary sensor node localization and the system

reliability is largely ignored. The design in this paper differs

from them significantly by (i) applying movement constrains

for tracking with unreliable sensing, (ii) modeling tracking as a

problem of optimal path matching in a graph, and (iii) providing

a framework to support multiple sensing modalities.

Another key element in tracking is movement modeling

based filtering and estimation. The most widely used techniques

are Bayesian networks [33], Particle filters [9], Kalman fil-

ter [10] and its extended versions [34]. Most of the existing

tracking algorithms in sensor networks assume a certain move-

ment and/or noise model, which might not be available without

in-situ noise profiling and sensor calibration. In contrast, our

work is shown to be robust to different types of noise models,

and we impose maximum speed as the only constraint.

IX. CONCLUSION

This paper presented the first work for mobile target tracking

using unreliable node sequences in wireless sensor networks.

Tracking is modeled as an optimal path matching problem in a

graph. Besides the basic design, multi-dimensional smoothing

is proposed for further enhancing system accuracy. Evaluation

results demonstrate that tracking with optimal path matching

outperforms per-position maximum likelihood estimation. In

addition, the design provides a general platform for different

physical modalities with an abstract layer of node sequence.

X. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS -

0626609 and CNS - 0626614 and CRI - 0708344.

REFERENCES

[1] D. Li, K. Wong, Y.H. Hu, and A. Sayeed, Detection, Classification

and Tracking of Targets in Distributed Sensor Networks, IEEE Signal
Processing Magazine, 2002, 19(2).

[2] A. Smith, H. Balakrishnan, M. Goraczkoet, and N. Priyantha, Tracking

Moving Devices with The Cricket Location System, MobiSys ’04.

[3] P. Bahl and V. N. Padmanabhan, Radar: An In-building RF-based User

Location and Tracking System, InfoCom ’00.

[4] F. Gustaffsson and F. Gunnarsson, Mobile Positioning Using Wireless

Networks, IEEE Signal Processing Magazine, 2005, 22(4).

[5] B. Kusy, A. Ledeczi, and X. Koutsoukos, Tracking Mobile Nodes Using
RF Doppler Shifts, Sensys’07.

[6] X.R. Li and V.P. Jilkov, A Survey of Maneuvering Target Tracking:

Approximation Techniques for Nonlinear Filtering, SPIE ’04.

[7] S. Mohanty, VEPSD: A Novel Velocity Estimation Algorithm for Next-

Generation Wireless Systems, IEEE Trans. on Wireless Com., 2005,4(6).
[8] A. Terzis, A. Anandarajah, K. More, and I-J. Wang, Slip Surface Local-

ization in Wireless Sensor Networks for Landslide Prediction, IPSN ’06.
[9] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:

Particle Filters for Tracking Applications, Artech House, 2004.
[10] R.E. Kalman, A New Approach to Linear Filtering and Prediction

Problems, Trans. ASME, Journal of Basic Engineering, 1960.
[11] P. Zhang and M. Martonosi. LOCALE: Collaborative Localization Esti-

mation for Sparse Mobile Sensor Networks, IPSN 08’.
[12] A. Savvides, C-C. Han, and M.B. Strivastava, Dynamic Fine-grained

Localization in Ad-hoc Networks of Sensors, MobiCom ’01.
[13] C.D. Whitehouse, The Design of Calamari: an Ad-hoc Localization

System for Sensor Networks, Technical Report, UC Berkeley, 2002.
[14] K. Whitehouse, C. Karlof, and D. Culler, A Practical Evaluation of

Radio Signal Strength for Ranging-based Localization, SIGMOBILE Mob.
Comput. Commun. Rev., 2007, 11(1).

[15] J. Hwang, T. He, and Y. Kim, Exploring In-situ Sensing Irregularity in

Wireless Sensor Networks, SenSys ’07.
[16] N. B. Priyantha, A. Chakraborty and H. Balakrishnan, The Cricket

Location-support System, MobiCom ’00.
[17] R.R. Brooks, P. Ramanathan, and A.M. Sayeed, Distributed Target

Classification and Tracking in Sensor Networks, In Proc. of IEEE, 2003,
91(8).

[18] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, Design of
A Wireless Sensor Network Platform for Detecting Rare, Random, and

Ephemeral Events, IPSN ’05.
[19] R. Stoleru, T. He, and J.A. Stankovic, Walking GPS: A Practical Solution

for Localization in Manually Deployed Wireless Sensor Networks, LCN
’04.

[20] R. Stoleru, T. He, J.A. Stankovic, and D. Luebke, A High-accuracy, Low-

cost Localization System for Wireless Sensor Networks, Sensys’05.
[21] H. Lord, W.S. Gatley and H.A. Evensen, Noise Control For Engineers,

McGraw Hill Book Co., 1980.
[22] T.S. Rappaport, Wireless Communications, Principles and Practice, Pren-

tice Hall, 1996.
[23] M. de Bery, O. Cheong, M. van Krevald, and et al, Computational Ge-

ometry: Algorithms and Applications, Springer-Verlag, 2008, 3rd Edition.
[24] M. Kendall, Rank Correlation Methods, Charles Griffin Co. Ltd., 1948.
[25] G.D. Forney. The Viterbi Algorithm. In Proc. of the IEEE, 1973, 61(3).
[26] C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank Aggregation

Methods for the Web, WWW ’01.
[27] J. Liu, M. Chu, and J.E. Reich, Multitarget Tracking in Distributed Sensor

Networks, IEEE Signal Processing Magazine,2007, 24(3).
[28] M. Maroti, B. Kusy, G. Simon and A. Ledeczi, The Flooding Time

Synchronization Protocol, SenSys’04.
[29] R. Gupta, Tracking Moving Targets in A Smart Sensor Network, IEEE

58th Vehicular Technology Conference, 2003.
[30] K. Yedavalli and B. Krishnamachari, Sequence-Based Localization in

Wireless Sensor Networks, IEEE Trans. on Mobile Computing, 2008, 7(1).
[31] D.B. Johnson and D.A. Maltz, Dynamic Source Routing in Ad hoc

Wireless Networks, Mobile Computing, 1996, 353.
[32] Z. Zhong and T. He, MSP: Multi-Sequence Positioning of Wireless Sensor

Nodes, Sensys’07.
[33] J. Liu, J. Reich and F. Zhao, Collaborative In-Network Processing for

Target Tracking, J. on Applied Signal Processing, Mar. 2003.
[34] S. Julier and J. Uhlmann, A New Extension of the Kalman Filter to

Nonlinear Systems, Int. Symp. Aerospace/Defense Sensing, Simul. and
Controls, 1997.

