1. (4 points, 1 point each) True or false.

TRUE In a vote with four players, there are $4!=24$ different sequential coalitions.
FALSE The quota in a weighted voting system can be less than 50% of the total votes.
TRUE In the weighted voting system $[9 ; 10,3,3,2]$, player $1\left(P_{1}\right)$ is a dictator.
FALSE In the weighted voting system $[100 ; 30,30,20,20,10]$, the coalition $\left\{P_{1}, P_{3}, P_{4}, P_{5}\right\}$ is a winning coalition.
2. (3 points) List all the winning coalitions in the voting system [5; 3, 3, 2]. The winning coalitions are $\left\{P_{1}, P_{2}\right\},\left\{P_{1}, P_{3}\right\},\left\{P_{2}, P_{3}\right\}$, and $\left\{P_{1}, P_{2}, P_{3}\right\}$.
3. (3 points) Suppose that we have a voting system with 3 players, and we know that the winning coalitions in our voting system are $\left\{P_{1}, P_{2}, P_{3}\right\},\left\{P_{1}, P_{2}\right\}$, and $\left\{P_{1}, P_{3}\right\}$. Find the Banzhaf power indices of these three players.
In the first coalition, P_{1} is critical because, when removed, it is no longer one of these three winning coalitions. However, P_{2} and P_{3} are not critical because, when removed, they leave winning coalitions.

All players are critical in the second two coalitions, because there are no winning coalitions with only 1 player.
Therefore, P_{1} is critical 3 times, while P_{2} is critical once and P_{3} is critical once. Therefore, P_{1} has power index $3 / 5=60 \%$ and P_{2} and P_{3} both have power index $1 / 5=20 \%$.
4. (3 points) Suppose our voting system is $[11 ; 5,4,3,3,2]$. In the sequential coalition $\left\langle P_{1}, P_{3}, P_{5}, P_{2}, P_{4}\right\rangle$, who is the pivotal player?
P_{1} has 5 votes, which is not enough. P_{1} and P_{3} have 8 votes, which is not enough. P_{1}, P_{3}, and P_{5} have 10 votes, which is not enough. P_{1}, P_{3}, P_{5}, and P_{2} have 14 votes, which is enough, so P_{2} is the critical player.
5. (3 points) Suppose we have a voting system with 4 players, and we found that P_{1} is pivotal in 12 sequential coalitions, P_{2} is pivotal in 8 sequential coalitions, and P_{3} and P_{4} are pivotal in the same number of coalitions each. Find the Shapley-Shubik power indices of all 4 players. (You can leave your answer as a fraction if you prefer.)

There are $4!=24$ sequential coalitions. If P_{1} is pivotal in 12 and P_{2} is pivotal in 8, then P_{3} and P_{4} are pivotal equally in the remaining $24-12-8=4$ sequential coalitions. Therefore, P_{3} and P_{4} are pivotal in 2 sequential coalitions each.
As a result, P_{1} has power index $12 / 24=1 / 2, P_{2}$ has power index $8 / 24=1 / 3$, and P_{3} and P_{4} have power indices $2 / 24=1 / 12$.

