Math 2374
Practice final exam answers and hints
Email corrections to mosher@umn. edu

Spring 2006

1. $\frac{513}{135}$.
2. $(8,-6,6) \cdot(x-2, y-3, z-1)=0$.
3. 8π.
4. (a) $-3+\frac{1}{2}\left(-3(x-2)^{2}-2(y-8)^{2}+2(x-2)(y-8)\right)$. (Note that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are 0 at $(2,8)$ because it is a critical point.)
(b) Local max at $(2,8) .\left(D=5\right.$ and $f_{x x}=-3$.)
5. 0. By Stokes' Theorem, the line integral along each C_{i} is equal to the surface integral of $\nabla \times \mathbf{F}$ on the surface bounded by C_{i}, and $\nabla \times \mathbf{F}=\mathbf{0}$.
1. 6. $(\operatorname{div} \mathbf{F}=3$, and $3 \cdot \operatorname{Vol}(W)=6$.)
1. (a) 0.6. (Use the chain rule.)
(b) 0.18. (Find the directional derivative.)
2. $-\frac{1}{6}$. (Use Green's Theorem.)
3. (a)

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \rho^{2} \sin ^{3} \phi d \rho d \phi d \theta
$$

(b) $\frac{32 \pi}{9}$. (Use Pythagorean Theorem for the ϕ-integral.)
10. This is the same as showing that the integral along C_{1} plus the integral along the opposite orientation of C_{2} is equal to 0 . But this is the boundary of the cylinder S with outward-pointing normal, parametrized by $\Phi(\theta, z)=$ $(\cos \theta, \sin \theta, z)$, for $0 \leq \theta \leq 2 \pi$ and $1 \leq z \leq 2$. By Stokes' Theorem, the sum of line integrals equals

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

Check that the integrand here is 0 .

