Math 2374

Practice final exam answers and hints Email corrections to mosher@umn.edu

Spring 2006

- 1. $\frac{513}{135}$.
- 2. $(8, -6, 6) \cdot (x 2, y 3, z 1) = 0.$
- 3. 8π .
- 4. (a) $-3 + \frac{1}{2}(-3(x-2)^2 2(y-8)^2 + 2(x-2)(y-8))$. (Note that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are 0 at (2,8) because it is a critical point.)
 - (b) Local max at (2,8). $(D = 5 \text{ and } f_{xx} = -3.)$
- 5. 0. By Stokes' Theorem, the line integral along each C_i is equal to the surface integral of $\nabla \times \mathbf{F}$ on the surface bounded by C_i , and $\nabla \times \mathbf{F} = \mathbf{0}$.
- 6. 6. (div $\mathbf{F} = 3$, and $3 \cdot Vol(W) = 6$.)
- 7. (a) 0.6. (Use the chain rule.)
 - (b) 0.18. (Find the directional derivative.)
- 8. $-\frac{1}{6}$. (Use Green's Theorem.)
- 9. (a)

$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^2 \rho^2 \sin^3 \phi \, d\rho \, d\phi \, d\theta.$$

- (b) $\frac{32\pi}{9}$. (Use Pythagorean Theorem for the ϕ -integral.)
- 10. This is the same as showing that the integral along C_1 plus the integral along the opposite orientation of C_2 is equal to 0. But this is the boundary of the cylinder S with outward-pointing normal, parametrized by $\Phi(\theta, z) = (\cos \theta, \sin \theta, z)$, for $0 \le \theta \le 2\pi$ and $1 \le z \le 2$. By Stokes' Theorem, the sum of line integrals equals

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

Check that the integrand here is 0.