1. (20 points) Evaluate

$$
\int_{0}^{1} \int_{x^{2}}^{x}(2 x y+x) d y d x
$$

Solution:

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{x}(2 x y+x) d y d x & =\int_{0}^{1}\left(x y^{2}+\left.x y\right|_{x^{2}} ^{x}\right) d x \\
& =\int_{0}^{1}\left(x^{3}+x^{2}\right)-\left(x^{5}+x^{3}\right) d x \\
& =\int_{0}^{1} x^{2}-x^{5} d x \\
& =\frac{1}{3} x^{3}-\left.\frac{1}{6} x^{g}\right|_{0} ^{1} \\
& =\frac{1}{3}-\frac{1}{6} \\
& =\frac{1}{6}
\end{aligned}
$$

There are two integrals that need to be evaluated in this problem, each one was worth 10 points. Correctly taking the anti-derivative was 5 points, and correctly evaluating at the limits was 5 points.
2. (30 points) Consider the wire parametrized by $\mathbf{r}(t)=(t \cos t, t \sin t, t)$ for $\sqrt{2} \leq t \leq \sqrt{7}$.
(i) (15 points) Set up, but do not evaluate, the integral for the length of the wire. $r^{\prime}(t)=(-t \sin t+\cos t, t \cos t+\sin t, 1) 5$ points $l(t)=\int_{r} d s=\int_{\sqrt{2}}^{\sqrt{7}}\left\|r^{\prime}(t)\right\| d t$ 5 points form; 1 point bounds
$l(t)=\int_{\sqrt{2}}^{\sqrt{7}} \sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+1} d t=\int_{\sqrt{2}}^{\sqrt{7}} \sqrt{2+t^{2}} d t \mathbf{4}$ points
(ii) (15 points) Suppose the density of the wire at the point (x, y, z) is $\delta(x, y, z)=z$. Find the mass of the wire. (This should be an easy integral to calculate.)
$\int_{\sqrt{2}}^{\sqrt{7}} \delta(r(t))| | r^{\prime}(t)| | d t \mathbf{5}$ points
$\int_{\sqrt{2}}^{\sqrt{7}} t \sqrt{2+t^{2}} d t$ ($\mathbf{2}$ points for t, $\mathbf{3}$ points for $\sqrt{2+t^{2}}$)
$=1 / 2 \int_{\sqrt{2}}^{\sqrt{7}} 2 t \sqrt{2+t^{2}} d t=\left.(1 / 2)(2 / 3)\left(2+t^{2}\right)^{3 / 2}\right|_{\sqrt{2}} ^{\sqrt{7}}=1 / 3\left(9^{3 / 2}-4^{3 / 2}\right)=19 / 35$ points
Notes: -2 for algebra mistakes
3. (20 points) Reverse the order of integration for this integral:

$$
\int_{0}^{1} \int_{0}^{3-3 y}(3 x-y+1) d x d y
$$

Solution:

The region of integration is a right triangle bounded by the x-axis, the y-axis and the line
$x=3-3 y$, which can be re-written $y=1-\frac{x}{3}$.
The x-intercept of the line $y=1-\frac{1}{3}$ is $x=3$. Thus changing the order of integration gives the integral

$$
\int_{0}^{3} \int_{0}^{1-\frac{x}{3}}(3 x-y+1) d y d x
$$

There are 4 bounds that need to be correctly specified (upper and lower bounds in x and y respectively). 5 points were given for each correct bound.
4. (25 points) Let $\mathbf{F}(x, y)=(2 y,-x)$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ where C is the boundary of the shaded region below, oriented as pictured. Note that the outer circle has radius 4 and the two smaller circles have radius 1.

The only way to get full credit on this problem was to use Green's Theorem
Note that C is positively oriented as the boundary of D, where D represents the shaded region. Therefore,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{C} 2 y d x-x d y=\iint_{D} \frac{\partial(-x)}{\partial x}-\frac{\partial(2 y)}{\partial y} d x d y=\iint_{D}-1-2 d x d y
$$

This last integral is $-3 * \operatorname{Area}(D)=-3 * 14 \pi=-42 \pi$.

Problem 4 grading rubric:

- +5 if solution was coordinate independent.
- If the student used Green, the other 20 points were distributed roughly as follows:
-+15 for proper use of Green's theorem, including calculating the partials, getting the domain correct and getting the orientations (signs) correct.
-+5 for correctly computing the area.
- If the student parametrized the curves, he/she automatically lost 5 points for using coordinates. The remaining 20 points were distributed roughly as follows:
-+5 for parametrizations.
- +10 for correctly setting up the line integrals, including using the correct formula, getting the orientations correct, and getting the proper integrand.
-+5 computation points

5. (20 points) Find the value of the line integral $\int_{C} y d x+x^{2} d y$ along the parabola C defined by $y=x^{2}$ from the point $(0,0)$ to the point $(1,1)$.
C follows the parabola $y=x^{2}$, so one possible parametrization is $\mathbf{c}(t)=\left(t, t^{2}\right)$, where $0 \leq t \leq 1$. Let $\mathbf{F}(x, y)=\left(y, x^{2}\right)$. Then,

$$
\begin{aligned}
\int_{C} y d x+x^{2} d y= & \int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{1} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t=\int_{0}^{1}\left(t^{2}, t^{2}\right) \cdot(1,2 t) d t= \\
& \int_{0}^{1} t^{2}+2 t^{3} d t=\frac{t^{3}}{3}+\left.\frac{t^{4}}{2}\right|_{0} ^{1}=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}
\end{aligned}
$$

Problem 5 grading rubric:

- +5 for getting a correct parametrization.
- +5 for using the formula for evaluating line integrals.
- +5 for getting the correct integrand.
- +5 computation points.
- -20 if a student used Green's Theorem.

6. (25 points) Let W be the region in \mathbf{R}^{3} which is inside the cylinder $y^{2}+z^{2}=1$ and bounded by the $y z$-plane and the plane $z+x=1$.
(i) (15 points) Set up the integral $\iiint_{W} f(x, y, z) d V$ as an iterated integral with order $d x d z d y$.
The surface described by the equation is a cylinder whose center axis is the x-axis; here we are asked to set it up as an iterated integral with order $d x d z d y$.
Notice that the projection of the cylinder into the $y z$-plane is just a unit circle (the whole circle, not just the top half!), so the $d z$ and $d y$ limits are just over that circle. So we have

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{?}^{?} f(x, y, z) d x d z d y
$$

To find the $d x$ limits, observe that we want to integrate over the distance from the $y z$-plane (i.e. $x=0$) to the given plane $z+x=1$ for the entire circle described above. So the lower limit is $x=0$, and the upper limit is described by the plane, which we solve for x to get $x=1-z$. The final answer is

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{0}^{1-z} f(x, y, z) d x d z d y
$$

(ii) (10 points) Set up the integral in (i) as an iterated integral with order $d y d z d x$.

Now we are asked to find the integral with the bounds $d y d z d x$. For the outer two limits, we are again integrating over the distance from the $y z$-plane to the plane $z+x=1$. The outermost limit, in the x-direction, cannot involve y or z, so we need to see the minimum and maximum values that x takes on for the volume in question. The minimum is clearly 0 , but the maximum is where the plane leaves the sphere; this happens when $z=-1$, or at $x=2$.

The $d z$-bounds, on the other hand, go from the lowest value that z takes on over the relevant volume, which here is -1 , to the plane. Here we need the plane's equation solved for z : $z=1-x$. What we have so far is

$$
\int_{0}^{2} \int_{-1}^{1-x} \int_{?}^{?} f(x, y, z) d y d z d x
$$

Finally, the bounds for y need to ensure that we are only integrating over the circle that is the cross-section of the cylinder, which means we use the standard integrating-over-a-circle bounds here. The final answer is

$$
\int_{0}^{2} \int_{-1}^{1-x} \int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}} f(x, y, z) d y d z d x
$$

