1. (30 points) Consider the surface parametrized by $(x, y, z)=\Phi(x, y)=\left(x, y, 4-\left(x^{2}+y^{2}\right)\right)$ between the planes $z=1$ and $z=3$.
(i) (15 points) Set up the integral to find the surface area.

Call the Surface S and let $g(x, y)=4-\left(x^{2}+y^{2}\right)$. Then S is parametrized by $\Phi(x, y)=$ $(x, y, g(x, y))$ for $(x, y) \in D$ where D is the annulus with outer radius of $\sqrt{3}$ and inner radius of 1 . We have:

$$
\begin{gathered}
A(S)=\iint_{D} \sqrt{\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}+1} d A \\
=\iint_{D} \sqrt{(-2 x)^{2}+-(2 y)^{2}+1} d A \\
=\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d A
\end{gathered}
$$

(ii) (10 points) In the resulting double integral, change variables to polar coordinates.
Letting $x=r \cos \theta$ and $y=r \sin \theta$, we find

$$
A(S)=\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d A=\int_{0}^{2 \pi} \int_{1}^{\sqrt{3}} \sqrt{4 r^{2}+1} r d r d \theta
$$

(iii) (5 points) This integral should be easy to evaluate. Do it.

We use u substitution. Let $u=4 r^{2}+1$. Then $d u=8 r d r$, so

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{1}^{\sqrt{3}} \sqrt{4 r^{2}+1} r d r d \theta=\frac{1}{8} \int_{0}^{2 \pi} \int_{5}^{13} \sqrt{u} d u d \theta \\
& =\frac{1}{8} \int_{0}^{2 \pi} \frac{2}{3} u^{\frac{3}{2}} 1_{5}^{13} \\
& =\int_{0}^{2 \pi} \frac{1}{12}(13 \sqrt{13}-5 \sqrt{5}) \\
& =\left(-\frac{2 \pi}{12}\right)(13 \sqrt{13}-5 \sqrt{5}) \\
& =\frac{\pi}{6}(13 \sqrt{13}-5 \sqrt{5})
\end{aligned}
$$

2. (20 points) Compute the integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=(y-z, x-z, x-y)$ and S is the planar surface parametrized by $\boldsymbol{\Phi}(u, v)=(u-v, u+v, u)$ for $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Orient the surface so the first component of the normal vector is positive.
Since we are given the parametrization of the planar surface by $\boldsymbol{\Phi}$, the surface integral of \mathbf{F} over the surface S is

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\boldsymbol{\Phi}(u, v)) \cdot\left(\mathbf{T}_{u} \times \mathbf{T}_{v}\right) d u d v \quad(3 \text { points })
$$

First we find

$$
\mathbf{T}_{u}=\mathbf{i}+\mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{T}_{v}=-\mathbf{i}+\mathbf{j}+0 \mathbf{k} \quad(2 \text { points each })
$$

and hence the normal vector is

$$
\mathbf{N}=\mathbf{T}_{u} \times \mathbf{T}_{v}=-\mathbf{i}-\mathbf{j}+2 \mathbf{k} . \quad \text { (4 points) }
$$

However since the orientation is given so that the first component of the normal vector should be positive we choose the normal vector as

$$
\mathbf{N}=\mathbf{T}_{v} \times \mathbf{T}_{u}=\mathbf{i}+\mathbf{j}-2 \mathbf{k} . \quad \text { (right orientation } 2 \text { points) }
$$

Then we also find

$$
\mathbf{F}(\boldsymbol{\Phi}(u, v))=(u+v-u) \mathbf{i}+(u-v-u) \mathbf{j}+(u-v-u-v) \mathbf{k}=v \mathbf{i}-v \mathbf{j}-2 v \mathbf{k} . \quad(2 \text { points })
$$

Thus,

$$
\begin{align*}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F}(\mathbf{\Phi}(u, v)) \cdot\left(\mathbf{T}_{u} \times \mathbf{T}_{v}\right) d u d v \\
& =\int_{0}^{1} \int_{0}^{1}(v \mathbf{i}-v \mathbf{j}-2 v \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}-2 \mathbf{k}) d u d v \\
& =\int_{0}^{1} \int_{0}^{1}(v-v+4 v) d v d u=\int_{0}^{1} \int_{0}^{1} 4 v d v d u \\
& =\int_{0}^{1}\left(\left.\not A^{2} \frac{v^{2}}{\not 2}\right|_{0} ^{1}\right) d u=\int_{0}^{1} 2 d u=\left.2 u\right|_{0} ^{1}=2 \tag{5points}
\end{align*}
$$

3. (20 points) Let $\mathbf{F}(x, y)=\left(y \cos x+2 x e^{y}, \sin x+x^{2} e^{y}+5\right)$.
(i) (5 points) Verify that \mathbf{F} is a conservative vector field.

If $\nabla \times \mathbf{F}=\mathbf{0}$ then \mathbf{F} is a conservative vector field and if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ then

$$
\nabla \times \mathbf{F}=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

Here $P(x, y)=y \cos x+2 x e^{y}$ and $Q(x, y)=\sin x+x^{2} e^{y}+5$ and thus

$$
\begin{equation*}
\nabla \times \mathbf{F}=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}=\left[\left(\cos x+2 x e^{y}\right)-\left(\cos x+2 x e^{y}\right)\right] \mathbf{k}=\mathbf{0} \tag{5points}
\end{equation*}
$$

I also accepted the solutions where the student showed the existence of a potential function and stated that for that potential function $f, \nabla f=\mathbf{F}$ and hence \mathbf{F} is a conservative vector field or just showed that scalar curl of \mathbf{F} is zero.
(ii) (15 points) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ where C is any curve from (0,1) to $(\pi / 2,2)$. Since in (i) we showed that \mathbf{F} is a conservative vector field then \mathbf{F} has a potential function f. There are two ways of finding this (worth 8 points):
(A)

$$
\begin{aligned}
f(x, y) & =\int_{0}^{x} P(t, 0) d t+\int_{0}^{y} Q(x, t) d t \\
& =\int_{0}^{x} 2 t d t+\int_{0}^{y}\left(\sin x+x^{2} e^{t}+5\right) d t \\
& =\left.t^{2}\right|_{0} ^{x}+\left.\left(t \sin x+x^{2} e^{t}+5 t\right)\right|_{0} ^{y} \\
& =x^{2}+y \sin x+x^{2} e^{y}+5 y-x^{2} \\
& =y \sin x+x^{2} e^{y}+5 y
\end{aligned}
$$

(B)

$$
f(x, y)=\int P(x, y) d x=\int\left(y \cos x+2 x e^{y}\right) d x=y \sin x+x^{2} e^{y}+g(y)
$$

Let's use the fact that $f_{y}(x, y)=Q(x, y)$.

$$
\begin{equation*}
f_{y}(x, y)=\sin x+x^{2} e^{y}+g^{\prime}(y)=\sin x+x^{2} e^{y}+5 \tag{1}
\end{equation*}
$$

From Equation (1) we see that $g^{\prime}(y)=5$ and hence $g(y)=5 y$. Therefore $f(x, y)=$ $y \sin x+x^{2} e^{y}+5 y$.
Since \mathbf{F} is a conservative vector field it is path independent and hence

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =f(\mathbf{c}(b))-f(\mathbf{c}(a))=f(\pi / 2,2)-f(0,1) \\
& =2 \sin \left(\frac{\pi}{2}\right)^{-1}+\frac{\pi^{2}}{4} e^{2}+10-(1 \sin (\theta)+00+5) \\
& =12+\frac{p i^{2}}{4} e^{2}-5=7+\frac{\pi^{2}}{4} e^{2} \quad(7 \text { points })
\end{aligned}
$$

If a student chose to find a specific curve instead of finding a potential function 5 points were taken off and then if the line integral wasn't calculated properly another 5 points were taken off. If the parametrization of the curve was wrong no points were given.
4. (20 points) Consider the integral $\iint_{D}\left(4 x^{2}+9 y^{2}\right) d A$ where D is the region bounded by the curve $4 x^{2}+9 y^{2}=36$.
(i) (10 points) Let \mathbf{T} be the transformation from a region D^{*} to D defined by $(x, y)=\mathbf{T}(u, v)=(u / 2, v / 3)$. Draw both the regions D and D^{*}.
The region D is an ellipse centered at the origin where the radius in the x direction was 3 and the radius in the y direction was 2 .
The change of variables compressed in the x direction by a factor of 2 and compressed in the y direction by a factor of 3 . Therefore, to go back to u and v coordinates, we need to stretch by a factor of 2 and 3 in the u and v directions, respectively. Hence the region D^{*} is a circle centered at the origin of radius 6 .
2 points off for having D^{*} be a unit circle. 5 points off if $D *$ was rectangle or triangle. 5 points off if D was a rectangle or triangle.
(ii) (10 points) Change variables to an integral in u and v. (You need not evaluate the final integral.)

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\operatorname{det}\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{3}
\end{array}\right]=\frac{1}{6} \\
\left|\frac{\partial(x, y)}{\partial(u, v)}\right| & =\left|\frac{1}{6}\right|=\frac{1}{6}
\end{aligned}
$$

The integrand is $4 x^{2}+9 y^{2}=u^{2}+v^{2}$.
The bounds on the circle are, for example, $-6 \leq v \leq 6,-\sqrt{36-v^{2}} u \leq \sqrt{36-v^{2}}$ so tha t the integral is

$$
\iint_{D}\left(4 x^{2}+9 y^{2}\right) d A=\frac{1}{6} \int_{-6}^{6} \int_{-\sqrt{36-v^{2}}}^{\sqrt{36-v^{2}}}\left(u^{2}+v^{2}\right) d u d v
$$

Getting $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$ was worth 4 points, getting the integral was worth 2 points, getting the bounds was worth 4 points.
If your bounds matched your region drawn in part (i), you should have gotten the 4 points for the bounds even if the region was incorrect.
5. (20 points) Let C be the circle parameterized by $(x, y, z)=(\cos t, \sin t, 4)$ for $0 \leq t \leq 2 \pi$. Use Stokes' Theorem to calculate the circulation of the vector field

$$
\mathbf{F}(x, y, z)=(x+y) \mathbf{i}-(x+y+2 z) \mathbf{j}+(5 x-8 z) \mathbf{k}
$$

around C, which is the integral $\int_{C} \mathbf{F} \cdot d \mathrm{~s}$. Sketch the curve, your chosen surface, along with a normal vector to show the surface orientation.
Since you are given a line integral and told to use Stokes' theorem, you must compute a surface integral over some surface whose boundary was C. So the first step is to choose a surface. Note that C is a circle of radius 1 in the plane $z=4$ (i.e., satisfies $x^{2}+y^{2}=1$ and $z=4$). Possible correct surfaces include a disk in the plane $z=4$ where $x^{2}+y^{2} \leq 1$ (the most common and the simplest), a cone $z=\sqrt{x^{2}+y^{2}} / 4$ with $z \leq 4$, and a half-sphere such as $z=\sqrt{1-x^{2}-y^{2}}+4$.
Note that a cylinder such as $x^{2}+y^{2}=1$ for $0 \leq z \leq 4$ is not a correct answer, since the boundary of the cylinder also includes the circle $x^{2}+y^{2}=1$ in the $x y$-plane (i.e., where $z=0$). 5 points were deducted for choosing a cylinder where C was half of the boundary of the cylinder. (More points were deducted if C was not part of the boundary.)
Note that any sphere (such as $(z-4)^{2}+x^{2}+y^{2}=1$) does not have any boundary as it is a closed surface. Yes, it does include the circle C as part of the sphere, but C is not its boundary. (Choosing either the top or bottom half of the cylinder would be OK.) The integral of curl \mathbf{F} over any closed surface must be zero. 5 points were deducted for choosing a sphere that included C as part of the sphere. (More points were deducted if C was not part of the sphere.)
If you computed a line integral directly, you were not using Stokes' theorem as instructed (since you were given the line integral to start with). If you computed a line integral directly, you were awarded at most 8 points (if everything was done correctly).

The following solution is for choosing the disk $x^{2}+y^{2} \leq 1$ and $z=4$. We can parameterize this disk by

$$
\Phi(u, v)=(u \cos v, u \sin v, 4), \quad 0 \leq u \leq 1,0 \leq v \leq 2 \pi
$$

The partial derivatives are

$$
\begin{aligned}
& \mathbf{T}_{u}=\frac{\partial \Phi}{\partial u}=(\cos v, \sin v, 0) \\
& \mathbf{T}_{v}=\frac{\partial \Phi}{\partial v}=(-u \sin v, u \cos v, 0)
\end{aligned}
$$

so that a normal vector is

$$
\mathbf{T}_{u} \times \mathbf{T}_{v}=(0,0, u)
$$

This is an upward pointing normal vector. Since C is CCW when viewed from the positive z-axis, using this normal vector will make C be a positvely oriented boundary.
To use Stokes' theorem, we need to compute curl $\mathbf{F}=(2,-5,-2)$.
Then, putting everything together, we obtain

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{1} \int_{0}^{2 \pi}(2,-5,-2) \cdot(0,0, u) d v d u \\
& =\int_{0}^{1} \int_{0}^{2 \pi}-2 u d v d u=-4 \pi \int_{0}^{1} u d u=-2 \pi
\end{aligned}
$$

Parametrizing a correct surface was 4 points, finding the correct normal vector was 4 points, calculating curl \mathbf{F} was 3 points, setting up the integral correctly was 5 points, evaluting it was 2 points, and the sketch was 2 points.
If you dropped the minus sign of the second component of \mathbf{F} so that the last component of the curl was 0 , you lost at least three points since this made the calculation trivially zero.

6. (30 points) Consider the following triple integral

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{2-\sqrt{x^{2}+y^{2}}} 1 d z d y d x
$$

(i) (5 points) Describe the solid for which we would be finding its volume with this integral.
The solid is described by the inequalities

$$
\begin{gather*}
0 \leq z \leq 2-\sqrt{x^{2}+y^{2}} \tag{2}\\
0 \leq y \leq \sqrt{4-x^{2}} \tag{3}\\
-2 \leq x \leq 2 \tag{4}
\end{gather*}
$$

From (3) we have $y \geq 0$ and $y^{2} \leq 4-x^{2}$ i.e. $x^{2}+y^{2} \leq 4$ and $y \geq 0$. Notice that $x^{2}+y^{2} \leq 4$ is equivalent to $0 \leq 2-\sqrt{x^{2}+y^{2}}$. Therefore we can say that the solid lies above the plane $z=0$, below the surface $z=2-\sqrt{x^{2}+y^{2}}$ and $y \geq 0$. We know that $z= \pm \sqrt{x^{2}+y^{2}}$ is
the equation of the cone, thus $z=2-\sqrt{x^{2}+y^{2}}$ is a bottom part of the cone shifted up by 2 .
Putting everything together we see that the solid is bounded from bellow by the plane $z=0$, from above by the cone $z=2-\sqrt{x^{2}+y^{2}}$ and $y \geq 0$ i.e. we are considering half of the cone as shown on the figure.

(ii) (10 points) Change variables in the integral to cylindrical coordinates. Let's introduce the cylindrical coordinates for $r \in[0, \infty), \theta \in[0,2 \pi), z \in(-\infty, \infty)$,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

We already showed that our system of inequalities is equivalent to $0 \leq z \leq 2-\sqrt{x^{2}+y^{2}}$, $y \geq 0$. In the cylindrical coordinates $0 \leq z \leq 2-r, r \sin \theta \geq 0$ or $0 \leq z \leq 2-r$ and $\theta \in[0, \pi]$. The answer in this case is then

$$
\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{2-r} r d z d r d \theta
$$

(iii) (15 points) Change variables in the original integral to spherical coordinates.

Let's introduce the spherical coordinates for $r \in[0, \infty), \theta \in[0,2 \pi), \phi \in[0, \pi)$,

$$
\begin{aligned}
& x=r \cos \theta \sin \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \phi .
\end{aligned}
$$

Then the inequalities $0 \leq z \leq 2-\sqrt{x^{2}+y^{2}}, y \geq 0$ transforms into

$$
\begin{aligned}
& 0 \leq r \cos \phi \leq 2-\sqrt{(r \cos \theta \sin \phi)^{2}+(r \sin \theta \sin \phi)^{2}}=2-r \sin \phi \\
& 0 \leq r \sin \theta \sin \phi .
\end{aligned}
$$

From the second equation we have $\theta \in[0, \pi]$ and from the first one we have $r \leq \frac{2}{\cos \phi+\sin \phi}$ and $\phi \in\left[0, \frac{\pi}{2}\right]$. The answer in this case is then

$$
\int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{2}{\cos \phi+\sin \phi}} r^{2} \sin \phi d r d \phi d \theta
$$

