1. (20 points) For each statement, either give an example that shows the statement is TRUE, or give a brief reason that the statement is FALSE.
(a) (10) There exists a pair of nonzero vectors \mathbf{v} and \mathbf{w} in \mathbf{R}^{3} such that $\mathbf{v} \times \mathbf{w}=\mathbf{0}$ and $\mathbf{v} \cdot \mathbf{w}=0$.

FALSE: Since $0=\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$ and $0=\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$, where θ is the angle between \mathbf{v} and \mathbf{w}, we must have $\sin \theta$ and $\cos \theta$ both equal to 0 , which is impossible.
(b) (10) There exists a nonzero vector \mathbf{v} in \mathbf{R}^{3} such that $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|$.

TRUE: Since $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}=\|\mathbf{v}\|$, we must have $\|\mathbf{v}\|=1$. Thus, any unit vector satisfies the condition; for example, $\mathbf{v}=(1,0,0)$.
2. (20 points) Suppose that $\mathbf{f}, \mathbf{g}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ are functions such that

$$
\mathbf{f}(u, v)=\left(u v, u^{2}-v^{2}\right)
$$

and $\mathbf{g}(x, y)=(u(x, y), v(x, y))$ satisfies

$$
\mathbf{g}(1,2)=(5,-5)
$$

and

$$
D \mathbf{g}(1,2)=\left[\begin{array}{cc}
2 & 4 \\
6 & -8
\end{array}\right]
$$

(a) (10) Find $\frac{\partial v}{\partial x}(1,2)$.
$\frac{\partial v}{\partial x}(1,2)$ is the $(2,1)$-entry of $D \mathbf{g}(1,2)$, which is equal to 6 .
(b) (10) Find $D(\mathbf{f} \circ \mathbf{g})(1,2)$.

By the chain rule, $D(\mathbf{f} \circ \mathbf{g})(1,2)=D \mathbf{f}(\mathbf{g}(1,2)) \cdot D \mathbf{g}(1,2)$. Since $\mathbf{g}(1,2)=(5,-5)$ and $D \mathbf{f}(u, v)=$ $\left[\begin{array}{cc}v & u \\ 2 u & -2 v\end{array}\right]$, we have

$$
D(\mathbf{f} \circ \mathbf{g})(1,2)=\left[\begin{array}{cc}
-5 & 5 \\
10 & 10
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 4 \\
6 & -8
\end{array}\right]=\left[\begin{array}{cc}
20 & -60 \\
80 & -40
\end{array}\right]
$$

3. (20 points) Let $z=f(x, y)=e^{-x} \sqrt{y}$.
(a) (10) Find a function that is a linear approximation to $f(x, y)$ near the point $(0,9)$. Write your linear approximation in the form $z=A x+B y+C$.
$\nabla f=\left(-e^{-x} \sqrt{y}, \frac{1}{2} e^{-x} y^{-1 / 2}\right)$ and so $\nabla f(0,9)=\left(-3, \frac{1}{6}\right)$. Also $f(0,9)=3$. The linear approximation is thus $z=3-3(x-0)+\frac{1}{6}(y-6)$, or $z=-3 x+\frac{1}{6} y+\frac{3}{2}$.
(b) (10) A calculator will tell you that $e^{-.01} \sqrt{9.6} \approx 3.067557214$. Estimate this quantity using the linear approximation in (a), and write your answer to the hundredths place. Show your work.

The linear approximation evaluated at $(0.01,9.6)$ is 3.07 .
4. (25 points) Let $F(x, y, z)=x^{2} y+y z+z^{2}$.
(a) (15) Find $\nabla F(x, y, z)$.
$\nabla F(x, y, z)=\left(2 x y, x^{2}+z, y+2 z\right)$.
(b) (10) Are there any points (x, y, z) in upper-half-space (that is, where $z>0)$ at which the tangent plane to the level surface of F at that point is horizontal? Either find all such points, or give a reason why there are no such points.
NO: We would need $\nabla F(x, y, z)$ to have the form $(0,0, c)$, which implies that $x^{2}+z=0$, which is impossible because $z>0$.
5. (25 points) Let $g(x, y)=x+y^{2}$.
(a) (15) Find an equation for the plane that passes through the point $(3,-2,-4)$ and is parallel to the tangent plane to the graph of g at the point $(3,-2,7)$. Write the equation in the form $A x+B y+C z+D=0$.
$\nabla g=(1,2 y)$, and so $\nabla g(3,-2)=(1,-4)$. The tangent plane is then given by $z=-4+(x-$ $3)-4(y+2)$, or $x-4 y-z-15=0$.
(b) (10) Sketch the level curve defined by the equation $g(x, y)=5$ in the $x y$-plane. Label the coordinate axes of your sketch.
In the $x y$-plane with horizontal x-axis, the level curve is the parabola $x=5-y^{2}$, which opens to the left with x-intercept 5 and y-intercepts $\pm \sqrt{5}$.
6. (30 points) Let $f(x, y)=10-x^{2}-3 y^{2}$.
(a) (10) Write a unit vector \mathbf{u} that indicates the direction in which f is decreasing the fastest at the point $(2,1)$.
$\nabla f=(-2 x,-6 y)$, and so $-\nabla f(2,1)=(4,6)$. Then $\mathbf{u}=\frac{1}{\sqrt{16+36}}(4,6)=\frac{1}{\sqrt{13}}(2,3)$.
(b) (10) Find the directional derivative of f at the point $(2,1)$ in the direction \mathbf{u} that you found in part (a).

The directional derivative of f in the direction \mathbf{u} at the point $(2,1)$ is equal to $\nabla f(2,1) \cdot \mathbf{u}=$ $-2 \sqrt{13}$.
(c) (10) For each unit vector \mathbf{v}, let $\theta_{\mathbf{v}}$ denote the angle $0 \leq \theta_{\mathbf{v}} \leq \pi$ between \mathbf{v} and the unit vector \mathbf{u} that you found in (a). For which angles $\theta_{\mathbf{v}}$ is the directional derivative of f in the direction \mathbf{v} at $(2,1)$ less than or equal to -5 ? Write your answer as an inequality in the form $A \leq \theta_{\mathbf{v}} \leq B$.

For each unit vector \mathbf{v}, the directional derivative of f in the direction \mathbf{v} at the point $(2,1)$ is equal to $\nabla f(2,1) \cdot \mathbf{v}=\|(-4,-6)\|\|\mathbf{v}\| \cos \theta=2 \sqrt{13} \cos \theta$, where θ is the angle between ∇f and \mathbf{v}. So we need $2 \sqrt{13} \cos \theta \leq-5$, or $\cos \theta \leq \frac{-5}{2 \sqrt{13}}$. Thus $\cos ^{-1}\left(\frac{-5}{2 \sqrt{13}}\right) \leq \theta \leq \pi$, or $0 \leq \theta_{\mathbf{v}} \leq \pi-\cos ^{-1}\left(\frac{-5}{2 \sqrt{13}}\right)=\cos ^{-1}\left(\frac{5}{2 \sqrt{13}}\right)$.

