Math 2374
Spring 2008
Exam 2 solutions

1. (30 points) (a) (3 points each)
$\operatorname{curl}(\nabla f)-$ YES
$\operatorname{curl}(\operatorname{div} \mathbf{F})-\mathrm{NO} ; \operatorname{div} \mathbf{F}$ is a real-valued function, and curl applies to vector fields.
$\operatorname{div}(\operatorname{curl} \mathbf{F})-$ YES
$\nabla \times(\nabla \times \mathbf{F})-\mathrm{YES}$
$\nabla \times(\nabla \cdot \mathbf{F})-\mathrm{NO}$; as above.
(b) (15) Since $\|\mathbf{c}(t)\|^{2}=\mathbf{c}(t) \cdot \mathbf{c}(t)=1$, we have $\frac{d}{d t}(\mathbf{c}(t) \cdot \mathbf{c}(t))=0$, and $0=\frac{d}{d t}(\mathbf{c}(t) \cdot \mathbf{c}(t))=$ $\mathbf{c}^{\prime}(t) \cdot \mathbf{c}(t)+\mathbf{c}(t) \cdot \mathbf{c}^{\prime}(t)=2 \mathbf{c}^{\prime}(t) \cdot \mathbf{c}(t)$, which implies that $\mathbf{c}(t)$ and $\mathbf{c}^{\prime}(t)$ are perpendicular.
2. (20 points) Change the order of integration:

$$
\int_{0}^{2} \int_{0}^{y^{2}} e^{\left(y^{3}\right)} d x d y=\int_{0}^{2} y^{2} e^{\left(y^{3}\right)} d y=\frac{1}{3} \int_{0}^{8} e^{u} d u=\frac{e^{8}-1}{3}
$$

3. (20 points) $\mathbf{F}=\left(y z^{2}, x y^{2}, z x^{2}\right)$ is not the gradient of a function $f(x, y, z)$, because curl $\mathbf{F}=$ $\left(0,2 y z-2 x z, y^{2}-z^{2}\right) \neq \mathbf{0}$.
4. (30 points) (a) (5) $\|\mathbf{c}(4 \pi)-\mathbf{c}(2 \pi)\|=\|(1,0,8 \pi)-(1,0,4 \pi)\|=8 \pi-4 \pi=4 \pi$.
(b) (10) Since $\mathbf{c}^{\prime}(t)=(-\sin t, \cos t, 2)$, we have

$$
L=\int_{2 \pi}^{4 \pi}\left((-\sin t)^{2}+(\cos t)^{2}+2^{2}\right)^{1 / 2} d t=\int_{2 \pi}^{4 \pi} \sqrt{5} d t=2 \pi \sqrt{5} .
$$

(c) (15) Since $\left\|\mathbf{c}^{\prime}(t)\right\|=\sqrt{5}$ as above, we have

$$
M=\int_{2 \pi}^{4 \pi} \frac{1}{z} \sqrt{5} d t=\frac{\sqrt{5}}{2} \int_{2 \pi}^{4 \pi} \frac{1}{t} d t=\frac{\sqrt{5}}{2}(\ln (4 \pi)-\ln (2 \pi))=\frac{\sqrt{5}}{2} \ln 2 .
$$

5. (20 points) Since $\mathbf{F}=\left(y z^{2}, x z^{2}, 2 x y z\right)$ is the gradient of the function $f(x, y, z)=x y z^{2}$, by the fundamental theorem we have

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}=f(3,1,2)-f(1,-2,-3)=12-(-18)=30 .
$$

One may also parametrize the path and calculate the line integral directly.
6. (20 points) For $\mathbf{F}=(P, Q)=\left(x^{2}, x y\right)$, we have $Q_{x}-P_{y}=y$. Then by Green's Theorem,

$$
\int_{C^{+}} \mathbf{F} \cdot d \mathbf{s}=\iint_{R} y d A
$$

where R is the triangular region bounded by C^{+}. That region is bounded by the x - and y-axes and the line $x=3-\frac{3}{2} y$. So we have

$$
\int_{C^{+}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} y} y d x d y=\int_{0}^{2}\left(3 y-\frac{3}{2} y^{2}\right) d y=2 .
$$

One may also parametrize the path (in three parts) and calculate the line integral directly.

