Math 2374

Spring 2008

Exam 3 solutions

1. By Stokes' Theorem, the surface integral is equal to $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}$. But ∂S lies in the three coordinate planes, where at least one of x, y, and z are 0 , so $\mathbf{F}=\mathbf{0}$ on ∂S and hence $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}=0$.
2. (a) Parametrize S by $\Phi(u, v)=\left(u, v, 4-u^{2}\right)$, with $0 \leq u, v \leq 2$. Then $T_{u}=(1,0,-2 u), T_{v}=(0,1,0)$, and $T_{u} \times T_{v}=(2 u, 0,1)$, which points up and has magnitude $\sqrt{1+4 u^{2}}$. Then

$$
\iint_{S} f d S=\int_{0}^{2} \int_{0}^{2} u v \sqrt{1+4 u^{2}} d u d v=\frac{1}{6}\left(17^{3 / 2}-1\right)
$$

(b) If we re-parametrize so that the normal vector is $(-2 u, 0,-1)$, its magnitude is the same and hence the value of the surface integral is the same.
3. (a) The map $T(u, v)=(2,1) u+(-1,-2) v=(2 u-v, u-2 v)$ transforms the square $0 \leq u, v \leq 1$ to D. Then $J=3$, and we have

$$
\begin{aligned}
& \iint_{D} e^{x+y} d A=3 \int_{0}^{1} \int_{0}^{1} e^{2 u-v+u-2 v} d u d v \\
= & 3 \int_{0}^{1} e^{3 u} d u \cdot \int_{0}^{1} e^{-3 v} d v=-\frac{1}{3}\left(e^{3}-1\right)\left(e^{-3}-1\right) .
\end{aligned}
$$

4. (a) $\Phi(\theta, \phi)=(2 \cos \theta \sin \phi, 3 \sin \theta \sin \phi, 6 \cos \phi)$, where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$.
(b) $(\theta, \phi)=\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ corresponds to the point $\left(1, \frac{3}{2}, \frac{6}{\sqrt{2}}\right)$ on the ellipsoid. Thinking of the ellipsoid as the level surface $f=36$ for the function $f(x, y, z)=9 x^{2}+4 y^{2}+z^{2}$, we have $\nabla f=(18 x, 8 y, 2 z)$. At the point $\left(1, \frac{3}{2}, \frac{6}{\sqrt{2}}\right)$, we have $\nabla f=(18,12,6 \sqrt{2})$. The tangent plane to the ellipsoid there has equation $(18,12,6 \sqrt{2}) \cdot\left(x-1, y-\frac{3}{2}, z-\frac{6}{\sqrt{2}}\right)=0$.
5. (a) Solving the two equations for z, we find $z=\sqrt{\frac{1}{5}}$, and then $x^{2}+y^{2}=\frac{4}{5}$. This circle of radius $\sqrt{\frac{4}{5}}$ in the plane $z=\sqrt{\frac{1}{5}}$ can be parametrized by $\mathbf{c}(t)=\left(\sqrt{\frac{4}{5}} \cos t, \sqrt{\frac{4}{5}} \sin t, \sqrt{\frac{1}{5}}\right)$, for $0 \leq t \leq 2 \pi$.
(b) Integrate in spherical coordinates

$$
(x, y, z)=(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)
$$

Then

$$
\iiint z d z d y d x=\int_{0}^{\tan ^{-1} 2} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \theta d \phi
$$

$$
=\frac{\pi}{2} \int_{0}^{\tan ^{-1} 2} \cos \phi \sin \phi d \phi=\frac{\pi}{5} .
$$

To see that the upper ϕ limit of integration is $\tan ^{-1} 2$, make a right triangle with legs $\sqrt{\frac{1}{5}}$, the distance from the origin to the center of the circle of intersection, and $\sqrt{\frac{4}{5}}$, the radius of the circle.
6. Since $\operatorname{div} \mathbf{F}=0$, we know that $\mathbf{F}=\operatorname{curl} \mathbf{G}$ for some vector field \mathbf{G}, and hence we can apply Stokes' Theorem to integrate over the disk D (with upward-pointing normal) having common boundary with the hemisphere:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{G} \cdot d \mathbf{s}=\iint_{D} \mathbf{F} \cdot d \mathbf{S}
$$

The disk D can be parametrized by $\Phi(r, \theta)=(r \cos \theta, r \sin \theta, 0)$, has normal vector $T_{r} \times T_{\theta}=r \mathbf{k}$, and so $\mathbf{F}(\Phi(r, \theta)) \cdot\left(T_{r} \times T_{\theta}\right)=2 r$. Thus,

$$
\iint_{D} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{2 \pi} \int_{0}^{1} 2 r d r d \theta=2 \pi
$$

