Study guide for the first exam

Math 2374, Fall 2006

- 1. Basic vector material (Chapter 1)
 - (a) Comments: the initial sections of this course are background material for the rest of the course. The following may help you organize your studying of the diverse topics.
 - (b) Key items for exam 1
 - i. Computing 2×2 and 3×3 determinants: although these become more important later in the course, you can use them now to help you memorize the cross product.
 - ii. Dot products and cross products: these are used all the time, throughout the whole course. Make sure you understand and can compute them.
 - iii. Parametrizations of lines and equations of planes: these form an important basis of the course. A good understanding of them will be important.
 - iv. Vectors in \mathbb{R}^n . Be able to find magnitudes of vectors.
 - v. Matrices. Multiply matrices times vectors, matrices times matrices.
 - (c) Notes
 - i. We don't cover cylindrical and spherical coordinates (Section 1.4) until later in the course.
 - (d) Sample book problems: 1.3 # 15(d), # 16(b), # 26, # 30, 1.5 # 8
- 2. Functions and graphing (Section 2.1)
 - (a) Three-dimensional graphing: the only graphs in three dimensions we might ask you to sketch are quadric surfaces, planes, cylinders, lines, as well as portions or combinations of these.
 - (b) Level sets: level curves for functions of two variables and level surfaces for functions of three variables. Be able to sketch a few level curves as in the homework.
 - (c) Sample book problems: 2.1 #1(a), #2(b), #5
- 3. Derivatives (a big focus of the exam)
 - (a) Partial derivatives (Section 2.3)
 - i. Key items: understand and compute partial derivatives
 - ii. Methods: limit definition, one-variable calculus techniques.
 - iii. Sample book problems: 2.3 #2(b), #3(b)

- (b) The derivative (Section 2.3)
 - i. Key idea 1: the derivative is represented by the matrix of partial derivatives
 - ii. Key idea 2: use the derivative to write a linear approximation of a function f near a point **a**.
 - iii. Key idea 3: a function being differentiable at a point means it is nearly linear around that point.
 - iv. Key idea 4: if the partial derivatives in the matrix of partial derivatives are continuous at a point, then the function is differentiable.
 - v. Note that for $f: \mathbb{R}^2 \to \mathbb{R}$, the linear approximation is the tangent plane.
 - vi. For a scalar-valued function, the derivative can be written as vector (the gradient).
 - vii. Sample book problems: 2.3 #6(b). #12(b), #13(c), #14(c)
- (c) Introduction to paths and curves (Section 2.4)
 - i. Kknow that a curve can be parametrized by a function $\mathbf{c}(t)$, that $\mathbf{c}'(t)$ is the velocity of an object with position $\mathbf{c}(t)$, and $\mathbf{c}'(t)$ is tangent to the path.
 - ii. Be able to compute a tangent line to a curve.
 - iii. Sample book problems: 2.4 #15, #17
- (d) The chain rule (Section 2.5)
 - i. Key idea: The chain rule gives the derivative of a composition of functions.
 - ii. Key formula: $D(f \circ g)(\mathbf{a}) = Df(g(\mathbf{a}))Dg(\mathbf{a})$
 - iii. Note: Formulas for partial derivatives can be derived from above formula, but be careful to evaluate partial derivatives of f at the point $g(\mathbf{a})$.
 - iv. Sample book problems: 2.5 # 2(f), # 5(b), # 9, # 13
- 4. The gradient and the directional derivative (Section 2.6) (we assume functions are differentiable)
 - (a) The gradient
 - i. Key idea: for scalar-valued function f, the gradient ∇f is like the matrix of partial derivatives Df, except that the gradient is a vector rather than a matrix.
 - ii. The gradient is a vector whose magnitude and direction have physical meaning.
 - A. The gradient points in the direction where f increases most rapidly.
 - B. The magnitude of the gradient indicates the rate of change in f in that direction.
 - iii. Since the gradient is perpendicular to level sets of f, you can use the gradient to find tangent tangent planes to surfaces.
 - iv. Sample book problems: 2.6 #4(c), #7(c)
 - (b) The directional derivative

- i. Key idea: the directional derivative is a generalization of the partial derivative. The directional derivative $D_{\mathbf{u}}f$ gives the rate of change of f in the direction specified by \mathbf{u} ($D_{\mathbf{u}}f$ represents slope in that direction).
- ii. Important formula: $D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$ (alternatively $D_{\mathbf{u}}f(\mathbf{a}) = \|\nabla f(\mathbf{a})\| \cos \theta$)
- iii. Don't forget: **u** must be a **unit vector**.
- iv. Although the gradient is a vector, the directional derivative is a scalar.
- v. If **u** is perpendicular to the gradient, then $D_{\mathbf{u}}f = 0$. If **u** points in the same direction as the gradient, then $D_{\mathbf{u}}f = \|\nabla f\|$. If **u** points in the opposite direction of the gradient, then $D_{\mathbf{u}}f = -\|\nabla f\|$.
- vi. Sample book problems: 2.6 #3(b), #20