Study guide for third exam

Math 2374, Fall 2006

- 1. Cylindrical and spherical coordinates (Section 1.4)
 - (a) We'll use them for changing variables.
 - (b) Sample book problems: 1.4 # 4, # 12
- 2. Change of variables (Chapter 6)
 - (a) In double integrals
 - i. Key idea: Evaluate integral in new region over new coordinates with new area measure $dA = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$.
 - ii. Formula: $\iint_D f(x,y) dx \, dy = \iint_{D^*} f(\mathbf{T}(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \, dv.$
 - iii. Important special case: polar coordinates, where $dx dy = r dr d\theta$.
 - (b) In triple integrals
 - i. Key idea: Evaluate integral in new region over new coordinates with new volume measure $dV = \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du \, dv \, dw.$
 - ii. Formula: $\iint_W f(x, y, z) dx \, dy \, dz = \iint_{W^*} f(\mathbf{T}(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du \, dv \, dw.$
 - iii. Important special cases: cylindrical coordinates $(dx \, dy \, dz = r \, dr \, d\theta \, dz)$, spherical coordinates $(dx \, dy \, dz = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta)$
 - (c) Sample book problems: 6.1 #2, 6.2 #2, #14, #23, #26, #30
- 3. Parametrized surfaces (Section 7.3)
 - (a) Parametrize key surfaces: spheres, cylinders, cones, planes, surface of form z = h(x, y).
 - (b) Tangent vectors: $\mathbf{T}_u = \frac{\partial \Phi}{\partial u}$ and $\mathbf{T}_v = \frac{\partial \Phi}{\partial v}$
 - (c) Normal vector: $\mathbf{N} = \mathbf{T}_u \times \mathbf{T}_v$
 - (d) Use normal vector to find equation for tangent plane
 - (e) Unit normal vector $\mathbf{n} = \frac{\mathbf{T}_u \times \mathbf{T}_v}{\|\mathbf{T}_u \times \mathbf{T}_v\|}$ specifies orientation. Positive side of surface is side with normal.
 - (f) Sample book problems: 7.3 #3, #7, #14
- 4. Surface area of a parametrized surface (Section 7.4)
 - (a) Key idea: surface area element of $\mathbf{x} = \mathbf{\Phi}(u, v)$ is $dS = \|\mathbf{T}_u \times \mathbf{T}_v\| du dv$
 - (b) Formula: Surface area = $\iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv$.
 - (c) Sample book problems: 7.4 #5, #8, #13

- 5. Surface integrals of scalar-valued function (Section 7.5)
 - (a) Key idea: Integrate $f(\mathbf{x})$ across surface (i.e., $f(\Phi(u, v))$) using above dS.
 - (b) Formula: $\iint_S f \, dS = \iint_D f(\mathbf{\Phi}(u, v)) \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv.$
 - (c) Formula for graphs (special case of above formula): $\iint_{S} f \, dS = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2}} dx \, dy$
 - (d) Sample book problems: 7.5 #3, #8, #14
- 6. Surface integrals of vector-valued functions (Section 7.6)
 - (a) Key idea: Integrate normal component of $\mathbf{F}(\mathbf{x})$ across surface (i.e., $\mathbf{F}(\mathbf{\Phi}(u, v)) \cdot \mathbf{n}$) using above dS.
 - (b) Formula: $\iint_S \mathbf{F} \cdot d\mathbf{S} = \pm \iint_D \mathbf{F}(\mathbf{\Phi}(u, v)) \cdot (\mathbf{T}_u \times \mathbf{T}_v) \, du \, dv$. (minus sign if $\mathbf{T}_u \times \mathbf{T}_v$ points in the opposite direction as \mathbf{n})
 - (c) Formula for graphs (special case of above formula, upward normal): $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(x, y, g(x, y)) \cdot \left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right) dx \, dy$
 - (d) Sample book problems: 7.6 #1, #6, #16
- 7. Stokes' Theorem (Section 8.2)
 - (a) Key idea 1: to calculate circulation of \mathbf{F} around closed curve C, you can choose any surface with boundary C and calculate flux integral of $\nabla \times \mathbf{F}$ over surface.
 - (b) Key idea 2: if calculating the surface integral of a vector field $\mathbf{G} = \nabla \times \mathbf{F}$ over a surface S, then you can either
 - i. convert it to the integral of **F** over the boundary ∂S , or
 - ii. change the surface S to any other surface S' with the same boundary $\partial S' = \partial S$ and compute the integral over S' rather than over S.
 - (c) Need positively oriented boundary: orient using the right hand rule (alternatively, walk on positive side of surface near boundary and surface is on left).
 - (d) Formula: $\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$
 - (e) Sample book problems: 8.2 # 1, # 9, # 21, # 25
- 8. Conservative vector fields (Section 8.3)
 - (a) Key idea: test if a vector field is conservative. If it is, your life got a lot easier (that is, if you're trying to compute a line integral of the vector field).
 - (b) Fact: if a vector field \mathbf{F} is conservative, then
 - i. its line integral depends only on the endpoints (so is zero over closed curves)
 - ii. $\mathbf{F} = \nabla f$ for some potential function f.
 - iii. $\int_C \mathbf{F} \cdot d\mathbf{s} = f(\mathbf{q}) f(\mathbf{p})$, where \mathbf{p} and \mathbf{q} are the endpoints of the path.
 - (c) Test for conservative vector fields:

- i. In 2D where **F** is defined in all **R**²: **F** is path-independent if and only if $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = 0.$
- ii. In 3D where **F** is defined in all \mathbf{R}^3 except for possibly a finite number of points: **F** is path-independent if and only if $\nabla \times \mathbf{F} = \mathbf{0}$.
- (d) Don't forget the consequence of having a hole through the domain in \mathbb{R}^2 .
- (e) If **F** is conservative, find potential function f so that $\nabla f = \mathbf{F}$.
- (f) Sample book Problems: 8.3 #2, #3, #9, #13(b)