Study guide for third exam
 Math 2374, Fall 2006

1. Cylindrical and spherical coordinates (Section 1.4)
(a) We'll use them for changing variables.
(b) Sample book problems: $1.4 \# 4, \# 12$
2. Change of variables (Chapter 6)
(a) In double integrals
i. Key idea: Evaluate integral in new region over new coordinates with new area measure $d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$.
ii. Formula: $\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(\mathbf{T}(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$.
iii. Important special case: polar coordinates, where $d x d y=r d r d \theta$.
(b) In triple integrals
i. Key idea: Evaluate integral in new region over new coordinates with new volume measure $d V=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$.
ii. Formula: $\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(\mathbf{T}(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$.
iii. Important special cases: cylindrical coordinates $(d x d y d z=r d r d \theta d z)$, spherical coordinates $\left(d x d y d z=\rho^{2} \sin \varphi d \rho d \varphi d \theta\right)$
(c) Sample book problems: $6.1 \# 2,6.2 \# 2, \# 14, \# 23, \# 26, \# 30$
3. Parametrized surfaces (Section 7.3)
(a) Parametrize key surfaces: spheres, cylinders, cones, planes, surface of form $z=$ $h(x, y)$.
(b) Tangent vectors: $\mathbf{T}_{u}=\frac{\partial \Phi}{\partial u}$ and $\mathbf{T}_{v}=\frac{\partial \Phi}{\partial v}$
(c) Normal vector: $\mathbf{N}=\mathbf{T}_{u} \times \mathbf{T}_{v}$
(d) Use normal vector to find equation for tangent plane
(e) Unit normal vector $\mathbf{n}=\frac{\mathbf{T}_{u} \times \mathbf{T}_{v}}{\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\|}$ specifies orientation. Positive side of surface is side with normal.
(f) Sample book problems: $7.3 \# 3, \# 7, \# 14$
4. Surface area of a parametrized surface (Section 7.4)
(a) Key idea: surface area element of $\mathbf{x}=\boldsymbol{\Phi}(u, v)$ is $d S=\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| d u d v$
(b) Formula: Surface area $=\iint_{D}\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| d u d v$.
(c) Sample book problems: $7.4 \# 5, \# 8, \# 13$
5. Surface integrals of scalar-valued function (Section 7.5)
(a) Key idea: Integrate $f(\mathbf{x})$ across surface (i.e., $f(\boldsymbol{\Phi}(u, v))$) using above $d S$.
(b) Formula: $\iint_{S} f d S=\iint_{D} f(\mathbf{\Phi}(u, v))\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| d u d v$.
(c) Formula for graphs (special case of above formula):

$$
\iint_{S} f d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}} d x d y
$$

(d) Sample book problems: $7.5 \# 3, \# 8, \# 14$
6. Surface integrals of vector-valued functions (Section 7.6)
(a) Key idea: Integrate normal component of $\mathbf{F}(\mathbf{x})$ across surface
(i.e., $\mathbf{F}(\boldsymbol{\Phi}(u, v)) \cdot \mathbf{n})$ using above $d S$.
(b) Formula: $\iint_{S} \mathbf{F} \cdot d \mathbf{S}= \pm \iint_{D} \mathbf{F}(\boldsymbol{\Phi}(u, v)) \cdot\left(\mathbf{T}_{u} \times \mathbf{T}_{v}\right) d u d v$. (minus sign if $\mathbf{T}_{u} \times \mathbf{T}_{v}$ points in the opposite direction as \mathbf{n})
(c) Formula for graphs (special case of above formula, upward normal):
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(x, y, g(x, y)) \cdot\left(-\frac{\partial g}{\partial x},-\frac{\partial g}{\partial y}, 1\right) d x d y$
(d) Sample book problems: $7.6 \# 1, \# 6, \# 16$
7. Stokes' Theorem (Section 8.2)
(a) Key idea 1: to calculate circulation of \mathbf{F} around closed curve C, you can choose any surface with boundary C and calculate flux integral of $\nabla \times \mathbf{F}$ over surface.
(b) Key idea 2: if calculating the surface integral of a vector field $\mathbf{G}=\nabla \times \mathbf{F}$ over a surface S, then you can either
i. convert it to the integral of \mathbf{F} over the boundary ∂S, or
ii. change the surface S to any other surface S^{\prime} with the same boundary $\partial S^{\prime}=\partial S$ and compute the integral over S^{\prime} rather than over S.
(c) Need positively oriented boundary: orient using the right hand rule (alternatively, walk on positive side of surface near boundary and surface is on left).
(d) Formula: $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$
(e) Sample book problems: $8.2 \# 1, \# 9, \# 21, \# 25$
8. Conservative vector fields (Section 8.3)
(a) Key idea: test if a vector field is conservative. If it is, your life got a lot easier (that is, if you're trying to compute a line integral of the vector field).
(b) Fact: if a vector field \mathbf{F} is conservative, then
i. its line integral depends only on the endpoints (so is zero over closed curves)
ii. $\mathbf{F}=\nabla f$ for some potential function f.
iii. $\int_{C} \mathbf{F} \cdot d \mathbf{s}=f(\mathbf{q})-f(\mathbf{p})$, where \mathbf{p} and \mathbf{q} are the endpoints of the path.
(c) Test for conservative vector fields:
i. In 2 D where \mathbf{F} is defined in all \mathbf{R}^{2} : \mathbf{F} is path-independent if and only if $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=0$.
ii. In 3 D where \mathbf{F} is defined in all \mathbf{R}^{3} except for possibly a finite number of points: \mathbf{F} is path-independent if and only if $\nabla \times \mathbf{F}=\mathbf{0}$.
(d) Don't forget the consequence of having a hole through the domain in \mathbf{R}^{2}.
(e) If \mathbf{F} is conservative, find potential function f so that $\nabla f=\mathbf{F}$.
(f) Sample book Problems: $8.3 \# 2, \# 3, \# 9, \# 13(\mathrm{~b})$

