Math 5285H

Final Exam

No collaboration is allowed. This test is open-book and open-library but no electronic sources may be consulted.

This test is due on or by **Thursday**, **December 22** by 1pm. Return the exam in my mailbox in the mailroom on the first floor of Vincent Hall, or to my office in Vincent Hall 323 by the same time.

- 1. Describe one of the Sylow *p*-subgroups of $GL_2(\mathbb{Z}/p)$.
- 2. Classify groups of order 85.
- 3. Suppose V is a vector space over the complex numbers \mathbb{C} . Prove that the dimension of V when viewed as a vector space over \mathbb{R} is twice the dimension of V over \mathbb{C} .
- 4. Suppose that G is a simple group of size n, and that H is a proper subgroup of index d. Show that $n \leq d!$. (Hint: Use the action of G on left cosets to construct a homomorphism to a symmetric group, and think about the kernel.)
- 5. Solve the cubic equation $x^3 = 3x 1$ as follows. If x = s + t, you can collect terms to write $x^3 = 3stx + (s^3 + t^3)$. Equate coefficients in these two cubic polynomials to solve for s^3 and t^3 , and then s and t, and then finally x.