Math 5285H

Midterm 1

No collaboration is allowed. This test is open-book and open-library but no electronic sources may be consulted.

This test is due in-class on Friday, October 21.

- 1. How many elements in the symmetric group Σ_6 have order 6?
- 2. Let D_{2n} be the dihedral group with 2n elements:

$$D_{2n} = \langle a, b \mid a^n = e, b^2 = e, bab = a^{-1} \rangle$$

Find necessary and sufficient conditions on an integer k so that the two reflections b and ba^k generate the whole group: every element in D_{2n} can be obtained by multiplying together copies of b and ba^k in some order.

- 3. Find all possible values of x which are solutions to the following equations in modular arithmetic:
 - (a) $x^2 = \overline{1}$ in $\mathbb{Z}/5$.
 - (b) $x^2 = \overline{-1}$ in $\mathbb{Z}/5$.
 - (c) $x^2 + x + \overline{1} = \overline{0}$ in $\mathbb{Z}/7$.
 - (d) $x^3 + x^2 \overline{2}x \overline{1} = \overline{0}$ in $\mathbb{Z}/13$.
- 4. For which prime numbers p is the matrix

$$\begin{bmatrix} \bar{1} & \bar{1} & \bar{2} \\ \bar{1} & \bar{2} & \bar{3} \\ \bar{2} & \bar{3} & \overline{47} \end{bmatrix}$$

an element of $GL_3(\mathbb{Z}/p)$?

- 5. Let F be a field and V a finite-dimensional vector space over F. The dual space of V, called V^* , is the set of linear transformations $T: V \to F$. We define addition and scalar multiplication on V^* as follows:
 - (a) $(T_1 + T_2)(v) = T_1(v) + T_2(v)$
 - (b) $(a \cdot T)(v) = a(T(v))$

Show that these rules make V^* into a vector space over F, of the same dimension as V.