Math 5285H

Midterm 1
No collaboration is allowed. This test is open-book and open-library but no electronic sources may be consulted.

This test is due in-class on Friday, October 21.

1. How many elements in the symmetric group Σ_{6} have order 6 ?
2. Let $D_{2 n}$ be the dihedral group with $2 n$ elements:

$$
D_{2 n}=\left\langle a, b \mid a^{n}=e, b^{2}=e, b a b=a^{-1}\right\rangle
$$

Find necessary and sufficient conditions on an integer k so that the two reflections b and $b a^{k}$ generate the whole group: every element in $D_{2 n}$ can be obtained by multiplying together copies of b and $b a^{k}$ in some order.
3. Find all possible values of x which are solutions to the following equations in modular arithmetic:
(a) $x^{2}=\overline{1}$ in $\mathbb{Z} / 5$.
(b) $x^{2}=\overline{-1}$ in $\mathbb{Z} / 5$.
(c) $x^{2}+x+\overline{1}=\overline{0}$ in $\mathbb{Z} / 7$.
(d) $x^{3}+x^{2}-\overline{2} x-\overline{1}=\overline{0}$ in $\mathbb{Z} / 13$.
4. For which prime numbers p is the matrix

$$
\left[\begin{array}{ccc}
\overline{1} & \overline{1} & \overline{2} \\
\overline{1} & \overline{2} & \overline{3} \\
\overline{2} & \overline{3} & \overline{47}
\end{array}\right]
$$

an element of $G L_{3}(\mathbb{Z} / p)$?
5. Let F be a field and V a finite-dimensional vector space over F. The dual space of V, called V^{*}, is the set of linear transformations $T: V \rightarrow F$. We define addition and scalar multiplication on V^{*} as follows:
(a) $\left(T_{1}+T_{2}\right)(v)=T_{1}(v)+T_{2}(v)$
(b) $(a \cdot T)(v)=a(T(v))$

Show that these rules make V^{*} into a vector space over F, of the same dimension as V.

