Math 5285H

Midterm 2
No collaboration is allowed. This test is open-book and open-library but no electronic sources may be consulted.

This test is due in-class on Friday, December 9.

1. Give a matrix expression for the linear operator on \mathbb{R}^{3} that takes a vector v to its orthogonal projection onto the line generated by the vector $(1,1,1)$ of length $\sqrt{3}$. (Recall that the projection of u onto the line generated by v is $\frac{u \cdot v}{\|v\|^{2}} v$.) Find the rank of this matrix.
2. Let P_{2} be the vector space of polynomials of degree 2 or less with coefficients in \mathbb{R}. The set $\left(x^{2}, x^{2}+x, x^{2}+x+1\right)$ is a basis of P_{2}.
Let $D: P_{2} \rightarrow P_{2}$ be the linear operator given by $D(f(x))=x f^{\prime}(x)$. Express D as a matrix in terms of the above basis.
3. Give a classification of all the groups of order 39 .
4. Suppose that p is a prime that does not divide n and G is a group of order $p n$. If m is the number of Sylow p-subgroups of G, show that G has exactly $(p-1) m$ elements of order p.
5. Suppose $p>q>r$ are primes and that G is a group of order $p q r$.
(a) Using the previous exercise and the Sylow theorems, show that G has some normal Sylow subgroup.
(b) Continuing the previous problem, suppose that H is a Sylow p subgroup and that there is a normal Sylow subgroup K of order q or r. Use the Sylow theorems twice, first to show that H is normal in $H K$ and then to conclude that H is normal in G.
