Math 5345H, Fall 2015 Final Exam Due in-class on Wednesday, December 16

All questions have equal value.

- 1. Suppose $U \subset X$ is a subspace. Show that the map $U \to X$ is a covering map if and only if U is both open and closed.
- 2. Suppose that f and g are continuous functions $X \to Y$, and H: $[0,1] \times X \to Y$ is a homotopy from f to g. Fix a basepoint $x \in X$. Show that there exists a path α : $[0,1] \to Y$, starting at f(x) and ending at g(x), such that

$$f_*(\gamma) = \alpha * g_*(\gamma) * \alpha^{-1}$$

for all $\gamma \in \pi_1(X, x)$.

- 3. Using the previous exercise, prove the following. Suppose that $f: X \to Y$ and $g: Y \to X$ are continuous functions such that fg is homotopic to id_Y and gf is homotopic to id_X . Then for any basepoint $x \in X$, the map $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is an isomorphism.
- 4. Let $p: Y \to X$ be a covering map where X is path-connected, and $x \in X$. Show that the monodromy operator $y \mapsto y * \gamma$ becomes an *action* of the group $\pi_1(X, x)$ on $p^{-1}(x)$. Show that Y is path-connected if and only if this action has *one* orbit: $p^{-1}(x)$ is nonempty, and for any $y, y' \in p^{-1}(x)$ there exists an element γ such that $y' = y * \gamma$.
- 5. Let Δ be the triangle $\{(x, y) \in \mathbb{R}^2 \mid y \ge 0, y \le 2x, 2x + y \le 2\}$.

Suppose that $p, q, r \in X$, α is a path from p to q, β is a path from q to r, and γ is a path from p to r. Show that $\alpha * \beta$ is homotopic to γ if and only if there is a continuous function $\sigma : \Delta \to X$ such that

$$\sigma(t/2, t) = \alpha(t)$$

$$\sigma((1+t)/2, 1-t) = \beta(t)$$

$$\sigma(t, 0) = \gamma(t).$$

(HINT: Show that there is an appropriate quotient map from $[0, 1] \times [0, 1]$ to this triangle.)