Math 5378, Differential Geometry
Practice questions for Test 1

The exam itself will be closed book, no notes.
Note: There are more practice questions appearing here than would appear on an actual exam. The actual exam will have 4 questions, and one of them will be off this list.

Solutions will be posted on Monday, March 3.

1. Find a parametrized curve whose trace is the set of points $(x, y)$ in $\mathbb{R}^{2}$ with $x y=1, x>0$.
2. Find the arc length of the curve

$$
\alpha(t)=\left(t \sin t, t \cos t, \frac{\sqrt{8}}{3} t^{3 / 2}\right)
$$

between $t=0$ and $t=1$.
3. Show that the curve

$$
\alpha(t)=(\sin t, t,-\cos t)
$$

has constant speed. Then find a reparametrization of this curve by arc length.
4. Give the Frenet formulas for the derivatives of the tangent, normal, and binormal of a curve parametrized by arc length.
5. If $\alpha(s)$ is a curve parametrized by arc length, prove that $\alpha^{\prime}(s)$ is perpendicular to $\alpha^{\prime \prime}(s)$.
6. Find all real numbers $c$ so that the set

$$
\left\{(x, y, z) \mid x^{2}-y^{2}+z^{3}-z=c\right\}
$$

is a smooth surface in $\mathbb{R}^{3}$.
7. Consider the coordinate chart

$$
\mathbf{x}(u, v)=\left(u^{2}, u^{3}+v^{3}, v^{2}\right) .
$$

for $u, v>0$. Find the coefficients $E, F$, and $G$ of the first fundamental form in these coordinates.
8. Suppose we have a coordinate chart $\mathbf{x}$ on the open set

$$
\left\{(u, v) \in \mathbb{R}^{2} \mid u<0,-\pi<v<\pi\right\}
$$

such that the coefficients of the first fundamental form are:

- $E=e^{u}$,
- $F=0$,
- $G=e^{u}$.

Find the length of the image of the curve $\alpha(t)=(-1, t)$ between $t=0$ and $t=1$.
9. With the same coordinate chart as the previous problem, find the area of the image of the entire region under $\mathbf{x}$.
10. Consider the coordinate chart

$$
\mathbf{x}(u, v)=\left(u, u^{2}+v^{2},-v\right) .
$$

Find a field $N$ of unit normal vectors for this coordinate chart.
11. Given a surface $S$ with unit normal vector field $N$, give the mathematical definition of the second fundamental form $\mathrm{II}_{p}(\mathbf{v})$ for a vector $v$ in the tangent space $T_{p}(S)$.
12. Prove that a point $p$ of a smooth surface is umbilical if and only if the Gaussian curvature $K$ and the mean curvature $H$ satisfy $H^{2}=K$.

