Math 5378, Differential Geometry
Practice questions for Test 2

The exam itself will be closed book, no notes.
Note: There are more practice questions appearing here than would appear on an actual exam. The actual exam will have five questions, and two of them will be off this list.

Solutions will be posted on Monday, April 28.

1. Find all possible trajectories of the vector field $w(x, y)=(-y, x)$ on \mathbb{R}^{2}.
2. If the first fundamental form in coordinates is given by $E=e^{u}, F=$ $0, G=e^{v}$, find a vector field of unit length perpendicular to the vector field $x_{u}-x_{v}$.
3. If $f: S_{1} \rightarrow S_{2}$ is an isometry between surfaces and $\alpha(s):(a, b) \rightarrow S_{1}$ is a geodesic parametrized by arc length, show that $f(\alpha(s))$ is also a geodesic parametrized by arc length.
4. Suppose \mathbf{x} is a coordinate chart on a surface, with coefficients E, F, and G of the first fundamental form. Prove the following identities.

$$
\begin{aligned}
& \left\langle x_{u u}, x_{u}\right\rangle=\frac{1}{2} E_{u} \\
& \left\langle x_{u u}, x_{v}\right\rangle=F_{u}-\frac{1}{2} E_{v}
\end{aligned}
$$

Use these to show the matrix identity

$$
\left[\begin{array}{c}
\frac{1}{2} E_{u} \\
F_{u}-\frac{1}{2} E_{v}
\end{array}\right]=\left[\begin{array}{cc}
E & F \\
F & G
\end{array}\right]\left[\begin{array}{c}
\Gamma_{11}^{1} \\
\Gamma_{11}^{2}
\end{array}\right]
$$

5. Prove that the sphere of radius $R>0$ centered at the origin has constant Gaussian curvature $1 / R^{2}$ and mean curvature $-1 / R$.
6. Suppose $(u(s), v(s))$ is a curve in \mathbb{R}^{2} and \mathbf{x} is a coordinate chart so that $\mathbf{x}(u(s), v(s))$ is a curve parametrized by arc length. Write down the conditions on u and v necessary for this curve to be a geodesic in the surface.
7. Let $\alpha(s)=(f(s), g(s))$ be a curve in \mathbb{R}^{2} parametrized by arc length, and consider the coordinate chart on the associated surface of revolution given by

$$
\mathbf{x}(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

Prove that for any fixed angle θ, the meridian

$$
\alpha(s)=(f(s) \cos \theta, f(s) \sin \theta, g(s))
$$

is a geodesic parametrized by arc length.
8. Explain the sequence of steps (without calculating anything) taken to derive the Mainardi-Codazzi equations relating Christoffel symbols to e, f, and g from the formulas for $x_{u u}, x_{u v}$, and $x_{v v}$.
9. Find the absolute value of the geodesic curvature of the curve $(\cos t \cos \theta, \sin t \cos \theta, \sin \theta)$ on S^{2} for any fixed value of θ.
10. On a sphere of radius $R>0$, suppose that we have a triangle with three geodesic sides, with interior angles θ_{1}, θ_{2}, and θ_{3}. Find the area of the triangle.
11. Show that on a surface of nonpositive curvature, there are no simple closed geodesics that bound simple regions.
12. Calculate the geodesic curvature of the circle $z=h$ on the cone $x^{2}+$ $y^{2}=z^{2}$. Explain how the Gauss-Bonnet theorem relates these for different values of h.
13. Calculate the index of the critical point $(0,0)$ of the vector field

$$
w(x, y)=\left(x^{2}-y^{2}, 2 x y\right)
$$

on \mathbb{R}^{2}.

