
Math 5378, Differential Geometry
Solutions to practice questions for Test 2

1. Find all possible trajectories of the vector field w(x, y) = (−y, x) on
R

2.

Solution: A trajectory would be a curve (x(t), y(t)) satisfying x′ =
−y, y′ = x, and hence x′′ = −x. Therefore, we would have x(t) =
a cos(t) + b sin(t) for some constants a, b, and y = −x′ = a sin(t) −
b cos(t).

2. If the first fundamental form in coordinates is given by E = eu, F =
0, G = ev, find a vector field of unit length perpendicular to the vector
field xu − xv.

Solution: We apply the first fundamental form. For a vector field
axu + bxv to be perpendicular, we require:

0 = 〈xu − xv, axu + bxv〉 = aeu − bev,

so b = aeu−v. To be unit length, we require:

1 = ||axu + aeu−vxv||2 = a2eu + a2e2u−2vev,

so a = (eu + e2u−v)−1/2. Plugging back in gives us the desired vector
field.

3. If f : S1 → S2 is an isometry between surfaces and α(s) : (a, b) → S1

is a geodesic parametrized by arc length, show that f(α(s)) is also a
geodesic parametrized by arc length.

Solution: An isometry preserves the first fundamental form, and hence
the lengths of vectors, so f(α(s)) has the same speed as α(s). Moreover,
we have shown that the Christoffel symbols in coordinates depend only
on the first fundamental form, and an isometry preserves the first fun-
damental form, so the requirements that α(s) and f(α(s)) be geodesics
are given by the same differential equations (which we state in a later
problem).



4. Suppose x is a coordinate chart on a surface, with coefficients E, F,
and G of the first fundamental form. Prove the following identities.

〈xuu, xu〉 =
1

2
Eu

〈xuu, xv〉 = Fu − 1

2
Ev

Use these to show the matrix identity

[

1

2
Eu

Fu − 1

2
Ev

]

=

[

E F
F G

] [

Γ1

11

Γ2

11

]

Solution: We recall that by definition, E = 〈xu, xu〉, F = 〈xu, xv〉, so
their derivatives (by the Leibniz rule) are given by

Eu = 2 〈xuu, xu〉 ,

Ev = 2 〈xuv, xu〉 ,

Fu = 〈xuu, xv〉 + 〈xu, xuv〉 .

Solving produces the first required formulas.

To get the matrix equation, we take the equation

xuu = Γ1

11
xu + Γ2

11
xv + eN

and take dot products with xu and xv (both perpendicular to N) to
get formulas as follows:

〈xuu, xu〉 = Γ1

11
E + Γ2

11
F

〈xuu, xv〉 = Γ1

11
F + Γ2

11
G

Plugging in for the inner products and rewriting this in matrix form
gives the second desired formula.

5. Prove that the sphere of radius R > 0 centered at the origin has con-
stant Gaussian curvature 1/R2 and mean curvature 1/R.

Solution: A normal vector field on this sphere is given by N(x, y, z) =
(x/R, y/R, z/R) (which is a unit normal vector), or N(v) = 1

R
v, which



is just scalar multiplication. The differential dN then is given by
dN(w) = 1

R
w for any tangent vector w, and so the matrix of dN is

1

R
times the identity matrix.

The Gaussian curvature is the determinant of this matrix, which is
1/R2. The trace of this matrix is 2/R; dividing this by 2 and making
this negative gives the mean curvature, which is −1/R.

6. Suppose (u(s), v(s)) is a curve in R
2 and x is a coordinate chart so

that x(u(s), v(s)) is a curve parametrized by arc length. Write down
the conditions on u and v necessary for this curve to be a geodesic in
the surface.

Solution: The differential equations of a constant speed geodesic are:

u′′ + Γ1

11
(u′)2 + 2Γ1

12
(u′v′) + Γ1

22
(v′)2 = 0,

v′′ + Γ2

11
(u′)2 + 2Γ2

12
(u′v′) + Γ2

22
(v′)2 = 0.

7. Let α(s) = (f(s), g(s)) be a curve in R
2 parametrized by arc length, and

consider the coordinate chart on the associated surface of revolution
given by

x(u, v) = (f(u) cos v, f(u) sin v, g(u)).

Prove that for any fixed angle θ, the meridian

α(s) = (f(s) cos θ, f(s) sin θ, g(s))

is a geodesic parametrized by arc length.

Solution: To show this is parametrized by arc length, we calculate

α′(s) = (f ′(s) cos θ, f ′(s) sin θ, g′(s)).

This has length
√

(f ′(s))2 + (g′(s))2, which is 1 because the original
curve was parametrized by arc length.

One can find the first fundamental form, Christoffel symbols, and the
covariant derivative explicitly. However, it is easier to simply note that
the covariant derivative is the projection of the second derivative onto
the tangent space. The second derivative here is

α′′(s) = (f ′′(s) cos θ, f ′′(s) sin θ, g′′(s))



and the tangent vectors at the point α(s) are

xu = (f ′(s) cos θ, f ′(s) sin θ, g′(s)),

xv = (−f(s) sin θ, f(s) cos θ, 0).

The first coincides with α′(s), which is perpendicular to α′′(s) because
α is parametrized by arc length. The second we can see is perpendicular
to α′′(s) by direct calculation.

Therefore, since α′′(s) is perpendicular to the tangent space, the co-
variant derivative Dα′/ds is zero.

8. Explain the sequence of steps (without calculating anything) taken to
derive the Mainardi-Codazzi equations relating Christoffel symbols to
e, f, and g from the formulas for xuu, xuv, and xvv.

Solution: This is a vague question, but one basic idea is the following:

• We start with the equations

xuu = Γ1

11
xu + Γ2

11
xv + eN,

xuv = Γ1

12
xu + Γ2

12
xv + fN.

• We apply the identity (xuu)v = (xuv)u, and plug these equations
into both sides.

• We take the dot product with the unit normal vector N (or equiva-
lently ignore the xu and xv components of the result) remembering
that Nu and Nv are perpendicular to N .

The resulting equation is one of the Mainardi-Codazzi equations; we
get the other one by looking at (xuv)v = (xvv)u and comparing normal
components.

9. Find the absolute value of the geodesic curvature of the curve (cos t cos θ, sin t cos θ, sin θ)
on S2 for any fixed value of θ.

Solution: We first note that this curve moves at speed cos θ, and so
we reparametrize by arc length as

β(s) = (cos(s/ cos θ) cos θ, sin(s/ cos θ) cos θ, sin θ).



This curve has tangent vector

β ′(s) = (− sin(s/ cos θ), cos(s/ cos θ), 0),

and second derivative

β ′′(s) = (− cos(s/ cos θ)/ cos θ,− sin(s/ cos θ)/ cos θ, 0),

The length 1/ cos θ of this vector is the curvature k. The unit normal
vector at β(s) is β(s), and so the length of the normal component is
the normal curvature

kn = |β(s) · β ′′(s)| = | − cos2(s/ cos θ) − sin2(s/ cos θ)| = 1.

Since the geodesic and normal curvatures satisfy k2 = k2

n + k2

g , we find

|kg| =

√

1

cos θ
− 1.

10. On a sphere of radius R > 0, suppose that we have a triangle with
three geodesic sides, with interior angles θ1, θ2, and θ3. Find the area
of the triangle.

Solution: The sphere has constant Gaussian curvature 1/R2. There-
fore, applying the Gauss-Bonnet theorem to this triangle, we find

Area(T )/R2 = θ1 + θ2 + θ3 − π,

or
Area(T ) = R2(θ1 + θ2 + θ3 − π).

11. Show that on a surface of nonpositive curvature, there are no simple
closed geodesics that bound simple regions.

Solution: If such a simple closed geodesic existed bounding a simple
region R (which has Euler characteristic 1) then both the geodesic
curvature and angle terms would vanish from the equation in the Gauss-
Bonnet theorem. We would find

0 ≥
∫ ∫

R

K = 2π,

a contradiction.



12. Calculate the geodesic curvature of the circle z = h on the cone x2 +
y2 = z2. Explain how the Gauss-Bonnet theorem relates these for
different values of h.

Solution: We can parametrize this curve by arc length as

β(s) = (h cos(s/h), h sin(s/h), h).

Then we can calculate as in the previous problem.

β ′(s) = (− sin(s/h), cos(s/h), 0)

β ′′(s) = (− cos(s/h)/h,− sin(s/h)/h, 0)

The curvature is k = |β ′′(s)| = 1/h. The normal vector at β(s) is
1√
2
(cos(s/h), sin(s/h),−1), obtained by normalizing the gradient vec-

tor. Therefore,

kn =
1√
2
|β ′′(s) · (cos(s/h), sin(s/h),−1)| =

1

h
√

2
.

As a result, the geodesic curvature is kg =
√

k2 − k2
n = 1

h
√

2
.

Given two different heights h1 and h2, they enclose an annulus of Euler
characteristic zero. The cone has geodesic curvature 0, so the Gauss-
Bonnet theorem says that for any two of these curves C1 and C2 at
heights h1 and h2 respectively,

∫

C1

1

h1

√
2

=

∫

C2

1

h2

√
2
.

(This is true because the circle at height h has circumference propor-
tional to h.)

13. Calculate the index of the critical point (0, 0) of the vector field

w(x, y) = (x2 − y2, 2xy)

on R
2.

Solution: We first note that this is the only singularity in all of R
2.



We parametrize the circle x2 + y2 = 1 as (cos t, sin t) for 0 ≤ t ≤ 2π.
Then in these coordinates, we find the following.

w(x, y) = (cos2 t − sin2 t, 2 cos t sin t)

= (cos(2t), sin(2t)).

In the interval [0, 2π], this vector field rotates by an angle of 4π, and
therefore the index is 2.


